Dr. Reinhard Calov

Senior Scientist
Calov

Contact

Potsdam Institute for Climate Impact Research (PIK)
T +49 (0)331 288 2595
calov[at]pik-potsdam.de
P.O. Box 60 12 03
14412 Potsdam

- Inland ice in the Earth system
- Ice sheet modeling
- Stability of ice sheets

Refereed Papers and Book Chapters

  • Seroussi H, Verjans V, Nowicki S, Payne A. J, Goelzer H, Lipscomb WH, Abe-Ouchi A, Agosta C, Albrecht T, Asay-Davis X, Barthel A, Calov R, Cullather R, Dumas C, Galton-Fenzi BK, Gladstone R,
    Golledge NR, Gregory JM, Greve R, Hattermann T, Hoffman MJ, Humbert A, Huybrechts P, Jourdain NC,
    Kleiner T, Larour E, Leguy GR Lowry DP, Little CM, Morlighem M, Pattyn F, Pelle T, Price SF, Quiquet A,
    Reese R, Schlegel N-J, Shepherd A, Simon E, Smith RS, Straneo F, Sun S, Trusel LD, Van Breedam J,
    Van Katwyk P, van de Wal RSW, Winkelmann R, Zhao C, Zhang T, and Zwinger T (2023) Insights into the vulnerability of Antarctic glaciers from the ISMIP6 ice sheet model ensemble and associated uncertainty, The Cryosphere 17, 5197-5217, https://tc.copernicus.org/articles/17/5197/2023/, open access.
  • Höning D, Willeit M, Calov R, Klemann V, Bagge M, Ganopolski A (2023) Multistability and Transient Response of the Greenland Ice Sheet to Anthropogenic CO2 Emissions, GRL, https://doi.org/10.1029/2022GL101827, open access.
  • Payne AJ, Nowicki S, Abe-Ouchi A, Agosta C, Alexander P, Albrecht T, Asay-Davis X, Aschwanden A, Barthel A, Calov R, Chambers C, Choi Y, Cullather R, Cuzzone J, Dumas C, Edwards T, Felikson D, Fettweis X, Goelzer H, Golledge NR, Gregory JM, Greve R, Hatterman T, Hoffman MJ, Humbert A, Huybrechts P, Jourdain NC, Kleiner T, Larour E, clec'h SL, Lee V, Leguy G, Lipscomb WH, Little CM, Lowry D, Morlighem M, Nias I, Pattyn F, Pelle T, Price S, Quiquet A, Reese R, Rueckamp M, Schlegel N.-J, Seroussi H, Shepherd A, Simon E, Slater D, Smith R, Straneo F, Sun S, Tarasov L, Trusel LD, Breedam JV, van de Wal R, van den Broeke M, Winkelmann R, Zhao C, Zhang T, and Zwinger T (2021) Future sea level change under coupled model intercomparison project phase 5 and phase 6 scenarios from the Greenland and Antarctic ice sheets, GRL, https://doi.org/10.1029/2020GL091741, open access.
  • Edwards TL, Nowicki S, Marzeion B, Hock R, Goelzer H, Seroussi H, Jourdain NC, Slater DA, Turner F E, Smith CJ, McKenna CM, Simon E, Abe-Ouchi A, Gregory JM, Larour E, Lipscomb WH, Payne AJ, Shepherd A, Agosta C, Alexander P, Albrecht T, Anderson B, Asay-Davis X, Aschwanden A, Barthel A, Bliss A, Calov R, Chambers C, Champollion N, Choi Y, Cullather R, Cuzzone J, Dumas C, Felikson D, Fettweis X, Fujita K, Galton-Fenzi BK, Gladstone R, Golledge NR, Greve R, Hattermann T, Hoffman MJ, Humbert A, Huss M, Huybrechts P, Immerzeel W, Kleiner T, Kraaijenbrink P, Le clec'h S, Lee V, Leguy GR, Little CM, Lowry DP, Malles J-H, Martin DF, Maussion F, Morlighem M, O'Neill JF, Nias I, Pattyn F, Pelle T, Price S, Quiquet A, Radic V, Reese R, Rounce DR, Rückamp M, Sakai A, Shafer C, Schlegel N-J, Shannon S, Smith RS, Straneo F, Sun S, Tarasov L, Trusel LD, Breedam JV, van de Wal R, van den Broeke M, Winkelmann R, Zekollari H, Zhao C, Zhang T, and Zwinger T (2021) Projected land ice contributions to twenty-first-century sea level rise, Nature 593, 74-82, DOI:10.1038/s41586-021-03302-y, weblink.
  • Payne AJ, Nowicki S, Abe-Ouchi A, Agosta C, Alexander PM, Albrecht T, Asay-Davis XS, Aschwanden A, Barthel A, Bracegirdle TJ, Calov R, Chambers C, Choi Y, Cullather RI, Cuzzone JK, Dumas C, Edwards T, Felikson D, Fettweis X, Galton-Fenzi BK, Goelzer H, Gladstone R, Golledge NR, Gregory JM, Greve R, Hattermann T, Hoffman MJ, Humbert A, Huybrechts P, Jourdain NC, Kleiner T, Munneke PK, Larour E, Le Clec'h S, Lee V, Leguy G, Lipscomb WH, Little CM, Lowry DP, Morlighem M, Nias I, Pattyn F, Pelle T, Price S, Quiquet A, Reese R, Rückamp M, Schlegel NJ, Seroussi H, Shepherd A, Simon E, Slater DA, Smith R, Straneo F, Sun S, Tarasov L, Trusel L, van Breedam J, van de Wal RSW, van den Broeke MR, Winkelmann R, Zhao C, and Zhang T (2021) Future sea level change under CMIP5 and CMIP6 scenarios from the Greenland and Antarctic ice sheets, GRL, open access.
  • Sun SN, Pattyn F, Simon EG, Albrecht T, Cornford S, Calov R, Dumas C, Gillet-Chaulet F, Goelzer H, Golledge NR, Greve R , Hoffman MJ, Humbert A, Kazmierczak E, Kleiner T, Leguy GR, Lipscomb WH, Martin D, Morlighem M, Nowicki S, Pollard D, Price S, Quiquet A, Seroussi H, Schlemm T, Sutter J, van de Wal RSW, Winkelmann R, and Zhang T (2020) Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP), J Glaciol 66 (260): 891-904, DOI: 10.1017/jog.2020.67, open access.
  • Goelzer H, Nowicki S, Payne A, Larour E, Seroussi H, Lipscomb WH, Gregory J, Abe-Ouchi A, Shepherd A, Simon E, Agosta C, Alexander P, Aschwanden A, Barthel A, Calov R, Chambers C, Choi Y, Cuzzone J, Dumas C, Edwards T, Felikson D, Fettweis X, Golledge NR, Greve R, Humbert A, Huybrechts P, Le clec'h S, Lee V, Leguy G, Little C, Lowry DP, Morlighem M, Nias I, Quiquet A, Rückamp M, Schlegel N-J, Slater D, Smith R, Straneo F, Tarasov L, van de Wal RSW, and van den Broeke M (2020) The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6, The Cryosphere 14, 3071-3096, https://doi.org/10.5194/tc-14-3071-2020, open access.
  • Levermann A, Winkelmann R, Albrecht T, Goelzer H, Golledge NR, Greve R, Huybrechts P, Jordan J, Leguy G, Martin D, Morlighem M, Pattyn F, Pollard D, Quiquet A, Rodehacke C, Seroussi H, Sutter J, Zhang T, Van Breedam J, Calov R, DeConto R, Dumas C, Garbe J, Gudmundsson GH, Hoffman MJ, Humbert A, Kleiner T, Lipscomb WH, Meinshausen M, Ng E, Nowicki SMJ, Perego M, Price SF, Saito F, Schlegel N-J, Sun S, and van de Wal RSW (2020) Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2), Earth Syst Dynam 11, 35-76, https://doi.org/10.5194/esd-11-35-2020, open access.
  • Seroussi H, Nowicki S, Payne AJ, Goelzer H, Lipscomb WH, Abe Ouchi A, Agosta C, Albrecht T, Asay-Davis X, Barthel A, Calov R, Cullather R, Dumas C, Gladstone R, Golledge N, Gregory JM, Greve R, Hatterman T, Hoffman MJ, Humbert A, Huybrechts P, Jourdain NC, Kleiner T, Larour E, Leguy GR, Lowry D P, Little CM, Morlighem M, Pattyn F, Pelle T, Price SF, Quiquet A, Reese R, Schlegel N-J, Shepherd A, Simon E, Smith RS, Straneo F, Sun S, Trusel LD, Van Breedam J, van de Wal RSW, Winkelmann R, Zhao C, Zhang T, and Zwinger T (2020) ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century, The Cryopshere 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, open access.
  • Willeit M, Ganopolski A, Calov R, and Brovkin V (2019) Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal, Sci Adv 5, doi: 10.1126/sciadv.aav7337, open access.
  • Beckmann J, Perrette M, Beyer S, Calov R, Willeit M, and Ganopolski A (2019) Modeling the response of Greenland outlet glaciers to global warming using a coupled flow line-plume model, The Cryosphere 13, 2281–2301, https://doi.org/10.5194/tc-13-2281-2019, open access.
  • Calov R, Beyer S, Greve R, Beckmann J, Willeit M Kleiner T, Rückamp M, Humbert A, and Ganopolski A (2018), Simulation of the future sea level contribution of Greenland with a new glacial system model, The Cryosphere 12, 3097-3121, https://doi.org/10.5194/tc-12-3097-2018, open access.
  • Goelzer H, Nowicki S, Edwards T, Beckley M, Abe-Ouchi A, Aschwanden A, Calov R, Gagliardini O, Gillet-Chaulet F, Golledge NR, Gregory J, Greve R, Humbert A, Huybrechts P, Kennedy JH, Larour E, Lipscomb WH, Le clec'h S, Lee V, Morlighem M, Pattyn F, Payne AJ, Rodehacke C, Rückamp M, Saito F, Schlegel N, Seroussi H, Shepherd A, Sun S, van de Wal R, and Ziemen FA (2018) Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison. The Cryosphere 12, 1433-1460, https://doi.org/10.5194/tc-12-1433-2018, open access.
  • Robinson A, Jorge Alvarez-Solas J, Calov R, Ganopolski A, and Montoya M (2017) MIS-11 duration key to disappearance of the Greenland ice sheet. Nat Commun, doi: 10.1038/ncomms16008, open access.
  • Rogozhina I, Petrunin AG, Vaughan APM, Steinberger B, Johnson JV, Kaban MK, Calov R, Rickers F,
    Thomas M, and Koulakov I (2016) Melting at the base of the Greenland Ice Sheet explained by Iceland hotspot history. Nat Geosci, doi: 10.1038/NGEO2689, weblink.
  • Willeit M, Ganopolski A, Calov R, Robinson A, and Maslin M (2015) The role of CO2 decline for the onset of Northern Hemisphere glaciation. Quaternary Science Reviews 119: 22-34, doi:10.1016/j.quascirev.2015.04.015, open access.
  • Calov R, Robinson A, Perrette M, and Ganopolski A (2015) Simulating the Greenland ice sheet under present-day and palaeo constraints including a new discharge parameterization. The Cryosphere 9: 179–196, open access.
  • Geiser J, and Calov R (2012), Operator-splitting methods respecting eigenvalue problems for shallow shelf equations with basal drag. Coupled Systems Mechanics 1, 325-343.
  • Ganopolski A, and Calov, R (2012) Simulation of glacial cycles with an Earth system model. In Climate Change, A Berger et al. (eds.), part 2, 49-55, doi: 10.1007/978-3-7091-0973-1_3, Spinger-Verlag, Vienna.
  • Robinson A, Calov R, and Ganopolski A (2012) Multistability and critical thresholds of the Greenland ice sheet. Nature Clim Change doi:10.1038/nclimate1449, weblink.
  • Ganopolski A, and Calov R (2011) The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles. Clim Past 7: 1415-1425, open access.
  • Robinson A, Calov R, and Ganopolski A (2011) Greenland ice sheet model parameters constrained using simulations of the Eemian Interglacial. Clim Past 7: 381-396, open access.
  • Calov R, Greve R, Abe-Ouchi A, Bueler E, Huybrechts P, Johnson JV, Pattyn F, Pollard D, Ritz C, Saito F, and Tarasov L (2010) Results from the ice sheet model intercomparison project - Heinrich event intercomparison (ISMIP HEINO). J Glaciol 56 (197): 371-383, pdf.gif pdf (1.2 Mbyte).
  • Ganopolski A, Calov R, and Claussen M (2010) Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity, Clim Past 6: 229-244, open access.
  • Robinson A, Calov R, and Ganopolski A (2010) An efficient regional energy-moisture balance model for simulation of the Greenland Ice Sheet response to climate change. The Cryosphere 4: 129-144, open access.
  • Calov R, Ganopolski A, Kubatzki C, and Claussen M (2009) Mechanisms and time scales of glacial inception simulated with an Earth system model of intermediate complexity. Clim Past 5: 245-258, open access.
  • Ganopolski, A., V. Brovkin, and R. Calov (2009) Simulation of glacial-interglacial atmospheric CO2 variations using a comprehensive Earth system model of intermediate complexity. Geochimica et Cosmochimica Acta 73, A411-A411, Suppl. S.
  • Kubatzki C, Claussen M, Calov R, and Ganopolski A (2007) Modelling the end of an interglacial (MIS 5, 7, 9, 11). In: The climate of past interglacials, Developments in quaternary science 7, Sirocko F, Claussen M, Sanchez-Goni MF, Litt T (eds.) Elsevier, Amsterdam etc.: 583-593.
  • Greve R, Takahama R, and Calov R (2006) Simulation of large-scale ice-sheet surges: the ISMIP HEINO experiments. Polar Meteorology and Glaciology 20: 1-15, abstract.
  • Kubatzki C, Claussen M, Calov R, and Ganopolski A (2006) Sensitivity of the Last Glacial Inception to initial and surface conditions. Clim Dyn 27 (4): 333-344, doi: 10.1007/s00382-006-0136-6 pdf.gif authors final version (305 kbyte). The original publication is available at Springer.

  • Calov R, and Ganopolski A (2005) Multistability and hysteresis in the climate-cryosphere system under orbital forcing. Geophys Res Lett 32 (21): L21717, doi: 10.1029/2005GL024518 pdf.gif authors final version (283 kbyte). The original publication is available at GRL.
  • Calov R, and Greve R (2005) A semi-analytical solution for the positive degree-day model with stochastic temperature variations. J Glaciol 51 (172): 173-175, pdf.gif pdf (66 kbyte).
  • Calov R, Ganopolski A, Petoukhov V, Claussen M, Brovkin V, and Kubatzki C (2005) Transient simulation of the last glacial inception. Part II: sensitivity and feedback analysis. Clim Dyn 24 (6): 563-576, doi:10.1007/s00382-005-0008-5 pdf.gif authors final version (450 kbyte). The original publication is available at Springer.
  • Calov R, Ganopolski A, Claussen M, Petoukhov V, and Greve R (2005) Transient simulation of the last glacial inception. Part I: glacial inception as a bifurcation of the climate system. Clim Dyn 24 (6): 545-561, doi:10.1007/s00382-005-0007-6 pdf.gif authors final version (410 kbyte). Springer
  • Claussen M, Brovkin V, Calov R, Ganopolski A, and Kubatzki C (2005) Did humankind prevent a Holocene glaciation? Comment on Ruddiman's hypothesis of a pre-historic Anthropocene. Climatic Change 69 (2-3): 409-417, doi: 10.1007/s10584-005-7276-2 abstract
  • Greve R, and Calov R (2002) Comparison of numerical schemes for the solution of the ice-thickness equation in a dynamic/thermodynamic ice-sheet model. Journal of Computational Physics 179 (2): 649-664 abstract
  • Claussen M, Mysak LA, Weaver AJ, Crucifix M, Fichefet T, Loutre M-F, Weber SL, Alcamo J, Alexeev VA, Berger A, Calov R, Ganopolski A, Goosse H, Lohman G, Lunkeit F, Mokhov II, Petoukhov V, Stone P, and Wang Zh (2002) Earth system models of intermediate complexity: Closing the gap in the spectrum of climate system models. Clim Dyn 18 (7): 579-586 abstract
  • Calov R, Ganopolski A, Petoukhov V, Claussen M, and Greve R (2002) Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model. Geophys Res Lett 29 (24): 2216, doi: 10.1029/2002GL016078 pdf.gif authors final version (629 kbyte) The original publication is available at GRL
  • Payne AJ, Huybrechts P, Abe-Ouchi A, Calov R, Fastook JL, Greve R, Marshall SJ, Marsiat I, Ritz C, Tarasov L, and Thomassen MPA (2000) Results from the EISMINT model intercomparison: the effects of thermomechanical coupling. J Glaciol 46 (153): 227-238 pdf.gif pdf (1.6 Mbyte)
  • Savvin AA, Greve R, Calov R, Mügge B, and Hutter K (2000) Simulation of the Antarctic ice sheet with a three-dimensional polythermal ice-sheet model, in support of the EPICA project. II. Nested high-resolution treatment of Dronning Maud Land, Antarctica. Ann Glaciol 30: 69-75 abstract
  • Mügge B, Savvin AA, Calov R, and Greve R (1999) Numerical age computation of the Antarctic ice sheet for dating deep ice cores. In: Advances in Cold-Region Thermal Engineering and Sciences (eds. K. Hutter, Y. Wang and H. Beer), Springer: 307-318 pdf.gif pdf (530 kbyte).
  • Calov R, Savvin AA, Greve R, Hansen I, and Hutter K (1998) Simulation of the Antarctic ice sheet with a three-dimensional polythermal ice-sheet model, in support of the EPICA project, Ann Glaciol 27: 201-206 abstract
  • Calov R, and Marsiat I (1998) Simulations of the Northern Hemisphere through the last glacial-interglacial cycle with a vertically integrated and a three-dimensional thermomechanical ice sheet model coupled to a climate model. Ann Glaciol 27: 169-176 abstract
  • Calov R, and Hutter K (1997) Large scale motion and temperature distributions in land-based ice shields; the Greenland Ice Sheet in response to various climatic scenarios. Archives of Mechanics 49 (5): 919-962 abstract
  • Calov R, and Hutter K (1996) The thermomechanical response of the Greenland ice sheet to various climate scenarios. Clim Dyn 12 (4): 243-260 abstract
  • Huybrechts P, Payne AJ, and the EISMINT Intercomparison Group (Abe-Ouchi A, Calov R, Fabre A, Fastook JL, Greve R, Hindmarsh RCA, Hoydal O, Johannesson T, MacAyeal DR, Marsiat I, Ritz C, Verbitsky MY, Waddington ED, and Warner R) (1996) The EISMINT benchmarks for testing ice-sheet models. Ann Glaciol 23: 1-12 pdf.gif pdf (1.4 Mbyte)
  • Weis M, Hutter K, and Calov R (1996) 250 000 years in history of Greenland's ice sheet. Ann Glaciol 23: 359-363 abstract
  • Kuhle M, Herterich K, and Calov R (1989) On the ice age glaciation of the Tibetan Highlands and its transformation into a 3-D model. GeoJournal 19 (2): 201-206 abstract

 

Other Publications

  • Greve R, Chambers C, and Calov R (2020) ISMIP6 future projections for the Greenland ice sheet with the model SICOPOLIS, Zenodo: weblink.
  • Greve R, Calov R, Obase T, Saito F, Tsutaki S, and Abe-Ouchi A (2020) ISMIP6 future projections for the Antarctic ice sheet with the model SICOPOLIS, Zenodo: weblink.
  • Greve R, Calov R, and Herzfeld UC (2017) Projecting the response of the Greenland ice sheet to future climate change with the ice sheet model SICOPOLIS. Low Temperature Science 75: 117-129 pdf.gif pdf (2.2 Mbyte)
  • Calov R (2006) Modelling of terrestrial ice sheets in palaeo-climate research. GAMM-Mitt 29 (1): 9-28 pdf.gif pdf (1.3 Mbyte)
  • Ganopolski A, Calov R, Rahmstorf S, Petoukhov V, Claussen M, and Brovkin V (2003) Modeling of the Earth system dynamics during Quaternary. Terra Nostra 6: 161-165
  • Hutter K, Greve R, and Calov R (2003) Klimarekonstruktion aus dem Eis großer Eisschilde. Thema Forschung 2/2003, Technische Universität Darmstadt: 24-32 abstract
  • Calov R (1997) A three-dimensional thermomechanical ice sheet model coupled to a climate model - theory, model test and application to the northern Hemisphere ice sheets. Report: EU project Human Mobility CEE CHRX-CT92-0066: 45 pages abstract
  • Calov R, and Hutter K (1996) The Greenland ice sheet: flow, temperature and geometry in response to various climate scenarios. Proceedings of the 5th International Symposium on Thermal Engineering and Sciences for Cold Regions (eds Y Lee and W Hallett): 97-107 abstract
  • Hutter K, and Calov R (1996) Large scale motion and temperature distributions in land based ice shields - a review. Proceedings of the 5th International Symposium on Thermal Engineering and Sciences for Cold Regions (eds Y Lee and W Hallett): 22-46 abstract
  • Calov R (1994) Das thermomechanische Verhalten des Grönländischen Eisschildes unter der Wirkung verschiedener Klimaszenarien - Antworten eines theoretisch-numerischen Modells. Doctoral dissertation, Fachbereich Mechanik, Technische Hochschule Darmstadt: 171 pages abstract
  • Hutter K, and Calov R (1993) Thermal response of the Greenland ice sheet through the last glacial cycle, in Mass balance and related topics of the Greenland ice sheet (eds Reeh N, Oerter H) Open File Series, Geological Survey of Greenland: 17-19 pdf.gif pdf (220 kbyte)
  • Calov R (1989) Zur numerischen Simulation des Aufbaus eines hypothetischen Tibetischen Inlandeises während der Eiszeit. Diploma thesis, Max-Planck-Institut für Meteorologie, Fachbereich für Physik der Universität Hamburg: 79 pages

 

Conference Abstracts

    • Ganopolski A, Willeit M, and Calov R (2018) The role of climate-cryosphere-carbonosphere interaction in Quaternary climate dynamics. Geophysical Research Abstracts 20, EGU2018-15088 pdf.gif pdf (31 kbyte)
    • Beckmann J, Perrette M, Beyer S, Calov R, and Ganopolski A (2017) Sensitivity experiments with a one-dimensional coupled plume – ice flow model. Geophysical Research Abstracts 19, EGU2017-9107 pdf.gif pdf (32 kbyte)
    • Calov R, Beyer S, Greve R, Kleiner T, Rückamp M, Humbert A, and Ganopolski A (2017) Simulations of the Greenland ice sheet with the ice sheet model SICOPOLIS including a fully coupled model of basal hydrology. Geophysical Research Abstracts 19, EGU2017-11637-1 pdf.gif pdf (35 kbyte)
    • Beckmann J, Perette M, Alexander D, Calov R, and Ganopolski A (2016) Sensitivity experiments with a one-dimensional coupled plume-iceflow model. Geophysical Research Abstracts 18, European Geosciences Union: EGU2016-12774 pdf.gif pdf (32 kbyte)
    • Calov R, Rückamp M, Schlegel R, Ganopolski A, and Humbert A (2016) A test bed for investigating the flow of outlet glaciers and ice streams embedded in the Greenland ice sheet. Geophysical Research Abstracts 18, European Geosciences Union: EGU2016-9278 pdf.gif pdf (33 kbyte)
    • Calov R, Ganopolski A, Robinson A, Beckmann J, Alexander D, and Perrette M (2015) Assessing the impact of ocean temperature on the contribution of the Greenland ice sheet to future sea-level rise with a heuristic statistical approach. AGU fall meeting, C51B-0688.
    • Perrette M, Beckmann J, Alexander D, Calov R, and Ganopolski A (2015) Ensemble simulations of Greenland outlet glaciers into the 21st century. Geophysical Research Abstracts 17, European Geosciences Union: EGU2015-6311 pdf.gif pdf (34 kbyte)
    • Beckmann J, Siegfried M, Perrette M, Calov R, and Ganopolski A (2015) Sensitivity of Greenland outlet glacier dynamics to submarine melting. Geophysical Research Abstracts 17, European Geosciences Union: EGU2015-6856 pdf.gif pdf (34 kbyte)
    • Ganopolski A, Brovkin V, and Calov R (2015) Robustness of Quaternary glacial cycles. Geophysical Research Abstracts 17, European Geosciences Union: EGU2015-7197 pdf.gif pdf (36 kbyte)
    • Calov R, Robinson A, and Ganopolski A (2015) Long-term future contribution of the Greenland ice sheet to sea level rise. Geophysical Research Abstracts 17, European Geosciences Union: EGU2015-6838 pdf.gif pdf (36 kbyte)
    • Willeit M, Ganopolski A, and Calov R (2014), An "inverse" modelling approach to reconstruct CO2 and climate change during the Pliocene-Pleistocene transition. Geophysical Research Abstracts 16, European Geosciences Union: EGU2014-2210 pdf.gif pdf (42 kbyte)
    • Robinson A, Krapp M, Alvarez-Solas J, Montoya M, Calov R, and Ganopolski A (2014), Evaluating the performance of the REMBOv2 over Greenland for present-day and future scenarios. Geophysical Research Abstracts 16, European Geosciences Union: EGU2014-12112 pdf.gif pdf (35 kbyte)
    • Calov R, Robinson A, Perrette M, and Ganopolski A (2014) Uncertainty in the contribution of the Greenland ice sheet to Eemian sea level rise. Geophysical Research Abstracts 16, European Geosciences Union: EGU2014-2266 pdf.gif pdf (35 kbyte)
    • Perrette M, Calov R, Ganopolski A, and Robinson (2013) A statistical-dynamical approach to represent Greenland ocean-ice sheet interactions. Geophysical Research Abstracts 15, European Geosciences Union: EGU2013-11019 pdf.gif pdf (34 kbyte)
    • Ganopolski A, and Calov R (2013) Natural and non-natural end of Holocene. Geophysical Research Abstracts 15, European Geosciences Union: EGU2013-1666 pdf.gif pdf (35 kbyte)
    • Calov R, Robinson A, and Ganopolski A (2012) Improved representation of ice discharge from the Greenland ice sheet into the surrounding ocean. Geophysical Research Abstracts 14, European Geosciences Union: EGU2012-5708 pdf.gif pdf (34 kbyte)
    • Robinson A, Perrette M, Calov R, and Ganopolski A (2012) Irreversible melting of the Greenland Ice Sheet. Geophysical Research Abstracts 14, European Geosciences Union: EGU2012-5482 pdf.gif pdf (35 kbyte)
    • Ganopolski A, and Calov R (2012) Simulation and understanding the nature of Quaternary glacial cycles. Geophysical Research Abstracts 14, European Geosciences Union: EGU2012-4867 pdf.gif pdf (37 kbyte)
    • Calov R, Robinson A, and Ganopolski A (2011) Simulated Greenland evolution during the Eemian and MIS 11 interglacials. Geophysical Research Abstracts 13, European Geosciences Union: EGU2011-2203 pdf.gif pdf (36 kbyte)
    • Robinson A, Calov R, and Ganopolski A (2011) A new indicator of Greenland Ice Sheet stability. Geophysical Research Abstracts 13, European Geosciences Union: EGU2011-234 pdf.gif pdf (36 kbyte)
    • Brovkin V, Ganopolski A, Calov R, Munhoven G, and Archer D (2010) Simulation of glacial-interglacial atmospheric CO2 variations using a comprehensive Earth system model of intermediate complexity. Geophysical Research Abstracts 12, European Geosciences Union: EGU2010-5055 pdf.gif pdf (36 kbyte)
    • Calov R, Robinson A, and Ganopolski A (2010) The role of fast processes for the stability of the Greenland ice sheet. Geophysical Research Abstracts 12, European Geosciences Union: EGU2010-3550 pdf.gif pdf (33 kbyte)
    • Ganopolski A, and Calov R (2010) 100 kyr World: the role of carbon dioxide, regolith and eolian dust. Geophysical Research Abstracts 12, European Geosciences Union: EGU2010-5019 pdf.gif pdf (36 kbyte)
    • Robinson A, Calov R, and Ganopolski A (2010) Constraining Greenland surface mass balance model parameters using paleoclimate data. Geophysical Research Abstracts 12, European Geosciences Union: EGU2010-8776 pdf.gif pdf (59 kbyte)
    • Robinson, A, Calov, R, and Ganopolski, A (2008) Simulation of long-term response of the Greenland Ice Sheet to global warming with an ice sheet model coupled to a regional energy-moisture balance climate model. EOS Trans AGU 89 (53), Fall Meet Suppl, C11B-0501 pdf.gif pdf (57.5 kbyte)
    • Calov R, and Greve R, ISMIP HEINO Intercomparison Group (2008) The ISMIP HEINO project: Intercomparison of large-scale oscillations in ice-sheet models. International Symposium on Dynamics in Glaciology, IGS 17-22 August 2008, 52A016 pdf.gif pdf (105 kbyte)
    • Calov R, Ganopolski A, and Claussen M (2008) Simulation of Termination II. Geophysical Research Abstracts 10, European Geosciences Union: EGU08-A-02073 pdf.gif pdf (11 kbyte).
    • Ganopolski A, and Calov R (2008) Simulation of glacial cycles and abrupt climate changes with a climate-ice sheet model of intermediate complexity (solicited). Geophysical Research Abstracts 10, European Geosciences Union: EGU08-A-01425 pdf.gif pdf (8 kbyte).
    • Calov R, and Ganopolski A (2007) Simulation of glacial cycles with an Earth system model of intermediate Complexity. Geophysical Research Abstracts 9, European Geosciences Union: EGU07-A-02790 pdf.gif pdf (33 kbyte).
    • Calov R, and Ganopolski A (2007) Simulation of glacial cycles with a climate-ice sheet model of intermediate complexity. IUGG XXIV General Assembly July 2-13, 2007 Perugia, Italy abstract
    • Calov R, Greve R, Huybrechts P, Bueler E, Pollard D, Pattyn F, and Tarasov L (2007) First Results of the ISMIP-HEINO Model Intercomparison Project. Geophysical Research Abstracts 9, European Geosciences Union: EGU07-A-02910 pdf.gif pdf (31 kbyte).
    • Calov R, and Greve R (2006) Large-scale ice-sheet oscillations - mechanism, modelling, intercomparison. Geophysical Research Abstracts 8, European Geophysical Society: EGU06-A-03455 pdf.gif pdf (30 kbyte).
    • Ganopolski A, and Calov R (2006) Simulation of orbital and millennial scale climate variability with a climate-ice sheet model of intermediate complexity (solicited). Eos Trans AGU 87(52), Fall Meet Suppl, PP11A-04
    • Greve R, Calov R, and Takahama R (2006) Simulation large-scale ice-sheet surges for the ISMIP HEINO set-up. Geophysical Research Abstracts 8, European Geophysical Society: EGU06-A-03262 pdf.gif pdf (30 kbyte).
    • Calov R, and Ganopolski A (2005) A study of climate-cryosphere hysteresis. Geophysical Research Abstracts 7, European Geosciences Union: EGU05-A-05053 pdf.gif pdf (35 kbyte).
    • Claussen M, Brovkin V, Calov R, Ganopolski A, and Kubatzki C (2005) Holocene CO2 increase: anthropogenic forcing or internal feedbacks? (solicited). Geophysical Research Abstracts 7, European Geosciences Union: EGU05-A-02567 pdf.gif pdf (35 kbyte).
    • Kubatzki C, Claussen M, Calov R, and Ganopolski A (2005) Glacial inception in an Earth system model. Geophysical Research Abstracts 7, European Geosciences Union: EGU05-A-05659 pdf.gif pdf (30 kbyte).
    • Kubatzki C, Claussen M, Calov R, and Ganopolski A (2005) Ice sheet - climate interaction at the end of an interglacial. Geophysical Research Abstracts 7, European Geosciences Union: EGU05-A-05656 pdf.gif pdf (31 kbyte).
    • Calov R, Ganopolski A, and Claussen M (2004) Multistability and hysteresis in the climate-cryosphere system. Geophysical Research Abstracts 6, European Geosciences Union: EGU04-A-03035 pdf.gif pdf (38 kbyte).
    • Kubatzki C, Calov R, and Claussen M (2004) Interglacial-glacial climate transitions. Geophysical Research Abstracts 6, European Geosciences Union: EGU04-A-07523 pdf.gif pdf (34 kbyte).
    • Calov R, Greve R, and Hutter K (2003) Climate reconstructions from ice core isotope analysis (solicited). Geophysical Research Abstracts 5, European Geophysical Society: EAE03-A-00795 pdf.gif pdf (12 kbyte).
    • Calov R, Ganopolski A, and Petoukhov V (2003) Simulation of large-scale instabilities of the Laurentide ice sheet with a 3-D polythermal ice sheet model. Geophysical Research Abstracts 5, European Geophysical Society: EAE03-A-02362 pdf.gif pdf (13 kbyte).
    • Ganopolski A, and Calov R (2003) Simulation of Heinrich Events and their climate impact with an Earth system model (solicited). Geophysical Research Abstracts 5, European Geophysical Society: EAE03-A-01861 pdf.gif pdf (15 kbyte).
    • Ganopolski A, Rahmstorf S, and Calov R (2002) Stochastic resonance and global synchronization in the climate system. Geophysical Research Abstracts 4, European Geophysical Society: EGS02-A-02940 pdf.gif pdf (5 kbyte).
    • Calov R, and Ganopolski A (2002) Simulation of the last glacial cycle with a climate-system model. Geophysical Research Abstracts 4, European Geophysical Society: EGS02-A-02535 pdf.gif pdf (6 kbyte).
    • Calov R, Ganopolski A, and Claussen (1999) The Northern Hemisphere ice cover simulated with a coupled climate-system model, IUGG abstract MC11/E/12-B3 IUGG XXII General Assembly, Birmingham 1999 pdf.gif pdf (18 kbyte).
    • Calov R, and Ganopolski A (1999) Simulation of the last glacial cycle with a coupled climate-system model. Geophysical Research Abstracts 1, European Geophysical Society: p 558 pdf.gif pdf (17 kbyte).

    Current Project

    PalMod (member)

    Former Projects

    MegaRun, continued (member)

    GreenRise (coordinator)

    External Projects

    HEINO (co-leader)

    Legacy Projects (login required)

    MegaRun (member)

    Glacial Inception

    During the Quaternary the Earth experienced several glaciations. The last glacial inception happened 116,000 years ago. Most of the ice formed in North America. In our model glacial inception appears as a bifurcation transition from interglacial to glacial climate state caused by slow changes in the Earth's orbital parameters. On Quaternary time scales, this transition is very rapid, because it is amplified by snow-albedo feedback. Nearly all of the ice area in North America developed in about 1000 years only.

    inception.mp4 (0.4 Mbyte)

    Heinrich Events

    Heinrich events (HEs) are large scale surges from the Laurentide ice sheet during glacial times. They appear if the basal ice over Hudson Bay and Hudson Strait reaches the melting point and begins to slide rapidly over the slippery ground. HEs belong to the most interesting phenomena in the climate system. During a HE sea level rose by several meters in some hundred years and the thermohaline circulation in the Atlantic broke down leading to cooling in a broad region of the Atlantic. A better understanding of this instability of palaeo ice sheets is vital for an assessment how today's ice sheets might behave in the future.

    heinrich.mp4 (1.7 Mbyte)

     

    Glacial Cycles

    A further step towards an understanding of Quaternary climate change is the simulation of glacial cycles. The animation shows the last four glacial cycles from such a model simulation. The ice mainly starts to builds up over Baffin Island and Scandinavia. At the glacial maxima, vast regions of the Northern Hemisphere were covered with ice. In the animation, one can even see a slight separation between the Laurentide and Cordilleran ice sheet. Alaska and north eastern Eurasia remain mostly ice-free. During the terminations, the ice in North America retreats in north east direction. Our ice-age simulation agrees essentially with geological findings.

    4_Glacial_Cycles.mp4 (29 Mbyte)