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A semi-analytical solution for the positive degree-day
model with stochastic temperature variations

The degree-day model is a parameterization for the melt rate
of snow and ice at the surface of an ice sheet or glacier. It is
a simple, empirical relation which states that the melt rate is
proportional to the surface-air temperature excess above
08C (e.g. Braithwaite and Olesen, 1989; Hock, 2003). The
physical basis of this and related temperature-based melt-
index methods was examined by Braithwaite (1995).

It was suggested by Braithwaite (1984) that the number of
positive degree-days, PDD, could be calculated from the
normal probability distribution around the long-term
monthly mean temperatures. A form, which is based on
that and is widely used in current ice-dynamic models, was
proposed by Reeh (1991). It reads
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where t is the time, T the surface-air temperature, Tac the
annual temperature cycle (both in 8C) and � the standard
deviation of the temperature from the annual cycle, which
accounts for the daily cycle and further, stochastic tempera-
ture variations. It is often assumed that Tac varies sinusoidally
over time,

TacðtÞ ¼ Tma þ Tmj � Tma
� �
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2�t
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where Tmj is the mean July (January) surface-air temperature
on the extratropical Northern (Southern) Hemisphere, Tma is
the mean annual surface-air temperature, and A ¼ 1year.
Nonetheless, any other representation of Tac can also be
used as a basis for the calculation of the PDD integral (1).

In a number of ice-sheet models (e.g. Huybrechts and
others, 1991; Van de Wal and Oerlemans, 1997; Tarasov
and Peltier, 1999; Marshall and others, 2000; Charbit and
others, 2002) the double integral in Equation (1) is computed
numerically. Since this must be done for each gridpoint
separately, it requires a considerable amount of computing
time. Further, the inevitable cut-off of the upper limit of the
temperature integral at some finite value, Tmax, influences
the accuracy of the results. Therefore, Janssens and
Huybrechts (2000) proposed an approximation method for
solving the temperature integral by fitting an exponential
function.

Here, we demonstrate that the temperature integral can
be evaluated fully analytically. To the best of our knowledge,
this analytical solution has not been applied to the PDD
temperature integral before. A similar procedure was carried
out by Roe and Lindzen (2001) in the context of determining
the precipitation rate over ice sheets. However, they applied
an unnecessary absolute value in their equation, they did
not show the integration substitutions which lead to the
resulting expression and they did not evaluate the integral
boundaries of the exponential function. Here, we present
the complete derivation and the resulting equations for the
temperature integral of the statistical positive degree-day
model.
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to the temperature integral in Equation (1). This yields
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The substitutions u ¼ (T – Tac)
2/2�2, du¼ (T – Tac) dT/�
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With the definition of the complementary error function

erfc ðxÞ ¼ 1� erf ðxÞ ¼ 2ffiffiffi
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(e.g. Press and others, 1996, section 6.2; erf(x) denotes the
conventional error function) this can be rewritten as
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This representation has the great advantage that the
temperature integral of the original Equation (1) has
vanished. Therefore, it can be numerically evaluated much
faster and yields more precise results, because the upper
limit 1 need not be cut off at some finite value. The error
function is not a standard built-in function of Fortran 90 or C.
However, it is implemented in a number of modern Fortran
and C compilers as well as in the packages MATLAB and
Mathematica. Alternatively, it can easily be computed by the
routines given by Press and others (1996) or similar sources.
Here, we employ the subroutine erfcc by Press and others
(1996, section 6.2) with a fractional error everywhere less
than 1.2�10–7.

We investigate briefly the gain in accuracy and reduction
in computing time to solve the new semi-analytical
representation for PDD, Equation (6), compared to the fully
numerical (Equation (1)) and other representations. Let us
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consider a typical situation for the ablation zone in south
Greenland with Tma¼ –108C, Tmj¼58C and �¼58C. The
time integrals in Equations (1) and (6) are solved with a
monthly time-step. In addition, the temperature integral in
Equation (1) is computed by the trapezoidal rule with a
temperature step of DT¼ 0.58C and a cut-off temperature
Tmax varying between 0.5� and 4�.

The results are shown in Figure 1. CPU (computing) times
refer to computations carried out with a Fortran 90 program,
compiled with the Intel Fortran Compiler Version 8 and run
on a 3.4GHz Pentium-4 PC under SuSE LINUX 9.0. They are
given for 109 computations, which is the approximate
number required for a simulation of the Greenland ice sheet
with 20 km resolution over 250 000 years (two glacial–
interglacial cycles) with a time-step of 2.5 years. It is evident
that our new method of computing the PDD integral is far
more efficient than the fully numerical method. In order to
be sufficiently accurate, the latter requires at least Tmax¼3�,
and for this cut-off temperature it consumes more than ten
times more CPU time than the solution of the semi-
analytical expression (6).

Table 1 gives some more detailed information about the
accuracies and CPU times of the different methods. In
addition to our representation of the complementary error
function by the routine erfcc (Press and others, 1996), we
have considered the rational approximation by Abramowitz
(1970, section 7.1.25), here denoted as erfcr, which has an
absolute error �2.5�10–5. This approximation was also
used by Roe and Lindzen (2001), but they did not give the
values for the parameters. Further, we have implemented the
approximate solution of the temperature integral in Equa-
tion (1) by Janssens and Huybrechts (2000) (here called
approx). There is only a tiny difference in accuracy between
the PDD values resulting from the erfcc and the erfcr
representations of the complementary error function. The
error due to the numerical integration over the year
outweighs the differences in accuracy of the representations
of the complementary error function. The accuracy of the
approximation by Janssens and Huybrechts (2000) is clearly
lower than that of both other methods, but is certainly
tolerable in view of the relatively crude assumptions of the
positive degree-day method itself (e.g. the approximation of
the synoptic processes by the normal probability distribution

(Braithwaite, 1984)). The computing time for the method
with erfcc is slightly longer that that with erfcr, because of
the higher-order representation of the complementary error
function in the former. Interestingly, the approximation by
Janssens and Huybrechts (2000) is, at least in our
implementation, about 14% slower despite its lower accur-
acy. This is presumably because three different functions
(abs, exp, max) must be evaluated in this approximation.

Since the complementary error function is available in
nearly every compiler, or, alternatively, can be easily
implemented by several tested subroutines with low compu-
tational time and high accuracy, we strongly encourage ice-
sheet and glacier modellers to make use of this improved
method.

Epilogue
Braithwaite’s (1984) introduction of the normal distribution
in order to reduce the degree-day calculations to monthly
rather than daily data reduced data requirements by a factor
of 30. The methods presented in this work save more than
90% computing time. Who is going to make the next saving?
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