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SUMMARY 

 

A seven months research has been performed to determine the modelling capabilities of 
the GEOCRACK [Swenson et al., 1997] finite element code and to make predictions on 
the performance of the HFR reservoir at Soultz-sous-Forêts (France). 

Based on the ‘Lauwerier’ problem, a plane fracture in a infinite rock volume, two new 
analytic solutions are proposed. The first, including diffusion in the direction parallel to the 
fracture, has been tested for simple geometry’s. Results show that, as expected, at low flow 
rates the solution deviates from the ‘Lauwerier’ solution up to 18% of the solution. The 
correctness of the new analytic formula has been proved by the far better fit with 
numerically (2D diffusion) generated data. A second analytic solution has been derived for 
a fracture with a finite extend. However, it is shown that its results violate the assumptions 
made. 

GEOCRACK2D as well as GEOCRACK3D have been benchmarked successfully. The 
GEOCRACK3D generated curve fits the analytic ‘Gringarten’ solution exact. The mesh 
independence of the 2D code has been proved. 

Some simple numerical experiments showed that the risk of short-circuiting in HFR-
systems exists. This phenomena can, in some fracture geometry’s, even result in thermal 
recovery of the production water. This has been observed in the thermal results of the 4 
proposed models of the HFR reservoir at Soultz-sous-Forêts (Fr.). 

Three 2D models, based on the general geology and micro-seismic data, representing the 
Soultz-sous-Forêts HFR-system, are proposed. Besides, a 3D 6-fracture model is 
constructed by extenuating fractures observed in the boreholes. Both 2D and 3D models 
assume the reservoir to be a closed system. The model results correlate well with the data 
generated with models by P. Audigane [Audigane, 2000].  

Interpretation of the data, resulted in an estimation that the 1.1 MWe production of the 
shallow reservoir would decrease to 0.6 MWe after 20 years of production. A planned 3 
well HFR system at 5 km depth would generate 5MWe at the start of production and 3.9 
MWe after 20 years. 

Although GEOCRACK is still a work in process, it has proved to be a suitable modelling 
code for HFR systems. 
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1. INTRODUCTION 

 

1.1. What is HFR-energy? 

 

For several centuries people have been using geothermal energy resources. Especially in 
volcanic regions the conventional geothermal energy potential is moderately large. 
Conventional geothermal energy is the exploitation of hot water from a near surface 
reservoir. We call this type of geothermal energy exploitation, hydrothermal energy. The 
energy can be used directly (heating) or it can be converted to electricity. World-wide, 
about 50 TWh of electricity is currently generated annually from hydrothermal reservoirs 
(total electricity production is about 13500 TWh). There is one serious limitation to the 
expansion of hydrothermal energy for electricity production; the low availability of 
naturally-occurring hydrothermal reservoirs. Reservoirs have to satisfy to a range of 
conditions; a shallow heat source, presence of water, sufficient permeability to allow for 
circulation of water between heat source and reservoir and a ‘cap rock’ seal. This is the 
reason that exploitable hydrothermal reservoirs are rather scarce throughout the world. 
Economic use has been confined to a few locations, generally those with active volcanism. 
Countries are Iceland, Italy and Greece in Europe, Indonesia, the Philippines and Japan in 
Asia and USA and Mexico in Northern America. In the USA geothermal electricity 
production is confined to four states; California, Nevada, Utah, and Hawaii, which is of 
course far from the US landmass.  

Hot Fractured Rock (HFR) energy is an extension of the conventional hydrothermal 
energy described above, with far larger potential resources. However, HFR energy is not 
yet commercial. Scientists from the Los Alamos National Laboratory in New Mexico were 
the first to try the HFR-concept in the early 1970s. By circulating water between two wells, 
through a network of interconnected joints, one can extract the heat from a thermal 
reservoir. The reservoir-requirements are less restrictive than those needed for 
hydrothermal energy. Water does not have to be present and permeability can be 
stimulated. Only a high thermal gradient is necessary to decrease drilling depth and hence 
reduce the costs of the project to acceptable levels. These facts increase the potential of 
geothermal energy by orders of magnitude. 

HFR energy requires the creation of a subsurface heat exchanger. By definition of an HFR 
resource, permeability values are far too low to allow significant fluid flow at reasonable 
over-pressures. To increase permeability, hydrofracturing, a well-known technique to 
improve oil-field performance, can be applied. The subsurface heat-exchanger created 
needs to be several thousands of cubic meters in volume with a fracture surface area of 
several square kilometers, to be of economic interest.  

 

1.2. The Geothermal Team within Shell Technology E & P 

 

The Geothermal Energy Team was set up at the start of 1998. Its main goal was to obtain 
insight into the geothermal market and to look for future opportunities in this area. The 
extensive untapped HFR resource was quickly identified as the one to focus on. Shell 
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supports the Kyoto process, which implies it made a commitment to take actions to reduce 
greenhouse gases. Further Shell is committed to ‘Sustainable Development’, which implies, 
among other things, an undertaking to minimize the impact of its activities on the 
environment. Geothermal energy can contribute to the realization of these good intentions.  

Although presently the technology required to exploit HFR geothermal energy has not 
reached a commercial phase, a significant future is expected. The team activities focus on 
three areas; learn from past and present HFR pilot projects, identify potential cost 
reduction in the entire HFR lifecycle and to learn and understand the Geothermal 
Business. The Geothermal Team participates in the French-German HFR pilot project at 
Soultz-sous-Forêts. Of the ongoing HFR pilot projects, Soultz, situated in the Rhine 
Graben (northeastern France), is by far the most successful, mainly due to its large heat 
exchange surface area.  

 

1.3. Geothermal Energy: The Market 

 

As described in the first paragraph, potential HFR sites are widely spread. Huge areas in 
Europe (From France to Romania, Greece and Italy), Asia (Turkey, Afghanistan, Japan, 
Philippines, Indonesia), Africa (Ethiopia, Egypt, Eritrea, Sudan), Australia and New 
Zealand, as well as almost half of America, are suitable for HFR energy production. 
Besides, a growing concern about the use of fossil fuels will fuel the demand for more and 
more alternative and clean energy resources. Since HFR energy is free of the produce of 
any greenhouse gases, pollutants and waste materials, its future can be significant. From the 
known renewables, so far only wind energy seems to be competitive with carbon energy 
sources (around $55 /MWh). HFR exploitation incurs high capital costs since at least two 
wells are required and these usually need to be quite deep (drilling-expenses rise 
exponentially with depth). Besides HFR reservoirs are commonly found in hard granite 
rock, which make drilling costs even higher. Currently, drilling costs for HFR wells are, on 
an equal depth basis, over twice that of oil and gas. However it seems realistic that well-
costs can be reduced by 50% over the coming years, according to Shell’s Geothermal 
Energy Team. Further cost reductions can be made in the power plant costs and by 
improving the reservoir creation technology. Then, prices in the order of $50-$65 per 
MWh could be reached.  

 

1.4. Soultz-sous-Forêts HFR-site 

 

Currently there are five HFR pilot projects throughout the world. There are another two 
projects (Switzerland and Australia) in the planning stage. Table 1.4.1 compares the existing 
sites for a few key parameters. The most striking thing we see is the enormous relative 
volume of the Soultz stage 1 HFR reservoir. This is even more remarkable when we look at 
the low over-pressure needed, only 2 MPa. Another advantageous feature is the fluid 
recovery of 100%. The relatively deep depth and moderate temperatures are merely 
secondary features. Adding up these features makes Soultz the most promising of the 
HFR-sites nowadays.  

 



EP 2001- - 6 - Unclassified
 
 

Site Period z (km) T (oC) V (m3) Pinj.(MPa) Q (l/s) Losses (%) k 

Fenton Hill 1 (US) 1974-1980 2.9 180 0.6 × 106 8 6 10 Low 

Fenton Hill 2 (US) 1980-… 3.5 240 6.5 × 106 27 6 7 Low 

Rosmanowes (UK) 1980-1989 2.6 90 3.5 × 106 10 25 20 Low 

Hijori (Jap.) 1985-… 1.8 240 0.7 × 106 5 13 21 Strong 

Ogachi (Jap.) 1989-… 1.0 200 1.3 × 106 7 8 75 Strong 

Soultz 1 (Fr.) 1987-1999 3.5 150-160 240× 106 2 24 0 Average 

Soultz 2 (Fr.) 2000-… 5.0 200 ? ? ? ? ? 
Table 1.4.1: Comparison of current pilot project HFR-sites [Duchane, 1998].  

 
 

 

Cross-section, see figure 6.1.1

Figure 1.4.1: Location of Soultz in Rhine Graben   

 

The HFR-site at Soultz is located in the northern part of the Rhine Graben. The observed 
anomalous temperature gradient [J. Bresee, 1992] (in the sediments more than 100oC per 
km.) is part of a large geothermal anomaly with an extension of 150 km by 20 km, covering 
French and German territory. The general geology is very well known thanks to centuries 
of oil-exploration (more than 250 years, making it the world’s oldest oil-field). The 
existence of numerous wells in the vicinity, useful for seismic observations, contributed to 
the decision to carry out the experiments here.  
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The general geology is a typical Graben-structure, characterized by sub-vertical generally 
North-South trending faults. The cross-section (fig. 6.1.1) shows large sub-vertical faults, 
reaching to depths of 4 km, dipping either east or west.  

 

1.5. Numerical modelling 

 

In general HFR system are highly complex systems. Several physical processes happen 
simultaneously including the following: 

• (Multi-phase) fluid flow (through porous rock, fractures and well bore) due to 
pressure difference. 

• Conductive heat transport through rock. 

• Conductive and convective heat transport through fluid. 

• Heat exchange between rock and fluid. 

• Chemical reactions (corrosion and scaling). 

• Thermal contraction of rock. 

All these processes occur in a highly heterogeneous medium. Because of this complexity, 
analytic solutions cannot provide detailed solutions, although they are useful for 
benchmarking numerical solutions. Analytic solutions are available for heat transfer but 
always make severe assumptions on geometry and physical processes.  

In this research, I have made use of the finite element software GEOCRACK [Swenson et 
al., 1997]. GEOCRACK was specifically built for modeling HFR heat exchangers. It has 
been applied to the HFR-sites of Fenton Hill and Hijori [Swenson et al., 1999]. It 
incorporates of course pressure/fluid-flow calculations and heat transfer (convective and 
conductive). The feature that makes GEOCRACK especially useful for HFR-modeling is 
the incorporation of rock deformation due to thermal contraction. This is important as 
most of the fluid will travel through fractures in HFR systems due to the low overall 
permeability. These fractures will cool down much faster than other parts of the rock, 
influencing the stress regime through thermal contraction. During the first months of 
research, a GEOCRACK executable, which could only handle fracture flow, has been 
used. Later on a new executable including porous flow became available 

 

1.6. Goals and objectives 

 

One of the main objectives of the research is to determine whether GEOCRACK is a 
suitable and stable numeric code. This includes benchmarking it against existing analytic 
solutions for heat exchange. Further analytic solutions are derived, one that accounts for 2 
dimensional heat transport through the rock and one that is based on a medium.of finite 
extend. The mesh dependency has been quantified using different meshes generated by 
different mesh generators. 

Subsequently, GEOCRACK is applied to the 3.5-km deep HFR system at Soultz-sous-
Forêts. It is being used to simulate the post-stimulation or production phase during a 
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extended period of operation (> 20 years). Results are compared with experimental data 
obtained during the circulation test of 1997 and with results from another numerical code. 
The 3D version of GEOCRACK (a beta-release) is successfully benchmarked.  A 3D 
model, geometrically more realistic, is proposed and compared with the 2D models as well 
as a 3D numerical model proposed by Audigane [Audigane, 2000]. 

The experience gained by performing the above computations will be used to devise 
reservoir management strategies for the deep heat exchanger at Soultz sous Forêts.  
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2. THEORY 

 

2.1. General formulation: The heat equation 

 

The first law of thermo-dynamics states that the total change in energy inside a specified 
volume, is the result of the work done and the heat added during a certain time: 

 

dt
dQ

dt
dW

dt
dEtot +=            (1) 

 

The term dQ/dt can be subdivided in a part describing internal heat production and a part 
describing the flux through the boundary of the volume: 

 

∫∫ −=
S jjV

dSnqHdV
dt
dQ ρ           (2) 

 

With H the density of heat sources in the medium, q the heat flux defined by: 

 

Tkq j∂−=              (3) 

 

Equation (3) can be substituted in equation (2). Using the divergence theorem, we obtain: 

 

(∫ +∂∂=
V jj dVHTk

dt
dQ ρ)( )           (4) 

 

For the internal energy we can write (thermal energy plus dissipation of mechanical energy 
due to friction): 

 

dt
dQdVu

dt
dE

V ijij
in +∂= ∫ σ           (5) 

 

The left part of equation (5) can be rewritten in the entropy-form. Further using that σij

(strain tensor) can be written in terms of the hydrostatic pressure: 

 

ijijij p τδσ +−=             (6) 
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will give us the following equation for the energy equation in T, p form: 

 

HTku
dt
dpT

dt
dTc jjijijp ρταρ +∂∂+∂=− )(        (7) 

 

The first term on the right side of equation (7) is the dissipative term that accounts for 
viscous dissipation effects. The second term on the right accounts for the diffusion of heat. 
The third term on the right side is the source term. The first term on the left is the 
transient term. The second term on the left is the adiabatic term This term accounts for 
adiabatic decompression due to pressure differences.  

Equation (7) describes the transport of heat in both reservoir and fracture. Using equation 
(7) for a HDR environment allows us to reduce the formula substantially. We make the 
following assumptions: 

• Neglect adiabatic decompression: Pressure difference are very low 

• Neglect dissipative term: The fluid is expected to be non-viscous. This assumption is 
valid since the water is filtered each time it is recycled at the surface. 

• Neglect source terms: The heat production due to radioactive decay is assumed to be 
negligible. 

Equation (6) becomes: 

 

)( Tk
dt
dTc jj ∂∂=ρ            (8) 

 

The time-dependence in the left-hand side can be written according to the Reynolds 
transport theorem: 

 

Tv
t
T

dt
dT

jj∂+
∂
∂

=            (9) 

 

The rock velocity is zero. Assuming that the conductivity k is constant, we obtain the 
following equations for the heat transport in rock and fluid in rectangular coordinates: 
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In the following paragraphs we discuss some analytic solutions of these differential 
equations. The numeric implementation of equations (10) and (11) is explained in chapter 3 
Theory on Geocrack. 

 

2.2. Analytic solutions 

 

Several analytical solutions concerning fluid-rock heat exchange have been proposed  

since the 1950’s. Due to the complexity of the problem, all of them have to make lots of 
geometric and physical assumptions. The book ‘Stromung, Stoff- und Warmtetransport im 
Kluftgestein’ Kolditz [Kolditz, 1997] gives an overview of what has been done on this 
subject. To obtain enough degrees of freedom, physical as well as geometrical assumptions 
have to be made. Geometries are generally, either 2D rectangular coordinates or 3D 
cylindrical coordinates, with symmetry in the horizontal plane. We intend to use the 
analytic solutions for benchmarking GEOCRACK2D, which uses rectangular 2D 
coordinates. For this reason it is more practical using geometries like figure 2.2.1. 

Fig. 2.2.1: System used by Lauwerier: Plane fracture in a finite 2D rock volume. 

 

In 1955 Lauwerier [H.A. Lauwerier, 1955] presented a first solution describing this 
problem. He assumed 1-D heat diffusion through the rock perpendicular to the fracture 
plane and 1D heat advection through the fracture in an infinite half-space. I have adapted 
this solution in two different ways: 

1st : Added 2D heat-diffusion in the rock. 

2nd : Solution with a finite extent in the x direction. 

These three analytic solutions will be described in the following three paragraphs. The last 
paragraph (§ 2.2.4) of this chapter describes the Gringarten [Gringarten,  ] solution. This 
analytic solution will be used to benchmark the 3D version of GEOCRACK. 

 

2.3. Lauwerier solution 

 

Lauwerier made the following assumptions  

• 1-D linear flow through fracture 

Hot rock 

 

Fracture 
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• 1-D heat advection through fracture 

• 1-D heat diffusion through rock, orthogonal to fracture 

• infinite half-space (0 ≤ x <∞ ; -∞ < z <∞) 

The fluid-rock contact is at z = ½. The temperature is non-dimesionalised as follows: 

 

01

0

TT
TTTD −

−
=             (12) 

 

Here T0 is the initial rock temperature, which is set to 0. T1 is the inlet fluid temperature, 
which is set to 1. We convert all the other parameters to dimensionless values as well, 
denoted by the subscript D: 

 

t
b
vtD = ,   

b
xxD = ,   

b
zzD = ,     (13) 

bvc rr

r 1
ρ
λα = ,   

bvc ww

r 1
ρ
λβ = . 

 

In fracture (-b ≤ z ≤ b) the temperature is assumed to be constant with z. At the fracture 
wall holds TFluid = TRock. 

The heat equations (10 & 11) become: 

 

2

2

z
T

t
T D

D

D

∂
∂

=
∂
∂ α      

2
1,0 >≥ DD zx      (14) 

D

D

D

D

D

D

x
T

z
T

t
T

∂
∂

−
∂
∂

=
∂
∂ β2     

2
1,0 =≥ DD zx     (15) 

 

 

In the Laplace domain these equation can be solved (see Appendix A.1) using the 
appropriate boundary conditions: 

 

0),,0( =DDD zxT ,     1)
2
1,0,( =DD tT ,      (16) 

0),,(lim =∞→ DDDDx zxtT ,   0),,(lim =∞→ DDDDz zxtT .  

),,(lim),,(lim 02/102/1 DDDDzDDDDz zxtTzxtT +→−→ =  
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By taking the Laplace transform, solve the solution and taking the inverse Laplace 
transform according to Carslaw & Jeager [Carslaw, 1960](see Appendix A.1), Lauwerier 
finds the following equation: 

 

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−+

−
−= )

2
1(

2
1

)(
)( DD

DD
DDD zx

xt
erfcxtHT

βα
β      (17) 

 

With H(t) the Heavyside function (≡ 0 if t < 0, 1 otherwise). 

 

2.4. Isotropic diffusion in rock 

 

The assumption of 1D heat diffusion perpendicular to the fracture plane (Lauwerier) is 
valid when isotherms in the rock are approximately parallel to the fracture plane. This is 
the case when large flow rates are present and/or the thermal anomaly is relatively small 
(i.e. not too close to the inlet). In HDR situations both conditions could be violated. Thus, 
an analytic solution with isotropic diffusion through the rock is useful. So far no analytical 
solutions have been proposed including x-diffusion, although according to Kolditz 
[Kolditz, 1997] this could influence the solution up to 11%. We can approximate this extra 
component in the heat equation with a perturbation expansion in which it is assumed that 
the thermal diffusion in the rock parallel to the fracture is small but non-zero. The 
assumptions made are: 

• 1-D linear flow through fracture 

• 1-D heat advection through fracture 

• 2-D heat diffusion through rock, orthogonal to fracture 

• infinite half-space (0 ≤ x <∞ ; -∞ < z <∞) 

Again the equations can be solved in the Laplace domain. The exact computations can be 
found in Appendix A.2. We, however, have to remember that the solution contains a 
linearization in the x-diffusion component. The dimensionless solution becomes 

 

)(42
2

3

2

)(2
)(84)(

)( DD xt
DD

DDDD

DDLD ext
xtxt

xtHTT −
−
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−++
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−
−−= α

γ

ββγγα

πα

γ  (18) 

 

Where stands for the temperature solution derived by Lauwerier (17) and LT

2
12 −+= zxβγ . 
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2.5. Finite extent in the x direction. 

 

When you compare numerical results (e.g. GEOCRACK) with the classic Lauwerier-
solution, you will see that near the domain boundaries the numerical results will deviate 
from the analytical ones. The zero-flux temperature boundary conditions in the numerical 
solution will force the temperature gradient towards zero as the boundary is approached. It 
is possible to derive an analytic solution with a finite extent in the x direction, containing a 
zero-flux boundary condition. The analytic curves will tend to a zero-gradient close to the 
boundary as well.  

To do this we start with different heat equations: 

 

2

2

z
T

t
T D

D

D

∂
∂

=
∂
∂ α      

2
1,0 >≥ DD zx      (19) 
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∂
∂
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∂

=
∂
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2
1,0 =≥ DD zx     (20) 

 

On comparing equation (20) with equation (15), we note that equation (20) allows for 
diffusion as well as advection of heat along the fracture. We use this equation to obtain an 
extra degree of freedom, which we have in the third term of the right-hand side of 
equation (20). 

The boundary conditions implemented are the same as used by Lauwerier, except that the 
temperature does not go to zero when x goes to zero, but: 

 

0=
∂
∂

=LxD

D

x
T             (21) 

 

The equations (19 & 20 ) can be solved in the Laplace domain. Inversion to time requires a 
linearization, this is all described and explained in Appendix A.3. The final lengthy formula 
can be written out as follows: 
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With G(t) given by: 
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and : 

 

xzk β2
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1

1 +−=     )2(' xLtt +−=       (23) 
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The four ‘c’ functions are all dependent of α, β and γ (see Appendix A3, equations A63 – 
A66) 

 

2.6. Gringarten solution 

 
During the research a suitable 3D version of the numeric code used became available. 
For benchmarking this 3D code the Gringarten solution [Gringarten & Sauty, 1975] can 

z
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be used. The system consists of a plane fracture with a source and sink (two wells) in a 
3D infinite rock volume. In the fracture 2D advection is allowed and in the rock only 
1D diffusion and no porous flow. Some authors, e.g. Kolditz [Kolditz, 1997], call this 
solution the 2½ D solution. 

z 

Fig. 2.2.4.1: System by Gringarten. 

Hot rock 

 
The heat equations (9 & 10) become: 
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The parameters can be made dimensionless in the following way: 
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Where a is half the distance between injection and production well. The boundary 
conditions of the problem are: 
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With (28), the following solution for TD can be found, which looks similar as the Lauwerier 
(17) solution except for the integral ID: 
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ID is given by the integral: 
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This integral can be solved analytically. For yD = 0 the solution becomes: 
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3. THEORY BEHIND GEOCRACK 

 

3.1. Numerical Modelling of HFR Reservoirs 

 

Numerous physical processes occur simultaneously in an active HFR reservoir. Uncertainty 
surrounds ad-hoc predictions about reservoir lifetime, thermal drawdown etc. Analytic 
analyses are far too simplistic to represent reservoirs in detail, so numerical models are 
crucial. Since the 1980s several numerical codes have been proposed with different 
capabilities. An ideal numerical code would have the following list of capabilities: 

• Heat diffusion and advection in porous as well as fractured media. 

• Multi-phase fluid flow. 

• Explicit representation of fractures. 

• Channeling of flow in fractures. 

• Changes in fracture aperture due to changes in the stress-field and the hydraulic 
pressure. 

• A relationship between fracture aperture and fracture conductivity (inclusion of wall 
roughness and non-Darcy flow). 

• Thermal contraction of rock, causing fracture aperture changes. 

• Rock/water chemical interactions 

• Tracer transport. 

So far there is no numerical model which includes all these features. The GEOCRACK2D 
finite-element code was developed to solve coupled thermal, hydraulic and mechanical 
problems where the flow is in fractures. From the above capabilities, GEOCRACK2D 
currently does not account for: 

• Multi-phase fluid flow. 

• Non-Darcy flow. 

• Chemical interactions. 

A porous matrix version became available four months into the present project. Until that 
time a version without the possibility to implement matrix porosity has been used. A 3D 
version is also available, which is also crucial for a detailed representation of a HDR 
reservoir. 

 

3.2. Theory and Implementation 

 

The GEOCRACK2D finite-element model consists of continuum elements (representing 
rock), fluid elements (representing fluid flow in fractures) and interface elements 
(representing the joint stiffness) [Swenson et al, 1997]. 
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3.3. Structural Model 

 

The continuum elements are derived using standard elasticity practice [Hughes, 1987]. The 
assembled element contributions result in the following matrix equation: 

 

fuKS =              (32) 

 

In which KS is the structural stiffness matrix, u the nodal displacement and f is the global 
force vector, the load on the structure. Interface elements are used to describe the non-
linear relationship between fracture opening and fracture stress (Gangi): 
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In equation (33) a0 is the zero-stress fracture opening, σ  is the effective stress and σc a 
critical stress at which the fracture is assumed to be closed, and m is a constant (Gangi 
constant).  

 

3.4. Fluid Flow Model 

 

In a fracture the fluid is assumed to be one-dimensional (planar), given by the cubic-law: 

 

P
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L
waq p Δ=Δ=
μ12

3

          (34) 

 

Here w is the width, a the aperture (equation (33)), μ the viscosity, L the length of the 
fracture and ΔP the pressure difference between the start and end point of the fracture.  
This is actually the same equation as Ohm’s Law in electrodynamics. ΔP corresponds to the 
potential difference, q to the electric current and the right-hand side pre-factor to the 
conductance ( = inverse resistance). In a network of interconnecting fractures, the flow 
through the whole network can be calculated in the same way as the current through an 
electric circuit. 

Further the fluid is assumed incompressible: 
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Substituting equation (34) into equation (35) gives: 
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The global matrix equations become: 
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−=             (37) 

 

Where KP is the fluid permeability matrix, p is the nodal pressure vector, q is the flow-rate 
vector, S the fracture opening storage matrix, and ∂a/∂t is the fracture-opening velocity 
vector.  

 

3.5. Heat-Transfer Model 

 

In the rock, heat transport is conductive. The energy equation (11) in a two-dimensional 
medium, which velocity can be neglected, becomes: 
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cp and ρ are respectively specific heat and density of the rock. In the fluid, the heat-equation 
becomes (one-dimensional heat transport including convection): 
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Where TSx is the structure temperature at the two bounding surfaces and T the fluid 
temperature. h is the convection coefficient. Using the standard finite-element procedures, 
two sets of equations are obtained for the structure and the fluid: 
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Where K is the conductivity, H represents the transfer of heat between rock and fluid, C is 
heat-capacity matrix and T is the node-temperature vector. The superscript ‘prev’ indicates 
the values at the previous time step.  

 

3.6. Coupling of Three Model Equations 

 

The equations (32) and (37) of the structure and fluid model, are interconnected in the way 
that joint displacement affects the fluid solution (Kp(u) and ∂a/∂t(u)), and the fluid 
solution then applies a different load on the structure (f(p)). These equations are therefor 
solved simultaneously using an iterative procedure. For the structure, the functions to be 
zeroed are the summation of forces on each structural node. For the fluid, the total flow at 
a node has to be zeroed. This is done using a Newton-Raphson scheme: 
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With SK
u

f
=

∂

∂∑  and pK
p

q
=

∂

∂∑ . The other two submatrices are the so-called coupling 

matrices. The right-hand side matrix is iteratively zeroed. 

When convergence is reached in the Newton-Rhapson scheme described above, the 
parameters of the structure and fluid flow model are passed on to the temperature model. 
Conversely the calculated temperature affects the fluid density, viscosity and the structure 
thermal contraction. 
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4. ANALYTIC RESULTS  

 

4.1. Isotropic versus anisotropic diffusion 

 

In the theory a suitable analytic solution for isotropic diffusion has been presented (§2.2.2). 
This solution is an extension of the solution proposed by Lauwerier [Lauwerier, 1955] 
which assumes zero diffusion in the direction of the fracture. In this section these two 
analytic solutions will be compared. Further, they will be compared with numerical results 
from GEOCRACK2D. 

In figure 4.1.1, results obtained from Swenson [Swenson et al., 1997] are plotted; numerical 
results from GEOCRACK2D (black dotted lines) and analytic results (black solid lines). 
For flow rate coefficients of 0.1 m3/day, the analytic isotropic solution (red) and 
anisotropic solution (green) are plotted as well. Note at first that my version of the 
‘Lauwerier’ solution (green line) does not coincide with the analytic solution from 
Swenson, who claims to use the same analytic solution. The reason for this remains 
unclear, but the exact fit of Swenson’s analytic solution with the numeric results of the 
anisotropic diffusion solutions is surprising as the analytic equation assumes an infinite half 
space. Further we see that the isotropic (red) curve fairly well approaches the 
GEOCRACK2D isotropic results. Until about 12000 days (32 years) the fit is even exact. 
We see that the difference between isotropic and anisotropic solution can build up to 400C 
after 30.000 days, which corresponds to a percentage of 16%. This is in rough 
correspondence with the 11% derived by Kolditz [Kolditz, 1997] for a slightly different 
geometry. We now shall further quantify the behaviour of the new analytic solution.  

 
Fig. 4.1.1: Picture from Swenson et al. [Swenson et al., 1997] with superimposed the anisotropic  

(green) and isotropic (red) analytic solutions. Dotted black lines are produced by  
GEOCRACK. Solid black lines are analytic solution from Swenson et al. 
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100 m 

  Fig. 4.1.2: Geometry used by Lauwerier. 

 

The influence of diffusion in the x direction is a strong function of the flow rate. High flow 
rates cause the influence of the diffusion in x direction to diminish.  The geometry depicted 
in figure 4.1.2 has been used to carry out several experiments. The temperature decline in 
location P1 has been tested for different (constant) flow rates. Figure 4.1.3 shows the 
difference between isotropic and anisotropic diffusion solutions after 25000 days for three 
locations. Only for flow rates up to 0.8 m3/day (= 0.01 l/s) the difference is evident with 
peaks around 0.1 m3/day. At these low flow rates the difference between isotropic and 
anisotropic is in the order of 10% (fig. 4.1.4). In HDR environment flow rates are in the 
order of tens to hundreds of litres per second, far larger than flow rates shown in figures 
4.1.3 and 4.1.4. However, the fluid will be divided among several fractures in a HDR 
system, possibly reducing the flow per fracture to the range where lateral diffusion is 
contributing a significant part to the heat transfer. 

 

 
Fig. 4.1.3: Influence of flow rate           Fig. 4.1.4: Influence of flow rate (%)    Fig. 4.1.5: Temperature decay of  

    (t = 25000 days)            (t = 25000 days)            location P1 (outlet). 

 

The curves in figures 4.1.3 and 4.1.4, will go to infinity if we approach a zero flow rate 
when we would look at infinite great times. The fact that it does not show this asymptotic 
behaviour in the plots is caused by the heavysight functions in both analytical solutions. 

Profile 1 

Profile 2 

100 m 

P2

P1Fracture 

Hot rock 
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Further tests are carried out using a flow rate of 0.1 m3/day. Analytic temperature decline 
curves of locations P1 and P2, and the two temperature cross-sections curves are 
compared with numerical data. The mesh shown in Appendix C, figure C4, has been used 
to generate numerical data. Element size increases linearly from 1.7m to 8.3m 
perpendicular to the fracture and decrease linearly from 8.3m to 4.2m towards the vertical 
boundaries. The results of these tests are given in figures 4.1.5 till 4.1.8. 

The temperature decline curves of the isotropic solution match the GEOCRACK 
solutions better (figures 4.1.5 & 4.1.6). On the other hand, it is remarkable how the 
isotropic (red) and GEOCRACK (blue) solution diverge after 10000 days. We observe of 
course exactly the same in figure 4.1.1. Boundary effects within GEOCRACK could be the 
cause. This is confirmed by the fact that the numeric and 2D-diffusion analytic temperature 
decline curves of P2 (figure 4.1.6), lying 25m from the boundaries match each other much 
better than the curves of P1 (figure 4.1.5), lying on the right boundary.  

 
  Fig. 4.1.6: Temperature P2.   Fig. 4.1.7: Temperature profile 1.   Fig 4.1.8: Temperature profile 2. 
                     x = 60m, t = 15000days         z = 50m, t = 15000days 

 

Figure 4.1.7 shows the temperature change in the direction perpendicular to the fracture 
after 15000 days. The final graph plots the temperature profile in the lateral direction at a 
normal distance of 60m from the fracture, after 15000 days. In both plots, the new 
analytical solution better fits with the numerical solution. The fit is still not exact. This is 
probably caused by the different boundary conditions used for the numerical and analytical 
data. The numerical solution has a symmetry boundary condition at x = 0 and a zero heat 
flux at x = 100m (see figure 4.1.8) The analytic solutions assume an infinite half space. This 
is further discussed in the next paragraph.  

In general we can say that the new analytic solution is an improvement especially for low 
flow rates. 

 

4.2. Finite Space Analytic Solution 

 

Numerical solutions always make use of a finite solution space. GEOCRACK uses 
Neumann boundary conditions on the vertical boundaries: 
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0/ =∂∂ xT    Lxx =∪= 0

 

L is the extent of the system in the x direction. This results in the flattened edges of x-
profile temperature curves. On the other hand, the analytic solution addressed by 
Lauwerier, assumes an infinite space. As it is impossible to compute an infinite space 
numerically, I have looked for a finite analytic solution. This finite solution has a zero 
temperature gradient at the right boundary of the system (x = L). The mathematics 
involved are explained in the theory (§ 2.2.3 and Appendix A3). 

In figures 4.2.1 and 4.2.2, the finite analytic solution and infinite analytic solution are 
compared. Both figures are of the same 10-meter-geometry (L = 10m), and show the 
temperature along a fracture. No obvious differences can be seen on the 10-metre scale (fig 
4.2.1). Only if we zoom in on the right boundary (figure 4.2.2. Note x-axis scale!) we can 
see that the finite analytic temperature gradient tends to zero at the edge. It is obvious that 
the influence of the boundary conditions is of minor importance. The magnitude of 

2

2

x
T

∂
∂  

(curvature) is very large near the boundary. This is in contradiction with the assumptions 
made that diffusion parallel to the fracture is negligible. Future analytic work could include 
the combination of finite extend and isotropic diffusion.  

As the boundary effects hardly affect the solution (influence in the order of a few 
millimetres) there is no use comparing this solution with the numerical data. 

  Fig. 4.2.1: Temperature along             Fig. 4.2.2: Zoomed in on right boundary. 
        fracture. 

 

4.3. Soultz-sous-Forêts analytic analysis 

 

As a first approximation, the subsurface heat exchanger at Soultz-sous-Forêts can be 
represented using a single fracture. According to data given by Steve Oates [S. Oates,  
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Fig. 4.3.1: 600 × 400 m2 fracture. 

 

2000], this fracture would have a length of 600m and a hight of 400m. Further data can be 
found in table 4.2.1. For a moderate energy production flow rates around 30 l/s are 
needed. As we see in figure 4.3.2, such a flow rate would drop the production temperature 
to 1000C in less than four years.  On the other hand we might have several parallel heat 
exchanger like the one showed in figure 2. In that case each fracture only produces a small 
part of the total production. For lower flow rates the temperature drop is far less. With a 
flow of 15 l/s, the production temperature does not drop to 1000C until 16 years. Figure 
4.3.3 shows temperature drops of even lower flow rates. For Flow rates of 10 l/s, even 
after 12000 days (32 years) the temperature has not dropped below 1000C. A production of 
2 l/s results in a constant heat exchanger; as much heat is supplied through the rock as is 
carried off with the water.  

One would think that the assumption of 1D-diffusion is not valid with these low flow 
rates. It has been tested however that this effect is minimal; less than 10C after 30000 days. 
The reason for this will be discussed in the paragraph on Anisotropic / isotropic diffusion. 

Fracture length = 600 m 
Fracture height = 400 m 
flow rate = see plot 
fracture aperture = 0.001 m 
density of rock = 2.66 E3 kg/m3

density of water = 950 kg/m3

specific heat water = 4300 JK-1Kg-1

specific heat rock = 1100 JK-1Kg-1

water inlet Temperature = 20°C 
in situ Temperature of rock = 190°C 
Thermal conductivity = 2.58 Wm-1K-1

Thermal diffusivity = 0 89×10-6 m2/s

Fig. 4.3.2: Analytic T decay   Fig. 4.3.3: Low flow rates  Table 4.3.1: Parameters. 
      Soultz-sous-Forêts. 
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5. GEOCRACK 2D/3D, BENCHMARKS AND TESTS 

 

5.1. Numerical issues 

 

When applying a numerical integration method, several problems can occur. Their causes 
can be threefold: 

1. Stability: A numerical scheme is called unstable when errors increase at every iteration 
step without bound. Small errors in the steady state solution can grow dramatically in 
the transient solutions. To prevent instability the largest eigenvalue in the error-
propagation matrix should be smaller than 1. Further the timestep (Δt) must be smaller 
than a certain amount, dependent on the spatial discretisation (Δx) and the fluid 
velocity (V): 

 

1≤
Δ
Δ

=
x
tVCo  

 

Co is the Courant number, which is physically interpreted as the ratio of the advective 
distance during one time step to the spatial discretisation. A fluid particle may not 
travel beyond a full rock element in one time step. 

2. Convergence: A scheme is said to be convergent when it is not only stable but also 
consistent. This means that the difference between numerical and analytic solution can 
be made arbitrarily small by choosing a sufficiently small transient and spatial 
discretisation.  

3. Numerical dispersion: The approximations of first-order derivatives generate errors in 
the order of second-order derivatives. These add up with the hydrodynamic dispersion 
(also 2nd order derivative) and are thus called numerical dispersion. For an implicit 
(backwards) iteration scheme the numeric dispersion coefficient is: 

 

22
2 tVxVDnum
Δ

+
Δ

=  

 

The numeric dispersion coefficient varies with iteration scheme, but it is always 
dependent on velocity V and spatial and temporal discretisations Δx and Δt. The 
remedy to reduce the effect of numerical dispersion is to make Δx and Δt smaller. 
When the total dispersion (numerical + hydrodynamic) is negative, the solution may 
exhibit unphysical oscillations, leading to over- and undershoot.  
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5.2. Mesh Dependency of GEOCRACK 

 

Simple tests have been performed to obtain an impression of the mesh dependency of 
GEOCRACK2D. A single plane fracture problem has been solved with six meshes with 
different element size, ranging from 1m to 20m (total length of the fracture). The mesh 
with element size 2 (h = 2m) is shown in figure C6 (Appendix C). Three points, P1, P2 and 
P3, are measured, located respectively on the fracture at 10m from the inlet, on the fracture 
at 20 m from the inlet and P3 located 10 m above the fracture on a line crossing the 
fracture with a straight angle at 10 m.  Besides these points, the numeric results of a cross-
section perpendicular to the fracture at 10m from the inlet are compared. 

The flow through the fracture is constant, initial rock temperature is 250 0C and the inlet 
water temperature is 100 0C. The numerical results of the different meshes with different 
element sizes are compared with each other. First of all the temperature decline curves of 
points P1, P2 and P3, given respectively in figures 5.2.1, 5.2.2 and 5.2.3. Although in 
graphs 5.2.1 and 5.2.2 the analytic function (isotropic diffusion in infinite half space) is 
plotted, a comparison between this analytic solution and the numerical solutions is difficult; 
all numerical temperature curves decay more slowly than the analytic. This is in agreement 
with curves from chapter 4, e.g. figure 4.1.1, 4.1.5 and 4.1.6. Up to mesh element sizes of 
4m, the numeric results compare reasonably well, for all temperature drawdown curves. 
Above 4m-element size, curves are not smooth anymore. These curve show a slower 
temperature drop in early times (up to 50 days), after which the temperature drops below 
the curves generated with the finer meshes. The horizontal component of the stress (figure 
5.2.4) is calculated correctly up to meshes with a size of 6.7 m. This test has been 
performed with very low velocities to be sure not to violate the Courant-criterium. Δt has 
been chosen sufficiently fine as well. 

 

Element size (m) Cal. Time of 1 iteration(s) Cal. Time 1 year (min.) on a 
SUN UltraSparc 333MHz 

2 0.33 15 

4 0.06 2.5 

10 0.01 0.4 
Table 5.2.1: Increased calculation time with decreasing mesh size 

 

I have also tested GEOCRACK with larger meshes. Meshes with a geometry (100x200m) 
in the range of HDR-reservoirs have been used (see figure C5). Figures 5.2.5 and 5.2.6 
show respectively cross-sections in the x and z direction. Figure 5.2.5 shows a cross-section 
parallel to the fracture at a distance of 10 m after 7000 days. The flatness of the graphs near 
the borders is caused by symmetry boundary conditions. The analytic solution in contrary 
makes use of an infinite space. This difference between analytic and numeric solution is 
addressed sections 4.3. It is remarkable how much better the fit is of mesh ‘l1’ (red curve), 
especially when noted that this mesh asks only about a third of the calculation time needed 
for ‘l2’ (green curve). The reason must be the mesh refinement of mesh ‘l2’ near the 
fracture. In figure 5.2.6 a cross-section in vertical direction, 
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Fig. 5.2.1: Temperature P1.    Fig. 5.2.2: Temperature P2.  Fig. 5.2.3: Temperature P3. 

 
through the source (x=0) after 7000 days, is shown. Both numerical solutions show 
good comparison with the analytic solution.  
Further I have done tests with a contracting rock environment. According to Swenson 
[Swenson, 1997b] this phenomena seems to play an important role. Due to the cooling 
and contraction of the rock, the fractures widen. Figures 5.2.7 gives output temperatures 
of this test. Errors are of the same order as without contraction (note the scale 
difference). This is illustrated by figure 5.2.9. This figure shows the increase of the fluid 
volume in the crack. This is a measure of the contraction of the rock and the 
accompanying widening of the fracture. The fit between the two numerical solutions is 
exact, from which we can conclude that calculations on structure displacement are far 
less mesh dependent. 

Fig. 5.2.4: Stress regime.  Fig. 5.2.5: Temperature, z = 10 m. Fig. 5.2.6: Temperature, x = 0 m. 

 

Mesh ‘l1’ is generated with the mesh generator ‘level3_mesh_exe’. This mesh generator 
generates brick-wall structured fracture systems, with mesh refinement at the fractures. It 
was built to represent typical HDR-environments. Mesh ‘l2’ is generated with ‘CASCA’, 
another more general mesh generator, with more possibilities. Some experience with the 
meshes taught that, in general, the meshes generated with ‘level3_mesh_exe’ are more 
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stable and require less computation time. The problem with the CASCA-meshes is that 
fluid-elements have to be added in GEOCRACK, which (sometimes) leads to problems 
(see Appendix E). 

  

  
Fig. 5.2.7: T decay, no thermal     Fig. 5.2.8: T decay, inc. thermal   Fig. 5.2.9: Fluid volume. 
      contraction.            contraction. 

 

5.3. Gringarten benchmark. 

 

The Gringarten analytic solution has been discussed in the theory (§ 2.2.4). It can be used 
to benchmark the 3D-version of GEOCRACK. The system consists of a plane fracture 
intersected by two wells (see fig. 2.2.4.1). In the fracture 2D advection in x and z direction 
is allowed, in the rock 1D diffusion orthogonal to the fracture. The total flow through the 
system is constant. The following parameters have been used to benchmark the 
GEOCRACK finite element code (see also Appendix C, figures C8 till C11: 

• System boundaries: x × y × z = 400 × 400 × 400 m 

• Well-distance = 100 m  

• Benchmark point located on the line injection well - production well at a distance of 
50.8 m from injection well.  

• Fracture aperture = b = 0.1 mm 

• Total flow = Q = 1 l/s 

• Initial rock temperature = TR = 250 0C 

• Water inlet temperature = TW = 50 0C 

Figure 5.3.1 shows the temperature decline at the production well for a period of 1000 
days. It shows that the fit between the two curves is exact. This is a remarkably good result, 
even more when we consider the differences between numerical and analytical solution: 

• The analytic solution does not consider 2D heat-diffusion through the rock. 

• The analytic solution assumes an infinite volume and fracture (see Appendix A4) 
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This result gives confidence in the further use of the GEOCRACK3D finite element code. 

 

 

 

 

 
Fig. 5.3.1: Analytic and numeric results     Fig. 5.3.2: Temperature contours at 100, 500 and 1000 days 
     of the Gringarten-problem. 

 

5.4. Standard Galerkin versus Petrov-Galerkin 

 

Several times during the research we had to deal with over- and undershoot problems as 
well as oscillation problems, sometimes leading to convergence problems. Four months 
after the start of the research, a new executable became available containing a Petrov-
Galerkin (PG) discretisation algorithm. PG-discretisation should prevent the solution from 
oscillating. Tests were performed to check the effects of this improvement. Oscillations 
can occur when over- and undershoot are severe, for example when a sharp thermal 
gradient is present in the system. A simple geometry containing two vertical fractures at a 
distance of 60 m, interconnected by two horizontal fractures at a distance of 40 m (see 
figure 5.4.1) has been tested. The rock has an initial temperature of 250 0C. In the left 
fracture a constant flow of cold water (20 0C) is injected. The results show (figure 5.4.1) 
that temperature profiles after 15 days are similar. Both Standard Galerkin (SG) and 
Petrov-Galerkin (PG) show severe overshoot, up to 40 0C above the background 
temperature of 250 0C. This is due to the sharp temperature gradient near the fracture 
edges, caused by the high flow rates and low input temperature (20 0C). Using elements 
with a smaller size perpendicular to the fracture could reduce this overshoot.  

Halfway along the right vertical fracture, relatively cold water (flowing horizontal) meets up 
with relatively hot water (travelling up-ward). This is due to the difference in travel path of 
both fluids. This results in a sharp thermal gradient, causing numerical errors. This is best 
shown in figure 5.4.1, where the temperature along this part of the fracture is plotted for 
both a SG and PG iteration scheme. The SG solution gives heavy oscillations, next to 
over- and undershoots, with a period of one mesh length (10 m), whereas the PG solution 
is very smooth, with no oscillations and only small overshoot. Both algorithms converged 
within the same number of iterations (202 iterations for t = 100 days). The PG-algorithm 
iteration time is about one-and-a-half times the SG-algorithm iteration time (0.36 s vs. 0.24 
s). 



EP 2001- - 35 - Unclassified
 
 

  Standard Galerkin  Petrov-Galerkin 

 

290  135  20  

 

t = 15 days 

 

 

 

 

 

 

 

t = 80 days 
 
Fig. 5.4.1:  Comparison of temperature contour plots between   Fig. 5.4.2: Temperature along right 
       Standard Galerkin and Petrov-Galerkin discretisation.           vertical fracture, t = 80 days 

 

5.5. Rock deformation experiments 

 

One of the main benefits of the GEOCRACK finite element code is that it performs rock 
deformation calculations. This is especially important as in HFR-systems there is always the 
risk of so called ‘short-circuiting’. By this expression we refer to the concept that a 
dominant fracture carrying the bulk of the fluid, will become more and more dominant due 
to its faster increase in aperture due to faster cooling of nearby rock. This is thus a self 
amplifying process; the fracture wall cools faster causing more thermal contraction, 
resulting in an increased permeability which causes even more water to flow through this 
particular fracture, causing more local cooling. 

Displacements are either caused by thermal contraction or by the stress-regime. An initially 
stable reservoir (summation of forces on each node is zero) is deformed due to local 
cooling which causes a change in the stress-regime. Moreover the relation between fracture 
opening and fracture stress is of importance. Here the Gangi-model is used; as the joints 
close they become more stiff, and as they open they become softer. The fractional 
contraction of an element is the multiplication of the decrease in temperature times the 
thermal expansion factor. 

Tests have been performed to obtain an impression of the consequences of short-
circuiting. For these tests we use a simple heat exchanger containing two straight fracture 
planes. To prevent the solution being disturbed due to asymmetric initial conditions, it was 
chosen to use the mesh shown in figure C7, Appendix C. This figure shows the 
displacement boundary conditions as well; nodes are not allowed to move perpendicular to 
the boundary. This prevents the system from decreasing in volume, and ensures that all the 
thermal contraction will contribute to the growth of the fractures. A constant flow 
boundary condition of 1×105 kg/day has been implemented on the top at the vertical 
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fracture. There is a zero-heat-flux boundary condition on all edges. Further parameters are 
given in table 5.5.1.  

Three cases have been tested. First of all a reference case (case I) has been simulated. In 
this system the left and right fracture have the same initial aperture and therefore the same 
initial flow rate. In case II the right fracture has twice the initial flow rate of the left one, 
caused by an initial aperture: bR = 3√2 bL. In the last case (case III) the aperture of the right 
fracture is twice the aperture of the left one causing the initial flow through the left one to 
be 8 times less (q ∼ b3). 

For all three cases the flow rate, displacement and fluid temperature in both fractures is 
monitored. In an Excel-sheet the combined temperature decline of both output fluids has 
been calculated. The results can be found in figures 5.5.1 to 5.5.4.  

 Table 5.4.1: Parameters. 

a0 = zero stress joint opening =  
σc = stress at which joint is assumed to be closed = 100 MPa 
m = Gangi constant = 0.33 
α = thermal expansion = 0.92 × 10-5 

d = thickness heat exchanger = 40 m 
 

Case I Case II Case III 

right left right left right left 
q (kg/day) 5×104 5×104 6.7×104 3.3×104 8.9×104 1.1×104

b (mm) 1 1 1.3 1 2 1 

Initial values 

 

It is remarkable that in case I, although both fractures have the same initial flow rate, after 
some time the flow rate in the right fracture (dotted curve in figure 5.5.1) increases at the 
expense of the left one. This is not what one expects as the initial and boundary conditions 
are totally symmetrical. This could be caused by small numerical errors. A small error in the 
displacement of a node on one of the fracture edges could have caused a change in 
evolution between left and right fracture. The other two cases show a fast increase in the 
flow rate of the dominant fracture. Both show that after a certain period a equilibrium is 
created. Two phenomena have to be considered. Due to increased flow-rates the thermal 
decay will increase. On the other hand, this increased thermal decay causes the curvature of 
the time-temperature graph of the dominant fracture to decrease faster. This implies that 
less and less heat is removed and finally the contraction will stop. In case II we even see 
that the flow rate of the dominant fracture decreases after 800 days. At this moment (see 
figure 5.3.3) the temperature curve of right fracture has become nearly horizontal 
indicating that very little heat is removed by the fluid. In other words; the aperture of the 
right fracture has reached has maximum size and the aperture of the left one is still 
growing. This phenomenon can not be find in the curves of case III. This is because in this 
case the left fracture has no or very minimal thermal contraction, which can be concluded 
from the fact that there is no temperature decay of the water in this fracture (fig. 5.5.4). We 
can conclude that distribution of fluid flow rates is severely affected by thermal contraction 
corresponding fracture opening. Figure 5.5.2 gives the temperature of the total volume of 
produced fluid (both fracture outputs) as function of time. It is clear that ‘case I’ has the 
smallest thermal decay. On the other hand this is also the most effective way of cooling of 
the block: after a certain period the case I-curve will drops below the other two curves.  
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Fig. 5.5.1: Flow logs in right (dominant) and left  Fig. 5.5.2: Temperature decay curves of the three  
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6. SOULTZ-SOUS-FORÊTS DATA 

 

6.1. General Geology 

 

The Soultz site is located close to the center of a wide geothermal anomaly (figure 1.4.1), 
on the western border of the Rhine Graben. A heat flow density of 140 mWm-2 , more 
than twice the European mean heat flow, is present. The three mayor tectonic events that 
structured this area are the Variscan orogeny, the subsequent late-tectonic extension, and 
the Cenozoic opening of the Rhine Graben rift system. The Rhine Graben can be 
considered as one of the best-documented basins in the West-European rift system. A 
cross-section (figure 6.1.1) shows a typical Graben-like structure, with sub-vertical, North-
South (~ 170o) striking fractures. This is parallel to the direction of maximal horizontal 
stress.  The granite (from depths of 1400m) is covered with sediment, with a classic Trias 
German subdivision, consisting of ‘Bunt’sandstone , Muschelkalk and dolomite layers. The 
sediment has a severe geothermal anomaly of 100oC/km, while in the granite the 
temperature gradient varies from 10oC/km from 1.4 to 4 km depth and a gradient of 30 
oC/km at depths between 4 and 5km. A natural convective flow system is expected in the 
granite rock, causing the relativly small gradient between 1.4 and 4km depth, although the 
permeability is very small. 

 

GPK

GPK

EPS

500m

N 

Fig. 6.1.1: NW-SE geologic cross-section.       Fig. 6.2.2: Schematic location wells 
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6.2. Bore Hole Data 

 

Various studies have been performed using geological samples (cuttings, cores) and 
numerous geophysical logs to obtain more information about the near well geology. This 
paragraph gives in short the most important results required for the numerical 
implementation.  

 

Stresses  

The geophysical imagery tools FMS (Formation Micro Scanner), BHTV (Bore Hole Tele 
Viewer) and UBI (Ultrasonic Bore hole Imager) provide not only images of the natural 
fracture system but also a very accurate definition of the mean azimuth of the maximum 
horizontal stress field. In the three wells (GPK1, GPK2 and EPS1) a general direction of 
170oN was observed. The stress magnitude in the granite was obtained using hydro-
fracture stress measurements methods and is a function of depth [A. Gérard, 1998]: 

 

Least horizontal stress: ( )14580149.08.15 −×+= ZSh  

Max. horizontal stress: ( )14580336.07.23 −×+= ZSH  

Overburden stress: ( )13770255.08.33 −×+= ZSZ  

 

Fractures 
According to reports by BRGM [A. Genter et al., 1997] fractures can be subdivided into 
three main categories based on the length scale of the fracture: 

1. Large scale faults (pluri-hectometric to kilometric scale) 

2. Fracture zones (10-100m) 

3. Minor fractures (~ 1m) 

The first group contains the large sub-vertical geologic faults as can be seen in figure 6.1.1. 
We expect these faults not to have a direct influence on the HFR reservoir. Thus, we 
actually assume that the reservoir is a closed system. Some other researchers (e.g. D. 
Pribnow) expect the reservoir to be connected with deeper structures with these large 
faults. 

The second group is of more interest. Borehole imaging discovered several fracture zones; 
about once every 500m. These zones have a dominating strike N-S to NE-SW and have 
dipping angle from 70o to 90o either East or West (figure 6.2.1). Considering the dip of 
these fracture zones, we can estimate a mean normal distance between the fracture zones 
of about 200m to 250m.  

During borehole imagery, lots of small scaled fractures (~ 1m) have been identified. They 
are rather randomly distributed but have a mean frequency of once every 2m. Only 1% of 
all measured fractures has a initial aperture suitable for fluid flow. The dimensions of these 
apertures are given in a fractal relation (see figure 6.2.2) and have a mean of 1mm. Again 
they show a general strike direction N-S to NE-SW, with dip-directions either East or West 
(figure 6.2.1). 
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Fig. 6.2.1: Source: Joint Network [Tenzer et al.,1998]  Fig. 6.2.2: Fractal relation between number 
              of fractures and aperture (source:  

     [BRGM staff, 1998]) 

6.3. Micro-seismic Data 

 

During hydro-fracturing the propagation of the micro-seismic cloud is recorded. Micro-
seismic events are related to the creation of a fracture network. Microseismic maps show a 
N-S expansion of the events. As expected, this is perpendicular to the direction of 
minimum horizontal stress. Figure 6.3.1 shows the vertical expanse of the micro-seismic 
events. It can be observed that most of the events generated during the GPK1 stimulation 

  
Fig. 6.2.3: Vertical distribution of seismic events of the hydraulic stimulation of GPK1 and GPK2, source: [Gérard et 
al., 1996] 

are more or less symmetrically distributed down and above the casing shoe of GPK1 
between 2500m to 3200m. We can identify one main impact zone direct at the casing shoe 
(2850m) and two additional impact zones at 3200m and 3500m. The distribution of GPK2 
generated events is not dominated by a single major stimulated zone (due to the injection 
of fluid with a higher density to prevent upward migration).  The main peak is translated 
downward 300m under the casing shoe at 3500m. 
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The overall seismicity can be divided into two groups. One forms a structure connecting 
a zone near 3500m in GPK1 with the 3470m level in GPK2. The second structure starts 
at around 3350m in GPK2 with an approximately NW-SE azimuth and dipping towards 
GPK1 [Gérard et al., 1996]. 
Further, the seismicity is characterized by two so-called super-stimulated volumes near the 
wells (each about 0.04 km3) and a total stimulated volume, the ‘reservoir-volume’, of about 
0.2 km3. 

 

6.4. Circulation tests 

 

The most important data during circulation tests are the flow-rate profiles inside the wells. 
Figure 6.2.4 shows such a flow log, the logging depths have been transformed into depths 

  
Fig. 6.2.4: Normalised flow-rates during circulation tests [Tenzer et al., 2000] 
 
Table 6.4.1: Correlation between fractures observed by borehole televiewer and flowlogs. [Tenzer et al., 2000] 

Well Depth (mbwh) Depths (mbsl) Relative flow (%) Strike Dip Intersection depth (m)

2870 2710 25 N20 W70 - 

2960 2810 30 N05 W80 - 

GPK1 

3500 3340 25 N05 E85 - 

3250 3080 25 N150 E60 3500 

3350 3180 25 N140 E85 - 

GPK2 

3470 3300 25 N175 E70 3330 

below sea level. To obtain depths below well head, one should add 170m (for comparison 
with the seismic data). In each well we can identify three separate flow zones which 
account for 25% or more of the total flow through that well (marked with the solid  

arrows in figure 6.4.1). Table 6.2.1 gives these high output flow-rate-depths, as well as their 
expected direction through the granite (Borehole Televiewers) and possible intersection 
depth with the other well. 
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If we combine the flow-rate profiles with the microseismic data we can determine that the 
main link between the two wells is at a depth of around 3.5 km. 

In GEOCRACK2D the possibility to perform tracer tests is implemented. Tracer test data 
from Soultz-sous-Forêts could be used to calibrate the proposed finite element models. 
First Tracer arrives 72 hrs after injection with a circulation rate of 25 l/s. The curve peaks 
at 300 hrs (12 days) after injection. 

time (hours) 

1.0 

0.8 

0.6 

0.4 

0.2 

0 

0    1000           2000  3000

1.2 C (mg/l) 

 Fig. 6.2.5: Benzoic acid tracer data (source: [Audigane, 2000]) 

 

 



EP 2001- - 44 - Unclassified
 



EP 2001- - 45 - Unclassified
 

7. NUMERICAL IMPLEMENTATION 

 

In chapter 6 the available geologic and geophysical data is summarised. The full 
implementation of these data in numeric models is not possible. Especially 2D-models 
require severe assumptions on geometry. In the following paragraphs we discuss a few 
possible 2D- and 3D-model implementations. As GEOCRACK is fracture oriented, we 
will focus on the implementation of the fracture network into the numeric solver. The 
physical parameters given in Appendix B1 are used. 

 

7.1. Heat exchange surface and reservoir volume 

 
Crucial factors in the thermal lifetime of a reservoir are the total heat exchange surface 
and total reservoir volume. The reservoir volume is especially of importance as it 
determines the total amount of heat present. It has been estimated from the micro-
seismic data (chapter 6). It can be sub-divided in a total stimulated volume (= volume of 
total reservoir) and two regions close to the well-bore which are super-stimulated: 
VTotal = 0.25 km3 

VSuper = 0.04 km3 (2×) 

All models, 2D and 3D, are based upon these values.  

An estimation of the total heat exchange surface (fracture walls) is more difficult. It is of 
direct importance as it prescribes the rate at which heat will be removed. I have tried to 
estimate an upper and lower boundary of the heat exchange surface.  

An upper boundary can be found by using a stereological law by Underwood [Underwood, 
1970]. This relates the number of fractures (nF) measured along a vertical line in a volume 
and the fracture surface (SF) in that volume: 

 

SF  = 2nF

 

We use the ARI-borehole measurements. This device is able to characterize fractures over 
a certain distance relevant to fluid flow and thus only measures relevant fractures. ARI-data 
show a mean fracture density of 0.33 frac./m. This gives, for a total volume of 0.25 km3, a 
heat exchange surface of 160 km2. 

Another way to estimate the heat exchange surface is to divide the total volume of water in 
the reservoir by the mean fracture aperture. During circulation tests the volume of water 
was estimated to be 25⋅103 m3. The mean fracture aperture is about 1mm (see figure 6.2.1). 
We can calculate for the total fracture surface: 

 

SF  = 2 × 25⋅103/10-3 = 50 km2
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This can be assumed as a lower boundary as the influence of smaller fractures has not been 
taking into account. The fact is that these give only a minor contribution to the total fluid-
volume in the reservoir but they do give an equal contribution to the heat exchange-
surface.  
We can calculate a geometric mean from the calculated lower and upper boundaries: 
 

29050160 kmSMean =×=  

 

P. Audigane [Audigane, 2000] used in his Soultz-model a heat exchange area of 24 km2. 
During the research we experienced that a total fracture surface area of 90 km2 implied a 
numerical model that converged too slowly to be practicable. That is why it has been 
decided to proceed with smaller areas of order 10 km2.  

 

7.2. 2D-Model Implementation 

 

2D interpretation of 3D structures involves severe limitations on the geometry. We have to 
choose a certain cross-section with optimum symmetry characteristics. The Soultz HFR 
reservoir has been designed such that the general fracture orientation and maximum 
horizontal stress are parallel to the line connecting GPK1 and GPK2. The wells have been 
located in such a way that the resistance between them is minimal and thus minimizing the 
necessary overpressure. We can either choose a (near) vertical cross-section through the 
wells or a (near) horizontal cross-section perpendicular to the main fracture planes. The 
first option would give us the facility to implement the depth dependent logs (figure 6.4.1) 
and seismic stimulation results, which vary with depth as well (figure 6.3.1). A near 
horizontal cross-section allows a better representation of the fracture geology, including 
the fracture-zones, as they are all near vertical.  

 

7.3. Horizontally oriented models 

 

The 2D-models (see figure D1, appendix D) assume symmetry in the horizontal plane at 
3500m. According to the data given in chapter 6, at this depth the main link between the 
wells can be found. Further we assume vertical fractures, nearly inline with the line GPK1-
GPK2. We expect a depth range of the reservoir to be 400m, extending from 3200m to 
3600m. To obtain the correct model volumes the following sizes in x and y direction have 
been chosen: 

Total stimulated volume: x × y = 800 m × 750 m 

Super stimulated volumes: x × y = 200 m × 300 m 

The total fracture network and mesh are given in appendix D (figure D1) as well as the 
parameter values (table D.1). All models have a fracture network consisting of connected 
fractures with a length of 100m. Fracture zones (high permeable fractures) are located at a 
normal distance of 200m from each other and directed North-South.  
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With this fracture model a series of runs with different background rock properties have 
been performed. One without any permeability in the background rock, one with a 
uniform permeability in the whole reservoir and one with an increased permeability close 
to the wells. From now on these cases will be called respectively the non-permeable, constant 
permeability and variable permeability cases. The precise permeability values can be found in 
table D.2 of Appendix D. In the non-permeable model all the flow is channelled through the 
fracture network; there is no porous flow through the rock. The constant permeability case has 
a isotropic background rock permeability of 1⋅10-17 m2. The variable permeability case consists 
of two so-called super-stimulated volumes close to the wells with a permeability of 1⋅10-15 
m2 and a background permeability of 1⋅10-17 m2 in the rest of the reservoir. These values are 
summarised in table D1 in appendix D.  

The line GPK1-GPK2 is a line of symmetry. By implementing a symmetry boundary 
condition on this line, calculation times were halved. All other boundaries have Neumann 
temperature boundary conditions (∂T/∂z⏐z = zmax, zmin =∂T/∂y⏐y = ymax, ymin =∂T/∂x⏐x = xmax, xmin 
= 0) and Dirichlet fluid flow boundary conditions (q⏐z = zmin, zmax = q⏐y = ymin, ymax = q⏐x = xmin, 

xmax = 0). Mechanical boundary conditions are defined in such a way that the outer knots 
are allowed to move a (small) finite distance (see appendix D). Another important item is 
the correct implementation of the relation between fracture opening and fracture stress. 
This is described in detail in appendix D and plotted in figure D6. 

A fourth model representing the Soultz system has been used during the research. This 
model was added as verification if the use of the symmetry plane (GPK1-GPK2) in the 
models described above is valid. An artefact of implementing a symmetry boundary 
condition on this line is that the most central fracture does not carry any fluid since it lies 
exactly on the edge of the system. The added model (which from now on will be called 
reference model) does not make use of this symmetry plain. Therefore its calculation time will 
be twice as long (≈ 3 days). The reference model has the same parameter implementation 
(permeability, porosity, etc.) as the variable permeability model.  

 

7.4. Vertically oriented models 

 

A group of vertical 2D models representing the Soultz HFR reservoir have been tested. 
The implementation of these models was based on figure 6.4.1 and table 6.4.1. They give 
information where large fractures are along the borehole and how much fluid they absorb. 
The exact implementation is explained in Appendix D, figure D2.  

During testing of the vertical models we detected that the steady-state solution converged 
correctly as well as the first transient steps. The strange phenomena occurred that always 
between 100 and 200 days after the start of circulation of water, the solution did not 
converge anymore. The reason for this remains unclear. Several tests have been performed 
(e.g. decreasing time step, decreasing flow rate, small changes in stress regime, less in- and 
output locations, etc.). None of them changed the result such that the calculations 
converged for times beyond 200 days. 

At a certain moment, it was decided to omit further attempts to improve the vertical 
models. The reason was a lack of time and priority was give to the 3D model.  The 
consequence is of course that no relevant results are available from the vertical models. 
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7.5. 3D-Model Implementation 

 

At the beginning of November 2000 the 3D version of the GEOCRACK finite element 
code became available. This gave us the opportunity to build more realistic models. We 
have to mention here that the 3D version was a beta release at that time, with a number of 
restrictions. The most important restrictions are: 

• Porous flow is not included. 

• Rock mechanics are not included. 

According to D. Swenson these points will be included by the beginning of the year 2001. 
In spite of the absence of these points, a 3D numerical model can be very useful, especially 
to determine if the 2D models are reasonable. Further the exact fit in the benchmark 
problem (§ 5.3) is promising. 

For the implementation of the 3D model I have made use of circulation test data and data 
of the main hydraulic fractures. This data can be interpreted as six well-crossing fractures 
from which two cross both fractures. This is summarised in table 6.4.1 and figure 6.4.1. 
Table 6.4.1 gives the 6 identified main hydraulic fractures (depth, strike and dip), their 
relative part of absorption of fluid and their possible intersection with the other well. The 
two direct hydraulic connections are located at 3250m in GPK2 to 3500m in GPK1 and 
from 3500m depth in GPK2 to 3330m in GPK1. According to D. Pribnow [Pribnow, 
2000] at least one direct hydraulic link is necessary to fit model data with observed data. 
The other fractures cross only one well; two fractures each well. The system created 
consists of a network of 6 interconnecting fractures in a 0.25 km3 rock volume. The 
geometry of the model and the mesh discretisation can be found in appendix D (figures 
D3 and D4). It is actually quite similar as the Soultz HFR-conceptual model proposed by 
D. Pribnow [Pribnow, 1999]. He proposed a model consisting of 7 fractures. Towards the 
wells the surface mesh elements decrease in size to a minimum at the wells of 10m. The 
maximum element size, for as well surface as for volume elements, is about 150m. 

All fractures absorb all more or less the same amount of fluid (25-30% of the total flow). 
That is why we have chosen to use a constant fracture aperture of 0.1 mm. 
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8. NUMERICAL RESULTS 

 

8.1. Tracer tests 

 

In figure 6.2.5 the tracer response of the HFR-system is plotted. The first particles arrive 3 
days after injection. GEOCRACK2D offers the possibility to inject particles at a certain 
location and measure the concentration of particles at another location. We have thus 
performed a series of tracer tests with the different 2D-models. The results are plotted in 
figure 8.1.1. All models make use of the same fracture network, that is why tracer curves of 
all models are the same except for the reference model. 

Fig. 8.1.1: Tracer results 2D models. A concentration of 100 % = 1. 
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Figure 8.1.1 shows that particle arrival times of the models are much faster than the 
observed arrival times. The peak is 12 hours after injection (injection at t = 0), 6 times as 
fast as the observed peak. Another difference with the observed data is the decline in 
particle content after the peak. The model-curves have a much steeper decline and the 
concentration is nearly zero after 4½ days. The observed curve shows a much slower 
decline in concentration. This is due to the fact that the models do not include fluid 
circulation between injected water and far-field water. This could cause particles to stay 
underground for a very long time. The reference model has a much higher peak, caused by the 
fact that twice as many particles are injected. The shape of its curve is the same as the other 
model curves. 

 

8.2. Single well pressure tests 

 

After stimulation of both wells, the effect of the stimulation tests on the hydraulic 
properties of the fracture system was investigated by single well injection tests. The GPK2 
injection test was performed in september 1996. The main objective of this test was to 
determine the post-fracturing injectivity and the inlet impedance of the fracture system of 
GPK2. The test was performed as a step-injection test with flow rate ranging from 6 l/s to 
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37.5 l/s. The injection pressure was measured downhole in GPK2. GPK1 was shut-in 
throughout the test.  

A similar test has been performed with the proposed numerical 2D-models. In figure 8.2.1 
the numerical results of the three models are superimposed on the field data. The figure 
shows the downhole pressure increase due to increased injection flow rates. As can be seen 
in the figure, the pressure approaches a constant value at the end of each injection period 
indicating that steady state conditions are achieved. This behaviour can also be seen in the 
numerical results. The models have been calibrated for a flow rate of 24 l/s. This means 
that at this specific flow rate the numerical models will have the correct over-pressure (3.5-
4 MPa). Figure 8.2.1 shows thus a good fit between field and numerical data when the flow 
rate is 25 l/s. In figure 8.2.1 the steady state pressure is plotted as function of the injection 
flow rate. The numerical data results in a linear pressure-flow rate relation, while a 
parabolic relation fits the field data. This indicates non-Darcy flow in the fracture system. 
Unfortunately this cannot be modeled with GEOCRACK2D. 

P (Mpa) 

Fig. 8.2.1: Downhole pressure and flow rate of injection test      Fig. 8.2.2: Pressure vs. flow rate GPK2. 
     Coloured lines are numerical results. (Source:        Field data (red) and numerical 
     European HDR Geothermal Research Program          data (black) 
     1996-1997, Final report.) 

 

8.3. Temperature decay 

 
As discussed in the previous chapter, three 2D numerical models have been tested as 
well as the 3D model. The 2D models have been tested for tracer data and single well 
test data in the previous paragraphs. Unfortunately these tests are not (yet) possible with 
the 3D version of the GEOCRACK finite element code.  
First of all we will compare results obtained by the reference model with results from the 
variable permeability model. These models have the same geometry and parameter 
implementation but the variable permeability model works with a symmetry plane in the line 
GPK1-GPK2. This results in a zero flow through the fracture located exactly on this line. 
Figure 8.3.1 plot the two temperature curves of the two models. 
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Fig. 8.3.1: Temperature decay of produced water. 
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The figure shows that over a period of 55 years the two models predict a similar drawdown 
(to 105 0C). In the first decade the reference model curve drops faster. This is because it has a 
shorter ‘shortest link’ (the fracture located on the symmetry line) between GPK1 and 
GPK2. After 16 years the reference model temperature curve start deviating from the variable 
permeability model curve. Even some thermal recovery occurs in the period 16 till 23 years. 
This can be explained by the fact that in the reference model the heat extraction is more 
focussed to the region located directly in between the wells. Due to a more focussed heat 
extraction thermal stresses will be greater, causing that thermal recovery can happen at 
earlier times. The phenomenon of thermal recovery due to changes in the stress field is 
described in § 5.5 Rock deformation experiments. After this period of small thermal recovery  
the fluid production temperature of the reference model shows a more rapid temperature 
drop. This is logical as until that time, more heat has been removed in the reference model 
(area below curve of the reference model is greater than below variable permeability model).  

Figure 8.3.2 gives all temperature drop curves of the 2D models. As expected the variable 
permeability model gives the smallest temperature decay in the first decades due  
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Fig. 8.3.2: Temperature decay horizontal 2D models. 

 



EP 2001- - 53 - Unclassified
 
to its greatest porous flow, followed by the constant permeability model. When a greater part of 
the flow is through porous rock then the heat extraction will be less focussed to the 
regions around fractures, causing the heat extraction will be more effective. In both constant 
permeability model and non permeable model thermal recovery occurs. In the non permeable model 
this occurs almost a decade earlier due to its more focussed heat extraction (no porous 
flow). The thermal recovery of the non permeable model is almost 4 degrees Celcius over a 
period of 15 years. In the constant permeability model this is only 2 degrees but the temperature 
is still increasing at 55 years after start of production. The increase in temperature is caused 
by the increase of fluid flow though the second and third vertical fracture (counting from 
the line GPK1-GPK2). The regions around these fractures have cooled far less because 
they have carried only very small parts of the total flow. Due to cooling and an 
accompanying change in thermal stresses, it is possible that fractures in the periphery of a 
system start getting more water after a certain period. This is what we see in figures 8.3.3 
and 8.3.4. These figures give the flow rate of the three vertically oriented fractures (see 
figure D1, appendix D) at a vertical distance of 250m from both wells. The figures show 
that exactly at the times when the temperature of the production water increases, the fluid 
through the two far from the wells located fractures obtain more water. This is the reason 
for the thermal recovery. 

Fig. 8.3.3: Flow through the 3 vertical fractures Fig. 8.3.4: Flow through the 3 vertical fractures 
     (non permeable model).         (constant permeability model). 

 

One of the research goals of this project was to compare the results from the 
GEOCRACK testcase models with those from other numeric codes. The most appropriate 
numerical model proposed for the Soultz HFR heat exchanger is the one by Pascal 
Audigane [Audigane, 2000]. First of all the model used by Audigane will be discussed 
shortly. 

Audigane describes in his thesis Caractérisation microsismique des massifs rocheux fracturés. 
Modelisation thermo-hydraulique. Application au concept géothermique de Soultz three finite 
difference models representing the Soultz HFR reservoir. The first model consists of a 
hydraulic active porous medium interconnecting the two wells (seismic-model). It has an 
isotropic and constant permeability and no fractures are present. The second model 
consists of a couple of fracture disks in a permeable medium (fracture-model). The fracture 
disks are centred in the wells and have different extensions. The third model is a mixture of 
the seismic- and fracture-model (mixture-model). As expected the seismic-model has the 
smallest temperature decay and the fracture-model the greatest. The mixture-model is 
somewhat in between. These models do not take mechanics due to thermal contraction or 
the stress-regime into account.   
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Figure 8.3.5 compares temperature curves of the 2D and 3D models with the three model 
proposed by P. Audigane. 

Fig. 8.3.5: Production temperatures. In black are the curves generated by P. Audigane [Audigane, 2000]. 
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     The upper black curve is the seismic model, the lower curve is the fracture model and the lowest  
     black curve is generated with the mixture model. 

 

We can observe that the newly proposed models all have a temperature decay which have 
values in between the values of the fracture model and the mixture model proposed by P. 
Audigane. This is thus in very good agreement as the seismic model of Audigane is not 
realistic as testing at Soultz indicated that the fluid flow is surely not porous dominated, but 
includes at least one direct hydraulic link. The variable permeability model curve fits the mixture 
model curve very well till about 35 years. These models both are based on the inclusion of 
porous flow in a network of fractures. Also the non permeable model and fracture model fit each 
other quite well till about 20 years. Both models only make use of a network of fractures 
for the transport of fluid. After 20 years the influence of the thermal contraction drives the 
non permeable model curve away from the curve by Audigane. 

The good agreement of results between the proposed models and the fracture and mixture 
model  of Audigane gives confidence in proposed models and numerical code. The 2D 
variable permeability model and the 3D model are the most sophisticated models. When a 3D 
version becomes available including the possibility of porous flow, it would be very 
interesting to implement the parameter settings of the variable permeability model into the 6-
fracture 3D model. Until that time the two curves can be used as good estimations of the 
thermal drawdown during production the coming decades. For clarity, the two curves are 
plotted on their own in figure 8.3.6. 
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Fig. 8.3.6: Predicted thermal drawdown at an injection rate of 24 l/s. 
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9. 9. CONCLUSIONS 

 

9.1. Analytic  

 

The two analytic solutions, ‘isotropic diffusion’ and ‘finite distance’, found for the 
Lauwerier problem, will be discussed in this paragraph.  

The isotropic diffusion solution (see §2.2.2 and appendix A.2) includes the diffusion in the 
x direction in the rock. The results (fig. 4.1.4 and 4.1.5) show, as expected, that the 
influence of diffusion in the x direction increases with decreasing fluid flow rate. At low 
flow rates (up to 0.8 m3/day ≈ 1 l/min) the newly obtained solution fits the numerically 
generated results (2D diffusion) much better. At increasing flow rates the diffusion in x the 
direction can be neglected.  

Results from the finite space analytic solution show that the first derivative with respect to 
x of the temperature indeed goes to zero when the boundary is approached. This is what 
we wanted. On the other hand, the influence of the boundary condition has an extend of 
only a few millimetres. This results in a great curvature of the function, thus a great second 
derivative with respect to x. This is in contradiction with the assumption made that the 
diffusion in the x direction ( = ∂2T/∂x2) can be neglected. Future analytic work on this 
subject could include the search for the analytic solution of an isotropic diffusion finite 
spaced medium. 

 

9.2. Numerical code 

 

The accuracy of the numerical code used is described in chapter 5. The 2D as well as the 
3D version has successfully been benchmarked. Especially the 3D version gave very good 
results; an exact fit with the analytic solution, for the Gringarten problem. This fit is less 
good, but still reasonable, in the 2D benchmark tests. It has to be mentioned that similar 
benchmark tests performed by Swenson [Swenson et al., 1997] gave exact fits between 
analytic and numerical solutions. The reason for this remains unclear to me.  

Calculation times stayed within reasonable limits. Soultz 2D models took about 1 to 1½ 
day of calculation time. The executable with the Petrov-Galerkin discretisation method 
took about 1½ times longer than the standard Galerkin but improved results also 
significantly. All calculations were performed on a SUN Ultra Sparc 333MHz. 
Unfortunately only a windows version of the 3D code was available. Still the calculation 
time of the 3D Soultz model could be kept within 4 days on a Pentium III 700 MHz. 

In GEOCRACK2D one can only change parameters, mesh and settings by clicking with 
the mouse on the right buttons. At first this seems a nice and clear method, but when 
working with large models it becomes very intensive and also irritating. The 3D version has 
improved a lot on this point. A number of strange unclear things within GEOCRACK 
have been noted. These are listed in Appendix E. 

In general, the codes tested performed well. At this moment the program is still under 
development, though in the near future GEOCRACK can be a very suitable modeling 
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code. The following points should, and according to Swenson [Swenson, 2000] will be 
included in the 3D version: 

• Porous flow. 

• Active rock mechanics. 

• Comprehensive manual. 

• UNIX version. 

It then could  become a code of the calibre of TOUGH2 and could even be used to model 
hydrothermal systems. Other less crucial improvements of the numerical code include: 

• Addition of a parameter to make up for the effect of non-Stokes behaviour in the flow 
path. 

• Implementation of an easier method to change the type of continuum elements. (A 
very simple FORTRAN program has been written to do this for specifically generated 
meshes, see Appendix B) 

• Possibility to switch off rock mechanics, e.g. stress-field etc.. 

 

9.3. Test case 

 

One of the intentions of the research was to make recommendations on the production 
phase strategies of the Soutz-sous-Forêts HFR-project. Since a broad range of physical 
processes occur in a HFR system, a six months research is probably too short too make 
hard predictions. Still a number of interesting conclusions could be drawn from the 
research. 

First of all, the results show that high permeability values are advantageously. Higher 
permeability values close too the wells increase the efficiency of the system. The effect of 
short-circuiting has been investigated as well. Results show that the occurrence of short-
circuiting is probable when a dominant fracture is present. A striking discovery was 
however that it could have an advantageous effect. After a certain period a dominant 
fracture has cooled down so much that no rock contraction occurs any more. From that 
moment on other fractures will become increasingly dominant because their aperture still 
grows due to thermal stresses.  

From the points mentioned above, one could conclude that drillers should not be too 
careful when stimulating a HFR reservoir; a high permeability is advantageous and the 
consequences of creating a dominant hydraulic link are probably not disastrous. The 
efficiency of conversion of heat in electricity plays a role here as well. The efficiency drops 
fast with decreasing temperature. An early drop of temperature, which will happen when a 
system has a short circuit, would therefor be more disadvantageous. This is discussed in 
more detail in Chapter 10.  

The two most sophisticated of the proposed models give rise to optimism about their 
production temperature decay curves (fig. 8.3.6). They predict that after a period of 23 to 
28 years of production (24 l/s) temperatures of around 120 0C will be reached. At these 
temperatures production of electricity is still possible. The numerical models thus predict 
that it is economically relevant to exploit the heat stored. In Chapter 10, an estimation of 
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the electricity production is calculated. The fact that the temperature decay curves from the 
proposed models are in good correlation with curves produced by P. Audigane [Audigane, 
2000] (fig. 8.3.5), gives confidence on their reliability.  
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ig. 10.1.2: Comparison of ‘old’ (blue) and new (red) executable. 

used (see Appendix C, figure C.12). Figure 10.1.2 compares output temperature curves 

10. DISCUSSION 

 

10.1. Porous flow  

 

After 7 months of research the message came to us that a bug was present in the porous 
media version. According to Swenson wrong results could be generated when including 
porous flow. In the performed tests including porosity, no absurd results were found. All 
tests gave reasonable results. A simple test (a source and a sink that are not directly 
connected with a fracture) showed that flow paths generated with the old executable were 
indeed different from those generated with the new version. In figure 10.1.1 both porous 
flow paths are plotted. The magnitude of the porous flow seemed to be more or less 
correct. 

Fig. 10.1.1: Fluid flow through porous rock. Left: ‘new’ executable, right: ‘old’ executable. 
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Although very useful, no time was left to benchmark the porous flow part of the code. To 
ascertain that the obtained results are not irrelevant, a small test has been performed in 
which the old executable is compared with a bug-free executable. A mesh, consisting of 6 
100×100 m2 rock blocks (a small part of the three proposed 2D Soultz-models), has been 
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generated by the two executables. The figure shows that the difference between the two 
curves is very small.  

 

10.2.  Sensitivity analyses 

 

The parameterisation of the Gangi model has been a point of discussion. For this reason 
analyses have been performed on the sensitivity of the solution on these parameters. Figure 
D6 (Appendix D), plots the Gangi-curve with m = 0. 33 (used to perform the calculations 
of the test case models) and the Gangi-curve for m = 0.167. We can see that at the zero 
cross-section the second curve is steeper. This implies that, in this case, a fracture becomes 
rapidly softer when it opens up. This would accelerate the process of short-circuiting. We, 
thus, expect that output temperatures of a model with Gangi-parameter m = 0.166 will 
decrease faster than with a Gangi-parameter m = 0.33.  The variable permeability model has 
been used to perform the sensitivity analyses. The temperature drop results are show in 
figure 10.2.1. 

Fig. 10.2.1: Variable permeability model temperature drop. Red: m = 0.33, black: m = 0.167. 
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The temperature for m = 0.167, as expected, decreases faster. The maximum difference 
between the two curves is reached after 25 years. The maximum difference is about 4 0C. 
We can conclude that the Gangi-model does influence the solution, of course, but not 
dramatically.  

 

10.3. Electricity production 

 

The efficiency of converting heat energy to electricity is a strong function of the 
temperature of the produced water. It is known as the Carnot efficiency: 

10.3.1.1.  

effC = (1 – T0/Tout)  (all temperatures in Kelvin) 
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Where T0 is a temperature at which the efficiency is supposed to be zero. According to 
Armstead and Tester [Armstead, 1987] T0 is about 750C. The actual efficiency is however 
much lower than the theoretical Carnot efficiency. Commonly in the business is to take 
2/3 of the Carnot efficiency. The fact that efficiency decreases with decreasing temperature 
gives an extra disadvantage when short circuiting and accompanying increasing 
temperature drop occurs.  

From the water temperature and efficiency factor we can calculate the expected electricity 
production: 

 

PE = (Tproduction - Tinjection) × cw × q × (effC × 0.666) 

 
In figure 10.3.1 the electricity production in MWe has been plotted against years of 
production for the models variable permeability and 3D. 
 

Fig. 10.3.1: Estimated electricity production of the shallow reservoir. Red: Variable permeability model. 
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        Black: 3D model. 

 

Compared with the temperature drop curves, these curves show a steeper decline due to 
the decrease in efficiency with decreasing temperature. 

 

10.4. Deep reservoir 

 

In the first months of the year 2000, the wells GPK1 and GPK2 have been deepened to a 
depth of 5 km. During the months February till September, a reservoir has been created 
using the hydrofracturing-technique. In this project the deep reservoir has not been studied 
because no sufficient data was available in time. The expectations are, however, that this 
reservoir has similar geological characteristics as the shallow one at 3500 m. The main 
difference is the fact that the temperature at this depth has increased to 200 0C. We could 



EP 2001- - 63 - Unclassified
 
apply a simple temperature conversion to obtain a first estimation on the thermal 
behaviour of the deep reservoir during production. The following formula has been used 
to calculate production temperature curves of the deep reservoir.  
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Tprod is the production temperature of the shallow reservoir and Tinj. is the injection 
temperature (60 0C). Figure 10.4.1 shows the in this way obtained temperature decline 
curves of the deep reservoir at a production rate of 24 l/s. The method described in § 10.3 
can be used to calculate the efficiency and the estimated electricity production. The 
estimated electricity production for a production time of 55 years is plotted in figure 10.4.2. 

Fig. 10.4.1: Estimated temperature decay of deep Fig. 10.4.2: Estimated electricity production of deep  
        reservoir (two well system).          reservoir (two well system). 

 
 
We observe that at the start of production the deep reservoir will 
produce 1.5 MW more electricity than the shallow reservoir. After 
55 years this difference is still more than 1 MWe.  

The next aim of the HFR project in Soultz is to create a pre-
industrial, scientific pilot plant consisting of three wells; one 
injection and two production wells (see figure 10.4.3). Such a 
system can be interpreted as two systems discussed in this rapport, 
situated next to each other. The injection flow rate would be twice 
that of the shallow reservoir (48 l/s). This would result in a 
doubled electricity production. Thus, a rough estimation on the 
electricity production would be about 5 MWe at the start of 
production to 3.9 MWe after 20 years of production. This is a 
hopeful result as it correlates well with the objectives and 

expectations of the Soutz-sous-Forêts project. An industrial power plant would consist of 
several three-well systems, producing at least 25 MWe at a temperature of 2000C. 
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10.5. Closed system or not? 

 

It has to be mentioned that all proposed Soultz models, 2D and 3D, are based upon a 
closed system. Thus, zero-flow boundary conditions have been implemented for fluid and 
heat transport. P. Audigane also assumed the reservoir to be a closed system. This 
assumption results in pessimistic temperature predictions; no heat is coming in.  

In January 2001, D. Pribnow [Pribnow, 2000] argued that this assumption is probably not 
valid for the shallow reservoir. His conceptual model of Soultz starts from the idea that 
there is a link between the shallow reservoir and deeper geologic structures. This enlarges 
the total volume of the reservoir substantially. This could, for example, explain the bad 
tracer tests results we have obtained with our models. Temperature predictions by D. 
Pribnow are consequently more optimistic.  

New flow-pressure data from the deep reservoir indicates that this reservoir, in contrast 
with the shallow reservoir, probably is a closed system.  
 

10.6. Future work 

 

All research objectives have been reached. Of course much work can still be done in the 
area of modelling HFR systems. This paragraph lists the most relevant and achievable work 
to be done in the near future: 

Analytical 

• An analytical solution could be found for the temperature field of a 2 dimensional 
finite spaced medium with a constant diffusion. 

• A 2D or 3D analytical solutions for thermal contraction of a medium. An analytical 
solution could easily be found when assuming uniform temperature decay (the 
Lauwerier solution could be taken for the temperature) on one side of a 2D rock block. 

• Attempt to incorporate a geologic stress regime in the analytic solution referred to 
above. 

Numerical 

• Benchmarks: The above-proposed analytic solutions can be used to benchmark 
GEOCRACK. Also a porous flow benchmark would be useful.  

• Implementation of an open system. The boundary conditions could also have an 
influence on the predicted thermal recovery. Tests on the influence of the boundary 
conditions would be useful.  

• Addition of porous rock in the proposed 3D model when a suitable executable 
becomes available. 

• Build a 3D model for the deep reservoir (5 km depth) at Soultz-sous-Forêts. 

• Test GEOCRACK for possible use in hydrothermal systems. This should, of course, 
be deferred until the porous flow benchmark has been successfully completed. So far, 
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GEOCRACK does not incorporate phase changes. This can be an obstacle in 
modelling hydrothermal systems. 
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APPENDIX A1: LAUWERIER SOLUTION  

 

In this appendix the total derivation of the Lauwerier [Lauwerier, 1955] solution will be 
explained. During the whole derivation we are working with the followingdimensionless 
parameters: 

 

t
b
vtD = ,   

b
zxD = ,   

b
zzD = ,     (A1) 

bvc rr
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bvc ww
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Heat-equations in the time-domain (with assumptions by Lauwerier, see § 2.2.1): 
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The boundary conditions of the problem are: 
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Converting equations (A2 & A3) to the Laplace-domain, we obtain: 
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The solution of the differential equation (A5) can be written as: 
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Substituting this into equation (A6) will eliminate the exponential-term 
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With a general solution of: 
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Implementing the boundary conditions results in: 
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This gives us the final result for the temperature in the Laplace-domain: 
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Which can be inverted analytically to the time-domain according to Carslaw & Jeager 
[Carslaw, 1960]: 
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With H(t) the Heavyside function. 
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APPENDIX A2: LAUWERIER SOLUTION WITH LATERAL DIFFUSION 

 

In this appendix the total derivation of 2D-diffusion through the rock of the problem 
addressed in the theory section (§ 2.2.2) is worked out. The problem describes lineair flow 
through a rectangular fracture in an infinite half-space. To include x-diffusion through the 
rock we write the heat-equation through the rock as a summation. The heat equation along 
the fracture is the same as Lauwerier uses. The heat-equations become: 
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To improve clarity, dimensionless signs have been omitted. The boundary conditions are 
the same as presented in the Lauwerier solution (Appendix A.1, eq. (A4)). In the Laplace-
domain for k=2 equation (A12) becomes: 
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Neglecting 2nd and 3rd powers in ε, will give the following equation:    (A15) 
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LTT =0  is the Lauwerier solution (A10), so the first term in  the left-hand side of equation 
(A16) becomes zero. The solution of 0T  is given in Appendix A.1 (A10). 

 

• 
)

2
1

()2(

0
1 −−+−

=
z

s
x

s
s

e
s

T αα
β

         (A17) 

 

This is makes (A16) a differential equation of the second order, which can be solved given 
the correct boundary conditions. The differential equation can be written as follows: 
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Which has a solution: 
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Substituting this into equation (A18), and making use of the boundary conditions, we find 
the value for a(x,s): 
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For the final solution of 1T in the Laplace-domain we get, with γ = 2βx + z –1/2: 
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The term in front of the brackets turns into a delta-pulse function when translating to the 
time-domain. Terms 2 and 3 can be inverted directly, using the formula’s from Carslaw & 
Jeager1. Term 1 can be inverted when write it as a derivative: 
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Terms 2 and 3 invert respectively into the time-domain as follows: 
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The multiplication in equation (A21) results in a time shift in the final solution according to 
the convolution theorem: 
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This results in an integral of a delta-pulse, giving a heavyside function. Altogether the final 
outcome of the temperature in the time-domain will be: 
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With H(t) the heavyside function and T0 the Lauwerier solution, given in Appendix A.1 
equation (A11). 
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APPENDIX A3: LAUWERIER SOLUTION IN FINITE SPACE 

 

In this appendix the full derivation of a special form of the Lauwerier solution is 
performed. . The classic Lauwerier solution assumes a infintite space in both the x and the 
z direction. Since computers always make use of a finite space solution, it is useful to have 
a analytic solution of a finite bounded region. Here we seek the solution of a single plane 
fracture in a region with finite x boundaries (0 < x < L) and infinite z boundaries  ( -∞ < z 
<  ∞). We start with the formulas used by Avdonin (1964): 
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Boundary conditions are: 
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From equation (A27) and (A28) we find that in the Laplace domain the Temperature is 
given by: 
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Substituting equation (A30) into equation (A31) yield the following differential equation for 
F(x) 
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This differential equation is of a standard form and can be solved: 

 



EP 2001- - 77 - Unclassified
 

xx BeAexF 21)( αα −+=            (A33) 

 

Implementing the boundary conditions gives: 
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A and B can now be determined: 
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To obtain α1 and α2 we can insert the following general solution into equation (A33): 
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Which means that the pre-factor has to be zero. We can now solve α’ by writing the first 
term of (A39) as a square function: 
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The approximation on the right-hand side of equation (A41) holds because γ is very small. 
This equation gives us the values of α1 and α2:
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Finally this results in the following function of the temperature in the Laplace domain: 
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This formula cannot be inverted to the time-domain immediately. It has to be converted by 
part. First I will derive the inversion of the multiplication of the terms IxIII. This part of 
equation (A44) can be written as: 
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with, 
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We see that the 1st term on the right-hand side of equation (A45) matches the Lauwerier 
solution (A10). With a solution (as explained in Appendix A.1, eq. (A11)) of: 
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The term in front of the exponential in the 2nd term on the right-hand side of equation 
(A45) should be expanded.  A first order Taylor expansion will give: 
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This approximation holds as γ is very small and thus 1/γ  is very large. The first term 
formula of the right part of equation (A45) becomes: 
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With t’ = t - (x + 2L). 

The right term of (A49) cannot be evaluated immediately. To do this, some terms need to 
be differentiated in advance to obtain terms suitable for inversion. The right part of 
equation (A49) can be subdivided into three terms: 
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The equations (A47), (A49),(A50),(A51) and (A52) together give us the inverse solution of 
equation (A45). 
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Now the second part of equation (A44) still has to be solved. The second part of this 
equation (L-1(IxII)) will be somewhat harder to solve. It can be written as follows: 
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With k3 and k4 given by: 
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Writing α1 and α2 in their components (A42) and (A43), and performing a first order 
Taylor linearization in the pre-factor (the same as we did in (A51), we obtain: 

 



EP 2001- - 81 - Unclassified
 

( )

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−+

−

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+−+=ΙΙ×Ι

−−−
−

−
−

−−−
−

−
−−

4444444444 34444444444 21

444444444 8444444444 76

''

)4(
22

1

'

)2(
11

4

3

))2(1)(2(

))2(1)(2(

T

s
ksxL

xL

T

s
ksxL

xL

s
essssL

s
essssLL

αγ

αγ

α
βγ

α
βγ

α
βγ

α
βγ

   (A56) 

 

The first term in this equation is exactly the same as equation the 2nd term of equation 
(A45). The inverse solution of this term will thus be similar to this solution, given by 
equation (A53), only with different values for k (see above) and t’’ = t-(2L+x). 
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The second term can be written as: 
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These terms can subsequently be inverted by taking the first, second or higher order 
derivatives.  

 

1st term: 
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2nd term: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

∂
∂

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

∂
∂

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−−
−

−
−

t
ke

t
c

e
t

kc
k

ec
k

LescL

t
k

t
ks

k
s

k

ααπ

απα

α

ααα

2
1

2

2

2
44

3
1

4
3

42

4
2

4

1
2

1

2
4

2
4

44

   (A61) 

 

3rd term: 
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4th term: 
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5th term: 
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6th term: 
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7th term: 
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These equations have to summed to obtain the solution for L-1(IxII). This ends up with the 
following equation, with t’’’ = t - (4L + x) 
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With: 
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Finally we can obtain the full solution for the temperature (summing (A53) and (A67)since 
T = TIxIII+ TIxII giving: 
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APPENDIX B: FORTRAN CODE 

 

This appendix contains the source code of a program that changes the material type of 
specified rock elements. This is necessary if one wishes to generate systems with different 
types of rock, e.g. not-stimulated and stimulated regions. So far the only way to change the 
element types was to toggle each element with the mouse, quite a time consuming job. This 

program should be used together with the mesh generator 
level3_mesh.exe. This program generates meshes as plotted 
on this page. Indicated in red is the first block, consisting 
of 52 elements. The program rockchanger.f enables the rock 
material of any of the blocks of the mesh to be changed. 
The blocks are counted starting from 1 at the bottom left 
up (plotted) to the last on the right top of the mesh. If 
three or more different materials need to be included in 
the mesh, this can be done by running the program 
several times and using the output of one run as the input 
of the next one. 

Block 1
 

 

 

c23456 rockchanger.f, D. Coumou, Oct. 26, 00 

      PROGRAM rockchanger 

      IMPLICIT NONE 

c-------------------------------------------------------------------- 

c     DECLARATIES 

c-------------------------------------------------------------------- 

      double precision el,k1,k2,k3,k4,k5,k6,tf,mat,l,m,n 

      double precision x,y 

      integer Nelem,Nnodes,Ncontmat,Nfluidelem,i,j,knr 

      integer nrblocks,blocknr(100),min(100),max(100) 

      character*80 c80,t80 

c-------------------------------------------------------------------- 

c     OPEN FILES 

c-------------------------------------------------------------------- 

      print*,'Which file has to be changed, output to: output.f' 

      read*,t80 

      open(10, file = t80) 

      open(20, file = 'output.geo') 
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c-------------------------------------------------------------------- 

c     INPUT PARAMETERS 

c-------------------------------------------------------------------- 

      print*,'How many blocks would you like to change ?' 

      read*, nrblocks 

      print*,'Give the block numbers, counting from bottom-left to 

top-  

     .right.' 

c-------------------------------------------------------------------- 

c     DETERMINE CORRECT ELEMENT NUMBERS (max & min) 

c-------------------------------------------------------------------- 

      do i = 1,nrblocks 

         print*,'number ',i,', please...' 

         read*,blocknr(i) 

         min(i) = (blocknr(i)-1)*52 + 1 

         max(i) = blocknr(i)*52 

      enddo 

c-------------------------------------------------------------------- 

c     READ, CHANGE & WRITE DATA 

c-------------------------------------------------------------------- 

      read(10,*) c80 

      write(20,*) c80 

      read(10,*) Nelem, Nnodes, Ncontmat, Nfluidelem 

      Ncontmat = Ncontmat + 1 

      write(20,*) Nelem, Nnodes, Ncontmat, Nfluidelem 

      do  i = 1, Nnodes 

       read(10,*) knr, x,y 

       write(20,*)knr, x,y 

      enddo 

      do  j = 1, Nelem 

         read(10,*) el,k1,k2,k3,k4,k5,k6,tf,mat,l,m,n 

         do  i = 1, nrblocks 

            If (el.LE.max(i) .AND. el.GE.min(i)) then 

               mat = mat+1 

               goto 200 

            Endif 
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        enddo 

200      write(20,*) el,k1,k2,k3,k4,k5,k6,tf,mat,l,m,n 

      enddo 

      end 
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APPENDIX C: MESHES 

 

In both GEOCRACK2D and 3D, all elements consist of 6 nodes. Rock or continuum 
elements have a triangular shape. Fluid and interface elements are rectangularly shaped. 
The figures below show the nodal numbering and coordinate systems for respectively rock, 
interface and fluid elements {Swenson et al, 1997]. 
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Fig. C.1: Rock element.  Fig. C.2: Interface element . Fig. C.3: Fluid element. 

 

Several meshes have been used during the course of this 
research. The ones mentioned in the rapport (apart from 
the ones used for the Soultz-thermal reservoir, these can 
be found in Appendix E) are described below. Interface 
elements are indicated by small triangles. Fluid elements 
are plotted as thick black or yellow lines. 
 
 
 
Fig. C4: (left) Single plane fracture, variable element size. 
Δxmin = 4.2 
Δymin = 1.7 
Δxmax = 8.3 
Δymax = 8.3 
 
 
 
 
Fig. C5: (left) Single plane fracture, variable element size. 
Δxmin = 10 m 
Δymin = 10 m 
Δxmax = 40 m 
Δymax = 90 m 
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20 m 

Fig. C6: (left) Single plane fracture, constant element size 
Δxmin = Δymin = Δxmax = Δymax = 2 m 
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Fig. C7: (left) Splitting 
fracture, constant element 
size 
Δxmin = Δymin = 5 m 
Δxmax = Δymax = 5 m 
 

 

 

 

 

 

 

 

 

400 m 

400 m

400 m 

100 m 

 

Fig. C8: ‘Gringarten’ system 
Of the horizontal planes only the most centred one is a 
fracture (at z = 200m). The other three (at z = 180, 195, 
205 and 220) are implemented to allow mesh 
refinement near the fracture. They do not contain any 
fluid transport. 
Δxmin = Δymin = 5 m 
Δxmax = Δymax = 80 m 
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Fig. C9: Surface discretisation of fracture in system 
shown in figure C8. 

400 m 

400 m 

400 m 

400 m 

400m 

20 m

20 m

5 m

5 m

Δxmin = Δymin = 5 m 
Δxmax = Δymax = 80 m 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C10: Volume elements in system shown in 
figure C.8. 
Δxmin = Δymin = Δzmin = 5 m 
Δxmax = Δymax = 80 m 
Δzmax = 150 m 
 
 
 
 
 
 

 

 

 
Fig. C.11: Close up of figure C.10. Mesh  
   refinement of the volume elements. 
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 Fig. C.12:  
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APPENDIX D: IMPLEMENTATION 

 

This appendix describes all proposed models in detail. First of all the exact geometry 
including fracture network and mesh discretisation is given. Further a table containing all 
standard parameters used in every test-run and a table with parameters with different 
values in each test-run are given. Finally the boundary conditions and the important 
relation between fracture opening and fracture stress are discussed. 

 

 

Geometry  

 

Horizontal Models 
 

Super-stimulated zones 
GPK 1 
GPK 2 
Fracture zones 
Fracture network 

 

Thickness = 400 m  

 

 
 
 
 Plane of symmetry 
 

Fig. D1: Geometry of the horizontal models. 

 

Vertical Models 

 
Fig. D2: Geometry of the vertical models 

33%

33% 

33% 10% 

25% 

30% 

25%

750 m

Super-stimulated zones 
 
Inlet points GPK 1 
Outlet points GPK 2 
 
Fracture network 
 
Thickness = 400 m  
 
The percentages indicate how much fluid is I 
add or removed at the specified points. 
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3D Models 
 

700 m

700 m  

z = 2850 m  

400 m

z = 3550 m  

700 m 

700 m  

z = 2850 m  

400 m  

z = 3550 m  

Fig. D3: 6 fracture model. 
  Surface elements. 
  The red and blue 
  Lines respectively 
  indicate the visi- 
  ble parts of GPK1 
  and GPK2. 
 

 Δhmin = 10m 
 Δhmax = 150m 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. D4: 6 fracture model,  
   volume elements. 
   The red end blue 
   dot indicate the 
   wells of GPK2  

  and GPK1. 
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Mesh 

Horizontal and vertical models have the same mesh discretisation. Below the mesh 
elements of one block bounded by four fractures is plotted. Fluid elements are indicated 
with yellow lines. 

 

Fig. D5: Mesh of 2D models 
 
 

Young’s modulus E 67 Gpa 

Poisson ratio ν 0.28 

Density ρ 2660 kg/m3

Specific heat capacity c 1098 J/kgK 

Thermal conductivity λ 2.58 W/mK 

Granite properties 

Thermal expansion coefficient βT 0.92 ⋅ 10-5 K-1

Dynamic viscosity μ 2.0 ⋅ 10-4 Pa⋅s 

Density ρ 950 kg/m3

Specific heat capacity c 4300 J/kgK 

Thermal conductivity λ 0.66 W/mK 

Fluid properties 

Convection coefficient h 660 

Max. horizontal stress SH 41.7 MPa 

Min. Horizontal stress Sh 82.2 Mpa 

Mechanical properties (at 3200m) 

Vertical stress SZ 80.3 MPa 

Initial temperature T 150 0C Thermal properties (at 3200m) 

Vertical gradient ∂T/∂z 12.5 ⋅ 10-3 K/m 
Table D.1: Standard parameters (2D and 3D models). 
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Model  Parameters 
Non-
permeable 

Constant 
permeability 

Variable 
permeability 

Porosity 0 % 1.0 % 1.0 % 
Permeability  0 m-2 1E(-17) m-2 1E(-15) m-2

Stimulated zone 

Fracture aperture  1.0 mm 1.0 mm 1.0 mm 
Porosity  0 % 1.0 % 1.0 % 
Permeability  0 m-2 1E(-17) m-2 1E(-17) m-2

Fracture zones 0.1 mm 0.1 mm 0.1 mm 

Non-stimulated zone 

Aperture 
Fracture network 0.05 mm 0.05 mm 0.05 mm 

Table D.2: Variable parameters (2D models). 

 

Boundary conditions 

 

• Structure: On the model boundaries interface elements were implemented. This gave 
the possibility to specify a finite maximum displacement instead of a totally fixed 
boundary. The maximum displacement was set to +/- 0.1 mm in all models. 

• Temperature: ∂T/∂z = 0 on all boundaries. At injection points the temperature was set 
to a constant value of 60 0C. 

• Fluid: q = 0 on all boundaries unless otherwise specified (e.g. an injection or 
production point).  

 

Relation fracture opening / fracture stress 

 

GEOCRACK2D offers the possibility to define the joint opening / joint stress relation. 
This can either be done with a multi-linear curve or by the Gangi equation: 

 
m

c
disp aaaaa ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=−=

σ
σ

00.0  

 

With a0 the zero-stress fracture opening, σ  the effective stress and σc the critical stress at 
which the fracture is assumed to be closed, and m the Gangi constant. The correct value of 
these parameters was one of the main difficulties of the implementation part. After several 
discussions with G. Siddiqi, the following points appeared to be reasonable: 

• Fractures mechanically grow maximally by one 10th of their original aperture before tip 
propagation occurs 

• To completely close a fracture, a nearly infinite stress is needed, due to the roughness 

      of fracture surfaces. 

• The relation between fracture opening and fracture stress is non-linear. When joints  

      close they become more stiff, when they open they become softer. 
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Based on these points, it has been decided to use the Gangi model with the following 
parameters: 

m = 0.33 

σc = 500 Mpa 

The value of a0 is given in the table above. 

 

 
Fig. D6: Gangi’s fracture opening / fracture stress relation. Dotted line: m = 0.166 (used for sensitivity 

 analyses). 

Normal stress on fracture - Phydr

10 m-4

108  Pa 
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 APPENDIX E: NOTES ON GEOCRACK2D 

 

This appendix contains useful practical information on the use of GEOCRACK2D. As 
this finite element code is continuously under (re) construction, several strange things can 
happen. During the research two different GEOCRACK executables have been used, one 
with a Standard Galerkin (SG) iteration scheme (compiled march 1997) and one with a 
Petrov-Galerkin (PG) solver (compiled May 2000). The numeric artefacts of these different 
solvers are discussed in § 5.4. Another major difference between the two executables is the 
possibility in the PG-version to implement porous flow through the rock. The list below 
contains bugs and peculiarities of the two executables. It can be useful for future 
researchers using GEOCRACK. 

 

1. Dimensions (PG & SG). 

Both manual and program-menu do not clarify which dimensions to use for the 
parameters. In general parameters should be implemented according to SI-units. This is 
not the case for temperature; all temperature units are 0C. Time dependent parameters 
should all be set with the same time unit (s/hours/days/years). Time dependent 
GEOCRACK-parameters are: 

- [ λR, λF ] = J/sm0C (conductivity) 

- [ μ ] = Pa s  (dynamic viscosity) 

- [ β ] = J/sm2kg  (convection coefficient) 

2. Adding elements (PG & SG). 

When elements need to be added, one needs to start with a ‘clean’ mesh. This means it 
is not possible to add elements in a restart file. If one attempts this, problems will 
occur, probably due to problems in the counting of elements. 

3. Adding fluid and/or interface elements (2) (Pg) 

Several times I have been confronted with strange behaviour in GEOCRACK when 
implementing fluid or interface elements. Sometimes, after adding a certain number of 
elements, it does not want to add any new ones or the elements are placed at a 
completely different location to that desired. 

4. Stress-field (PG & SG). 

One cannot turn off the stress-field. If ones wishes to do tests in which the aperture of 
the fracture is constant (e.g. Lauwerier problem) it is best to implement no-
displacement boundary conditions on the nodes on the two fracture edges. To do this, 
one needs to separate the nodes first (menu: pre-process/drag node), then fix both edges 
(menu: pre-process/boundary conditions/structure/edge displacement) and finally overlay the 
nodes again (menu: pre-process/drag node). 

5. Porous-flow plotting (PG). 

The program crashes when trying to plot porous-flow with directional arrows when the 
porous flow through the medium is zero. When you have implemented two rock types, 
one porous and one non-porous, plotting of the porous flow is not possible either. 
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6. λF  (PG). 

The fluid conductivity cannot be set to zero. This is not the case for the SG-version. 

7. Node info (PG). 

Both executables contain the possibility to print on the screen information about a 
specified node (main menu/node info). In the PG-version this function gives incorrect 
node-numbers. If it is desired to monitor a node, one can find the correct node 
number in the data file, or one must open the file in the SG-version. 

8. Node numbers (PG). 

Another button (main menu/node numbers) plots all node numbers (correctly) on the 
screen, next to its location. In the PG-version this button cannot be turned off, 
resulting in the forced execution of the program. 

9. Monitoring displacements (SG & PG). 

Monitored values of node displacements (menu: plot/structure/monitor) cannot be saved 
in a data file, whereas this is possible for monitored values of the flow rate or 
temperature. 

10. Monitoring flow rates (PG). 

When using meshes generated with level3_mesh.exe, only nodes located on the mesh 
edges can correctly be monitored for flow rates. Nodes located on the fractures inside 
the system give unrealistic results when monitored. 

11. Tracer analyses (PG). 

With the PG-version presently no tracer-calculations can be performed (menu: pre-
process/tracer/). 
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