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Motivation

Integrated assessment models are used to answer questions such as
“how will phasing out nuclear power plants affect Germany’s
unemployment?”.

We focus on the economic models because

1. Most integrated assessment models contain an economic
component.

2. Economic models have more structure than some of the other
components. (More opportunity to reuse software
components).

3. There is more need for improving economic theory than
physical theory.

4. My boss is an economist.
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Game theory 101

Example: A two-person finite game.
Strategy sets: first player can choose from {T ,B }, second player
from {L,R }.
A play consists of each agent making a choice from their strategy
set.
Agents have preferences on plays (often induced by a payoff

function).
Typical representation:

L R
T (TL, LT) (TR, RT)
B (BL, LB) (BR, RB)

Essential question: what are “good” plays?
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Game context

module GameContext ′′ (nA′ : Nat) where

nA : Nat

nA = S nA′

Agent : Set

Agent = Fin nA

module GameContext ′ (Strategy : Agent → Set) where

Play : Set

Play = (a : Agent) → Strategy a

module GameContext (
prefs : (a : Agent) → TotalPreorder Play) where
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Some examples

Sometimes, it’s clear what a good play is . . .

L R

T (1, 1) (0, 0)

B (0, 0) (0, 0)
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Some examples

Sometimes, it’s clear what a good play is . . .

L R

T (1, 1) (0, 0)

B (0, 0) (0, 0)
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Some examples

Other times, it’s clear what a bad play is . . .

L R

T (1, 0) (0, 4)

B (3, 0) (2, 3)
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Pareto optimality (efficiency)

Pareto′ : Play → Set

Pareto′ p ∗ =
(∀(p : Play) →

¬ (( ∀ (a : Agent) → (prefs a) ⊢ p > p∗)
∧

∃ (λ(a : Agent)→ (prefs a) ⊢ p > p∗)))

Pareto : Play → Set

Pareto p ∗ =
∀ (p : Play) →
(∀(a : Agent) → (prefs a) ⊢ p ∗ > p)

∨

(∃(λ(a : Agent)→ (prefs a) ⊢ p ∗ > p))
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Computing Pareto points

For finite games, we can use brute-force enumeration or somewhat
cleverer methods such as sieving.
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Pareto points

As expected . . .

L R

T (1, 1) (0, 0)

B (0, 0) (0, 0)
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Pareto points

As expected . . .

L R

T (1, 0) (0, 4)

B (3, 0) (2, 3)
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Pareto points

There’s something unsatisfactory here . . .

L R

T (1, 0) (0, 4)

B (3, 0) (2, 3)
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Pareto points

Not all Pareto points are equally plausible . . .

L R

T (1, 0) (0, 4)

B (3, 0) (2, 3)
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Nash equilibria

Nash′ : Play → Set

Nash′ p∗ =
∀ (a : Agent) → ∀(p : Play) →

¬ (prefs a ⊢ (change p ∗ at a to (p a))> p)

Nash : Play → Set

Nash p ∗ = ∀ (a : Agent) → ∀(p : Play) →
prefs a ⊢ p ∗>(change p ∗ at a to (p a))
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Computing Nash equilibria

For finite games, by enumeration etc.
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The prisoner’s dilemma

L R

T (3, 3) (0, 5)

B (5, 0) (1, 1)
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Pareto points for the prisoner’s dilemma

L R

T (3, 3) (0, 5)

B (5, 0) (1, 1)
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Nash equilibrium for prisoner’s dilemma

L R

T (3, 3) (0, 5)

B (5, 0) (1, 1)
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A game with no Nash equilibrium

L R

T (0, 2) (2, 0)

B (2, 0) (0, 2)
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Introducing mixed Nash equilibrium

We change the game: agents can choose probability distributions
over their strategy sets.

L R

T (0, 2) (2, 0)

B (2, 0) (0, 2)
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Mixed Nash equilibrium

module MixedStrategyContext (Strategy : Agent → Set;
payoff : (a : Agent) → ((a : Agent) → Strategy a) → Float)
where

MixedStrategy : (a : Agent) → Set

MixedStrategy a = SimpleProb (Strategy a)

MixedPlay : Set

MixedPlay = (a : Agent) → MixedStrategy a
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Mixed Nash equilibrium

expected payoff : (a : Agent) → MixedPlay → Float

expected payoff a mp = expected (fmap ((payoff a))
(mixedPlayToProbPlay mp))

prefs : (a : Agent) → TotalPreorder MixedPlay

prefs a = InducedPreorder floatPreorder (expected payoff a)

open GameContext ′ MixedStrategy

open GameContext prefs renaming (Nash to MixedNash)
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Computing mixed Nash equilibrium

. . . is hard! In fact, NP-hard (Goldberg and Papadimitriou, 2005).
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Mixed Nash equilibrium

pL = 0.5, pT = 0.5

L R

T (0, 2) (2, 0)

B (2, 0) (0, 2)
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Nash equilibrium example

Example: BoS

L R

T (2, 1) (0, 0)

B (0, 0) (1, 2)
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Nash equilibrium example

Pure Nash equilibria:

L R

T (2, 1) (0, 0)

B (0, 0) (1, 2)
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Nash equilibrium example

Problem: Pure equilibria are unfair!

L R

T (2, 1) (0, 0)

B (0, 0) (1, 2)
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Nash equilibrium example

pT = 2 / 3, pR = 2 / 3
Expected payoffs: 2 / 3 each.

L R

T (2, 1) (0, 0)

B (0, 0) (1, 2)
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Nash equilibrium example

pR = 2 / 3, pT = 2 / 3
Expected payoffs: 2 / 3 each: we cannot avoid miscoordination, if
we want fairness.

L R

T (2, 1) (0, 0)

B (0, 0) (1, 2)
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Introducing correlated equilibrium

We change the game again.

A new object: A simple probability distribution on plays.

Interpretation: A coordinator advises agents how to play.

L R

T PTL, (T, L) PTR , (T, R)

B PBL, (B, L) PBR , (B, R)
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Introducing correlated equilibrium

Example: avoiding miscoordination in BoS.

L R

T 0.3, (T, L) 0.0, (T, R)

B 0.0, (B, L) 0.7, (B, R)
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Introducing correlated equilibrium

Strategies: Agent a now chooses a function φ a from
Strategy a → Strategy a.

L R

T 0.3, (T, L) 0.0, (T, R)

B 0.0, (B, L) 0.7, (B, R)
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Introducing correlated equilibrium

Example: The first agent chooses id : {T ,B } → {T ,B }, the
second chooses ¬ : {L,R } → {L,R }.

L R

T 0.3, (T, R) 0.0, (T, R)

B 0.0, (B, L) 0.7, (B, L)



Types 11, Bergen, 8–11.09.2011

Introducing correlated equilibrium

Payoffs are computed in the expected way.

L R

T 0.3, (T, R) 0.0, (T, R)

B 0.0, (B, L) 0.7, (B, L)
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Correlated equilibrium

module CorrelatedStrategyContext ′ (Strategy : Agent → Set;
payoff : (a : Agent) → ((a : Agent) → Strategy a) → Float)
where

Choice : Agent → Set

Choice a = Strategy a → Strategy a

Play ′ : Set

Play ′ = (a : Agent) → Strategy a

open GameContext ′ Choice
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Correlated equilibrium

module CorrelatedStrategyContext (coord : SimpleProb Play ′)
where

expected payoff : Agent → Play → Float

expected payoff a p = expected (fmap (payoff a)
(fmap (change p) coord))
where

change : Play → Play ′ → Play ′

change p p′ a = (p a) (p′ a)

prefs : (a : Agent) → TotalPreorder Play

prefs a = InducedPreorder floatPreorder (expected payoff a)

open GameContext prefs renaming (Nash to CorrelatedEquilibrium)
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Correlated equilibrium example

PTL = 1 / 2, PBR = 1 / 2
Expected payoffs: 3 / 2 each.

L R

T (2, 1) (0, 0)

B (0, 0) (1, 2)
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Games of exchange

The quintessential economic situation: exchange of goods.

1. Two agents, two goods, X units of the first good, Y units of
the second.

2. Agent i has xi unit of the first good, and yi units of the
second.

3. A distribution of goods to agents, such as ((x1, y1), (x2, y2)) is
called an allocation. Agents have preferences over allocations.

4. Agents are allowed to exchange their goods in order to find a
better allocation: no throwing goods away, and no creation of
goods: x1 + x2 = X , y1 + y2 = Y .

What is a good allocation?
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Example: Cobb-Douglas economy

A typical example is the Cobb-Douglas economy, in which the
agents preferences induced by the utility functions

u1(x , y) = xay (1−a)

u2(x , y) = xby (1−b)

where 0 < a, b < 1.
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Introducing prices

If goods have prices px , py then an initial allocation gives each
agent a budget:

Bi = pxxi + pyyi .

An agent has to solve:

maximize u(x , y) such that

pxx + p2y = Bi

Whether the resulting allocation is feasible depends on the prices.
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Walrasian equilibrium

An allocation-price pair (x,p) is a Walrasian equilibrium if (1)
the allocation is feasible, and (2) each agent is making an optimal
choice from its budget set. In equations:

1.
∑n

i=1 xi =
∑n

i=1ωi

2. If x′i is preferred by agent i to xi , then px′i > pωi .

Varian, p. 325
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Walrasian equilibria

params (omega : Vect (Vect Float nG ) nA,
prices : Vect Float nG ,
prefs : Fin nA → TotalPreorder (Vect Float nG)) {

Feasible : Vect (Vect Float nG) nA → Set;
Feasible xss = SumCols xss === SumCols omega;

Optimal : Vect (Vect Float nG ) nA → Set;
Optimal xss = forall (i : Fin nA, xss ′ : Vect (Vect Float nG) nA) →

gt (prefs i) (vlookup i xss ′)
(vlookup i xss) →

gt floatOrder (prices .∗ (vlookup i xss ′))
(prices .∗ (vlookup i xss));

WalrasEq : Vect (Vect Float nG) nA → Set;
WalrasEq xss = And (Feasible xss) (Optimal xss);
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Computing Walrasian equilibria

How can we compute Walrasian equilibria?

For the special case of the Cobb-Douglas economy, the solution
can be computed analytically:

py
px

= (1−a)x1+(1−b)x2
ay1+by2

x∗1 = B1a
px

y∗1 = B1(1−a)
py

In general, however, computing Walrasian equilibria involves a lot
of numerical methods (optimization, solving linear systems, etc.).
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Conclusions

We continue to develop the formalization of economic theory: local
Nash equilibria (P. Flondor), general equilibrium, etc.

Work has begun on a DSL for numerical methods (E. Brady).

Ideally, one would like to have numerical methods implemented in
terms of constructive reals, used in a constructive economic theory.


