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Abstract. Computer simulations are essential in virtually every scien-
ti�c discipline, even more so in those such as economics or climate change
where the ability to make laboratory experiments is limited. Therefore, it
is important to ensure that the models are implemented correctly, that
they can be re-implemented and that the results can be reproduced.
Typically, though, the models are described by a mixture of prose and
mathematics which is insu�cient for these purposes. We argue that using
dependent types allows us to gradually reduce the gap between the math-
ematical description and the implementation, and we give examples from
economic modelling. We discuss the consequences that our incremental
approach has on programming style and the requirements it imposes on
the dependently-typed programming languages used.

1 Introduction

In 2006, Herbert Gintis [10] announced the discovery of a mechanism that
would explain price formation and disequilibrium adjustment without requir-
ing the presence of a central authority or omniscience on part of the agents, as
is currently assumed in mainstream economics. Gintis' results were, as he put
it �empirical rather than theoretical: we have created a class of economies and
investigated their properties for a range of parameters.� They were obtained
by computer simulations. Due to the importance of this result, two groups of
researchers, one at PIK, the other at Chalmers [9], independently attempted
to do something which should perhaps be routine, but is hardly ever done: to
re-implement the model described in the paper and reproduce the results. Af-
ter initial attempts failed and Gintis graciously provided the source code, both
groups discovered several ways that his implementation diverged from the de-
scription in the paper, only one of which could be called a �bug�. Much more
problematic was the ambiguity left open by the model description given in the
paper, which consisted of a mixture of prose and mathematical equations.

The example of the Gintis model was chosen because it is well documented
in recent literature, not because it is unique. It is quite typical for scientists
to believe that the mathematical equations used to develop a model are su�-
cient speci�cation for the implementation of that model, but that is rarely the
case. Discretizations, approximations, choices of integration methods, and many
other similar steps come between the mathematical description and the program.



This is a gap that must be bridged if we are to be able to check correctness of
implementations, re-implement models, or replicate results.

Sooner or later, everyone who considers this problem is bound to encounter
constructive mathematics and Martin-Löf's type theory, which seems to be made
to order for this purpose. Here is for example a quote from the programmatic
article �Constructive Mathematics and Computer Programming� [12]:

Now, it is the contention of the intuitionists (or constructivists, I shall use
these terms synonymously) that the basic mathematical notions, above
all the notion of function, ought to be interpreted in such a way that
the cleavage between mathematics, classical mathematics, that is, and
programming that we are witnessing at present disappears.

Speci�cations (�tasks that the programs are supposed to perform�) are also men-
tioned explicitly:

[Type theory] provides a precise notation not only, like other program-
ming languages, for the programs themselves but also for the tasks that
the programs are supposed to perform. Thus the correctness of a pro-
gram written in the theory of types is proved formally at the same time
as it is being synthesized.

The ideal of correctness put forward here is very enticing. There are many ex-
amples of such correct-by-construction development, for example [16,14,20,19,7].
It seems natural to attempt to apply the same methodology in the context of
scienti�c computing, for instance when building economic models such as the
one we mentioned in the beginning.

A necessary (but far from su�cient) condition for that is that type theory
has the expressive power to formulate the usual mathematical concepts which
modelers use as speci�cations. In the next section we show that this is indeed
the case. Together with economists at PIK, we have formalized basic building
blocks of economic theory, used in almost all economic models today, concepts
such as Pareto e�ciency, Walrasian equilibrium, Nash equilibrium, and a host
of others, together with the relations between them (for example, Walrasian
equilibria are Pareto e�cient). The resulting formalizations are pleasantly close
to the mathematical formulations the modelers are used to, so we can hope they
could use them in speci�cations.

The bad news is most of these concepts are classical in nature: economics is
currently a non-constructive theory (and even the so-called �computable general
equilibrium models� turn out to be non-computable). Therefore, the speci�ca-
tions turn out to be non-implementable and the gap between the mathematics
and the programming is still there. But, as we argue in the third section, we are
now in a better position to close it.

We close the paper with a discussion of some consequences of this approach.



2 Formalizing economic notions in type theory

The quintessential economic situation is that of exchange of goods, which we
introduce via the simplest possible example: two agents and two goods. We have
to assume at least two agents and two goods: if we had only one agent there
would be no one to exchange with, and if there were only one kind of good then
there would be nothing against which to exchange that good. We would then
have a situation of gift-giving, rather than exchange.

For concreteness, let us call the �rst good �wine� and the second good �beer�,
assume they come in bottles and cans respectively, and that there are 5 bottles
of wine and 10 cans of beer, distributed among our two agents: agent one has
3 bottles of wine and 3 cans of beer and agent two has 2 bottle of wine and 7
cans of beer. The bundle of goods each agent has is called its endowment, the
distribution of the endowments is an allocation.

Let us assume that the agents have di�erent preferences for beer and wine.
For example, agent one likes beer more than wine, but needs to have at least
one bottle of wine in case he has more sophisticated guests. Agent two, on
the other hand, values wine over beer, but must have at least three cans of
beer for watching football with friends. The agents are allowed to change their
endowments by trading, but in the end there must be exactly as many bottles
and cans as we started out with: there is no consumption and no production of
goods, only pure exchange.

In our example, agents have preferences over their endowments (their own
stocks only), but in general they could have them over allocations (including their
competitors' endowments), allowing economists to model not just greed, but
also envy. In most common examples, preferences are total preorders (re�exive
and transitive, but not necessarily anti-symmetric). An agent's preference over
endowments can be extended to preference over allocations in the natural way
(by just ignoring others' endowments).

An exchange leads to a re-allocation of goods, but the resulting allocation
must be feasible: this includes the �no creation, no consumption�-condition, but
also the constraints the agents have (at least one bottle of wine for the �rst agent
and three cans of beer for the second one).

Under the assumptions we have made, we can expect that the two agents will
indeed trade with each other, since each one stands to gain by an exchange. This
would not be the case if we switched the two preferences (or, equivalently, the
two endowments) because then the agent who prefers wine would not be able to
trade any of his beer for it because of the 3-cans constraint. Coming back to the
original setting, we can also see that intuitively a re-allocation of goods in which
agent one has 1 bottle of wine and 7 cans of beer (and the rest goes to agent
two) is optimal. The two agents are as well o� as they can possibly be, given
their initial endowments and their preferences. An allocation in which agent one
has 2 bottles of wine and 7 cans of beer (and agent two therefore 3 and 3) is also
feasible and preferred by both agents to the initial one, but is intuitively less
satisfactory. Still, it is a possible end-result of an exchange between the agents.



The reader should now be in a position to understand the following de�nitions
taken from the standard textbook on microeconomics:

De�nitions of Pareto e�ciency. A feasible allocation x is a weakly
Pareto e�cient allocation if there is no feasible allocation x′ such that
all agents strictly prefer x′ to x. A feasible allocation x is a strongly
Pareto e�cient allocation if there is no feasible allocation x′ such that
all agents weakly prefer x′ to x, and some agent strictly prefers x′ to x.

Varian [23], p. 323

In our example, the �rst re-allocation, intuitively considered optimal, can be
seen to be strongly Pareto e�cient, while the second one, less satisfactory, but
not leading necessarily to an exchange, is weakly Pareto e�cient.

Pareto e�ciency is fundamental in economics and easily formalized in con-
structive type theory, which makes it a good place to start. Since our economist
colleagues were familiar with Haskell, we chose to work with implementations
of type theory which o�er a similar syntax, so we have used equally Agda and
Idris (here we present the Agda version).

We were fortunate that we could assume familiarity with a functional pro-
gramming language, which is not currently part of the standard training of
economists. We were even more fortunate that we could assume familiarity with
the ideas and practice of formalization, at the level of, for example, Chapter 12
of Suppes' Introduction to Logic [18]. The interdisciplinary nature of research at
PIK, involving a mixture of natural and social sciences, has led to many inquiries
into the meaning of words such as �sustainability�, �resilience�, or �vulnerability�
in the context of climate change. There have been a number of projects, work-
shops, and seminars devoted to the topic of formalization and mathematical
modeling of such concepts using classical logic and set theory.

Accordingly, our formalization of Pareto e�ciency has a distinctively set-
theoretical �avor. We assume a set Agent for the agents, a set Allocation for
the allocations, a predicate Feasible on this set, and a ternary relation of strict
preference. In Agda, the standard way of working with such assumptions is to
pass them as parameters to the module encapsulating the formalization. Alter-
natively, we can explicitly express them as postulates:

postulate

Agent : Set
Allocation : Set
Feasible : Allocation → Set
_strictlyPrefers_to_ : Agent → Allocation → Allocation → Set

The formalization of weak Pareto e�ciency as a predicate on allocations reads

WeakPareto x = Feasible x ∧
¬ (∃ [x' : Allocation] (Feasible x' ∧

(∀ [a : Agent] (a strictlyPrefers x' to x))))



We are using here Agda's �exible, Unicode-enabled syntax, to make the for-
malization readable to anyone familiar with the standard logical connectors and
quanti�ers. It is, we hope, clearly an ad-litteram translation of the de�nition
cited above. To achieve this e�ect, we have sometimes used a di�erent notation
than that of the standard Agda library, for example we use ∃ where the standard
library has Σ. The most important departures from the standard are noted in
the Appendix, which also lists references for readers unfamiliar with Agda or the
monomorphic version of Martin-Löf's type theory it implements.

The formalization of strong Pareto e�ciency requires an additional ternary
relation for weak preference, but is otherwise just as simple:

postulate

_weaklyPrefers_to_ : Agent → Allocation → Allocation → Set

StrongPareto x = Feasible x ∧
¬ (∃ [x' : Allocation] (Feasible x' ∧

(∀ [a : Agent] (a weaklyPrefers x' to x)) ∧
(∃ [a' : Agent] (a' strictlyPrefers x' to x))))

It is just as easy to formulate a simple relationship between weak and strong
Pareto e�ciency: namely, that strong Pareto e�ciency is stronger than weak
Pareto e�ciency, i.e., the former implies the latter:

Strong=>Weak : ∀ [x : Allocation] (StrongPareto x→WeakPareto x)

but this is as far as we can go without discussing the meaning of the connectives
and quanti�ers.

Until now, the formulas we have seen could have been written in classical
logic. Typed predicate logic, for example, introduced by Raymond Turner in
[22], has the same syntax as constructive type theory, but is a classical, multi-
sorted predicate logic. What is di�erent is the inferential system: what counts
as a proof.

Constructively, the universal quanti�er above is interpreted as a function
which, to each allocation x, associates a proof of the statement �x is strongly
Pareto e�cient implies that x is weakly Pareto e�cient�. In turn, this implication
is interpreted as a function which, given a proof that x is strongly Pareto e�cient,
produces a proof that x is weakly Pareto e�cient. A proof that x is weakly Pareto
e�cient consists of a pair of proofs: one that x is feasible, the other that it is
impossible to �nd an x′ which is also feasible and strictly preferred by all agents
to x. And so on.

It takes a bit of getting used to, but after that, and with a little help from the
Agda proof assistant Agsy, it is easy to implement proofs such as the following:

postulate

agent0 : Agent
strict=>weak : ∀ {a x x'} → a strictlyPrefers x' to x →

a weaklyPrefers x' to x

Strong=>Weak x (fx, spx) = (fx,wpx)



where

wpx : ¬ (∃ [x' : Allocation] ( Feasible x' ∧
(∀ [a : Agent] (a strictlyPrefers x' to x))))

wpx (x', (fx', prefx')) =
spx (x', (fx', ((λ a→ strict=>weak (prefx' a)),

(agent0, prefx' agent0))))

In fact, it is instructive to do so. Here, we can see that we need the assumption
that strict preferences imply weak preferences (which holds in the common model
of preferences as total preorders) and that the set of agents is not empty (and
that we can actually pick an agent from it, whom we called agent0). As is often
the case, assumptions are made explicit by formalization.

From Pareto e�ciency we move on to one of the most important notions of
economics: that of a Walrasian equilibrium.

In a �rst approximation, Walrasian equilibrium can be understood as a way
of computing Pareto e�cient allocations. This computation is di�cult in general,
among other reasons because it involves looking at all the agents simultaneously.
It would be much easier if the agents could somehow be treated individually,
instead of collectively.

In the model proposed by Walras in [27], goods have prices. Since each agent
starts out with an initial endowment, the value of this endowment can be com-
puted to yield the agent's budget. Each agent then computes the optimal en-
dowment within this budget. Suppose these optimal endowments together make
up a feasible allocation: this would surely be a good end-result for an exchange,
since every agent gets the best it can a�ord. Whether this optimal allocation is
in fact feasible depends on the prices. In our example above, if the price of a can
of beer were the same as the price of a bottle of wine, say 1 cent each, then agent
one would have as optimal endowment one bottle of wine and �ve cans of beer,
while agent two could optimally a�ord six bottles of wine and three cans of beer.
The resulting allocation is not feasible: it needs too many bottles of wine (seven,
instead of the �ve available ones) and too few cans of beer (eight, instead of ten).
On the other hand, if wine bottles cost twice as much as beer cans, say two cents
to one, then the optimal endowments of the two agents make up the strongly
Pareto allocation we have seen earlier. Prices for which the optimal endowments
constitute a feasible allocation are called equilibrium prices, together with an
optimal allocation they make up a Walrasian equilibrium. Here is the de�nition
from Varian's classical textbook [23]:

An allocation-price pair (x,p) is a Walrasian equilibrium if (1) the
allocation is feasible, and (2) each agent is making an optimal choice
from its budget set. In equations:

1.
∑n

i=1 xi =
∑n

i=1 ωi

2. If x′
i is preferred by agent i to xi, then px′

i > pωi.

Varian, Microeconomic Analysis, p. 325



Here, ω is the initial allocation. It is assumed that the endowments are vectors
of non-negative real numbers, each component representing the quantity of the
respective good, and that the value of an endowment is computed by a scalar
product with the prices. In turn, an allocation is represented by a matrix, having
the individual endowments as columns. Thus, the sum in the �rst point in the
de�nition is column-wise and represents the conservation of goods condition. The
second point states that if an allocation is preferred by an agent to the optimal
one, the value of the agent's endowment in this allocation is greater than the
value of the agent's initial endowment: the allocation is out of budget.

There is a level of detail in this de�nition which is more than we need for
the moment. For the purpose of formalizing Walrasian equilibrium, it su�ces
to assume that we can compute an agent's endowment from an allocation and
the value of that endowment at given prices, and that we can compare values
with one another. This being granted, the precise nature of the sets of prices,
endowments, values is not important and we can formalize a more general version
of Walrasian equilibrium:

postulate

Endowment : Set
Price : Set
Value : Set

endmt : Allocation → Agent → Endowment

value : Endowment → Price → Value
_>_ : Value → Value → Set

ω : Allocation

WalrasianEq (p, x) = Feasible x ∧
(∀ [a : Agent] (∀ [x' : Allocation ]
((a strictlyPrefers x' to x) →
value (endmt x' a) p > value (endmt ω a) p)))

While a bit more abstract, this formalization is still just an almost literal trans-
lation of the de�nition given by Varian.

We have referred to the allocation in a Walrasian equilibrium as �optimal�,
but is it really Pareto e�cient? In fact, it is easy to show that it is weakly Pareto
e�cient, a result known as the �rst theorem of welfare economics:

First theorem of welfare economics. If (x,p) is a Walrasian equi-
librium, then x is [weakly] Pareto e�cient.

Varian, Microeconomic Analysis, p. 326

We have explicitly added the quali�er weakly : Varian adopts the following con-
vention �when we say `Pareto e�cient' we generally mean `weakly Pareto e�-
cient' � (p. 324).

The proof of the theorem is by contradiction and relies on the distributivity
of multiplication over addition, on factor cancellation and on the assumption



that prices are strictly positive (and therefore non-zero). We can abstract away
from these properties by postulating that, for any prices p and any allocation x,
if every agent's endowment in x is more valuable than in ω, then x is not feasible:

postulate

outOfBudget : ∀ [p : Price] (∀ [x : Allocation ]
(∀ [a : Agent] (value (endmt x a) p > value (endmt ω a) p) →
¬ (Feasible x)))

The formalization of the theorem is then short and simple, at least if one is
accustomed to the computational reading of the logical connectives and quanti-
�ers.

FirstTheorem : ∀ [p : Price] (∀ [x : Allocation ] (WalrasianEq (p, x) →
WeakPareto x))

FirstTheorem p x (fx,weq) = (fx,wpe) where

wpe : ¬ (∃ [x' : Allocation ] (Feasible x' ∧
(∀ [a : Agent] (a strictlyPrefers x' to x))))

wpe (x', (fx', prefx')) = outOfBudget p x'
(λ a→ weq a x' (prefx' a)) fx'

More interestingly is that, while formalizing this proof, we hit upon the fol-
lowing question: if (x,p) is a Walrasian equilibrium, is then every endowment
in x in the respective agent's budget? The answer, which even some of our
economist colleagues found surprising, is no. Of course, if one has the idea of
looking for them, counter-examples are easy to �nd. Consider our two-agent
example, with the same initial allocation, but removing the constraints on the
preferences: agent one no longer needs to have at least one bottle of wine, and
agent two no longer cares about beer.

The former equilibrium prices, two cents for a bottle of wine and one for a can
of beer, are still equilibrium prices for the new situations. The allocation which
gives agent one an endowment of no wine and nine cans of beer, and agent two
all �ve bottles of wine and one can of the beer is optimal. Any allocation strictly
preferred by agent one would have more cans of beer than it can a�ord, and the
same for agent two in terms of wine (no half-bottles accepted!). Therefore, the
Walrasian equilibrium condition is satis�ed.

Now consider the allocation that gives agent one all ten cans of beer, and
agent two the �ve bottles of wine. This allocation is certainly feasible: it contains
�ve bottles of wine and ten cans of beer, just like ω. If another allocation is
preferred by agent one, it has to give it at least ten cans of beer: more than it
can a�ord. If it is preferred by agent two, it has to give it six bottles of wine,
but agent two can only a�ord �ve. Therefore, this allocation is also a Walrasian
equilibrium for these prices. But, as we see, it is out of budget for agent one.

We have said that Walrasian equilibrium can be approached as a way of
computing Pareto e�cient allocation, an idea that we found useful but which
might make some of our economist colleagues cringe. Before going further, we
should point out that the importance of the Walrasian model lies in that it serves



to explain prices as arising from desirability of goods, from the preferences of
the agents and their initial endowments, as opposed to the Marxist theory of
value, where prices appear as a measure of the labor involved in the production
of goods.

This model admits many extensions: one can add to it production and con-
sumption of goods, a labor market (treating labor as a good to be exchanged
by the workers), exchanges in several steps (adding a temporal dimension to the
problem), and so on. Most mainstream economic models, including such as are
used for policy advice (for example ReMIND [4] and GEM-E3 [3]) are general
equilibrium models based on extensions of the Walrasian ideas formalized in this
section.

A general criticism of all these models is that they neglect the dynamical
aspect of reaching the equilibrium situation. There is no known plausible mecha-
nism which explains exactly how equilibrium prices can arise in practice. Walras'
own proposal for such a price-formation mechanism involved an auctioneer. This
is a central entity who can see all supply-demand imbalances and adjust prices
accordingly, raising the prices of goods for which there is too great demand, and
lowering those for which there is too little, in an iterative process. Even if one
accepts that in some situations one could have an authority that might act as
auctioneer, there is no general proof that the iterative process will eventually
converge.

This, in fact, was the problem that Gintis attempted to solve, and the reason
the papers we referred to in the previous section found an immediate echo in
the economics community. This shows that even non-mainstream models like his
can actually bene�t from having formal speci�cations of the classical economic
concepts.

We have formalized much more than just what we have shown here: the
detailed de�nitions in Varian's book, but also the notions of Nash equilibria,
correlated equilibria, and several others. They are all more complex, but not
more complicated than what we have been able to show here. All in all, we can
say that constructive type theory as embodied by Agda or Idris has passed our
test for expressiveness: we were able to formulate in it fundamental notions of
economics and relationships between them in such a way that they can be read,
and with some exercise even used, by our colleagues.

That was the good news. The bad news is that most of these concepts are not
constructive. Speci�cations of programs that take as input agents characterized
by preference relations and initial endowments and return a Walrasian (or Nash,
or correlated, . . . ) equilibrium can in general not be ful�lled. Even the so-called
computable general equilibrium models are not, in fact, computable [25].

We started with the problem that the mathematical descriptions employed
in scienti�c computing are too far from the implementation to serve as spec-
i�cations. Constructive type theory promised to be a bridge across this gulf.
However, it now appears that we have not made any progress. The simplicity
of the translation from informal mathematical de�nitions to formal ones, which
we interpreted as proof of the expressiveness of constructive type theory, turns



out to have been deceptive. We appear to have the same unsatisfactory speci-
�cations, only in slightly fancier notation. The gap has not been bridged, after
all.

However, the translational e�ort has brought us something essential, as we
shall see in the next section.

3 Increasingly correct scienti�c computing

There are general reasons for wanting to formalize the kind of mathematical
speci�cations used in scienti�c programming. For one thing, formalization can
help us understand the informal de�nitions better. We have seen this in the case
of Walrasian equilibrium, where optimal allocations are allowed by the standard
de�nition to be �out of budget� for some agents. For another, having formal
speci�cations makes them checkable by computer. We can be fairly con�dent
that syntactic errors are going to be signalled by the type checker, as well as
some of the more glaring semantical errors, such as inverting quanti�er order.

Still, why choose constructive type theory as the vehicle for the formalization,
over, for example, classical higher-order logic and set theory (which also have
the advantage of being more familiar to non-computer scientists)?

The reason is that the only way one can decrease the distance between math-
ematics and programming is to make the mathematical side more constructive:
computation cannot become more classical. There are many e�orts underway
aiming to use constructive mathematics in the context of scienti�c computing.
For example, Velupillai's program for computable economics [24,26], or various
projects for developing constructive numerical methods [2,11].

Using constructive type theory both for formalizing speci�cations and for the
implementations enables us to take advantage of these developments as they oc-
cur, by gradually replacing the non-constructive concepts with their constructive
counterparts. This is an increase of correctness �from above�: we are improving
the speci�cations, becoming more precise about what we are �really� computing
and what relationship there is between this and what we think we should be
computing.

We can already implement the constructive parts, and isolate the ones that
depend on classical theory in postulates. For example, the kind of inter-temporal
optimization that many economic models are based on can be solved by apply-
ing Bellman's dynamic programming algorithm [5,6], thus reducing the inter-
temporal optimization to the successive application of local optimizations. This
works if the Bellman principle can be applied, and the proof is constructive.
Thus, we can have a veri�ed implementation of the dynamic programming algo-
rithm, if we can implement the local maximization.

Few modelers are going to implement their own optimization routine. Rather,
they are going to use an external one, with an interface which in its simplest
form can be expressed as

maxUtil : {n : Nat} → (Vect Float n → Float) → Float



so that maxUtil u returns the maximum of the utility function u de�ned over Rn.
(For brevity, we ignore here that a function such as maxUtil should also return
the input vector for which the utility reaches its maximum). The modeler will
often use maxUtil as if it implemented the speci�cation

postulate maxSpec : {n : Nat} →
∀ [u : (Vect Float n → Float)]
(∀ [x : Vect Float n]
(so (u x 6 maxUtil u)))

In this usage, postulates express a condition relative to which the correctness
of the implementation is to be judged. In particular, this is always the case
when using external routines which do not have a type theoretical interface. The
typechecker can at least verify that we are using the postulated properties in a
correct way. Another advantage is that we have clearly signalled the spots where
further re�nement is necessary, where constructive mathematics can help.

There is another usage of postulates which points to further re�nements in
a di�erent, simpler way. The scientists involved in the modeling process are
usually not experts in giving formal proofs, let alone constructive formal proofs.
Sometimes, it is useful to just defer the proof to the experts, or to a later stage
of development. For example, while maximizing utility functions is in general
not computable, it is computable when the domain of the utility is a �nite set.
Therefore, the following speci�cation

postulate maxFinSpec : {n : Nat} →
∀ [u : (Fin (S n) → Float)]
(∀ [ i : Fin (S n)]
(so (u i 6 maxUtil u)))

is implementable, but the proof might be tricky for the beginner.
In fact, beginners, even under the somewhat ideal conditions of familiarity

with Haskell, tend to paint themselves in a corner. For example, to implement
maximization by enumeration, one might try to translate the following Haskell
code:

maxUtil :: Nat -> (Nat -> Float) -> Float

maxUtil 0 u = u 0

maxUtil (n + 1) u = maxUtil' (n + 1) u (u 0) 0

maxUtil' :: Nat -> (Nat -> Float) -> Float -> Nat -> Float

maxUtil' n u best c' =

let c = c' + 1 in -- c is the candidate new best

let uc = u c in -- uc is potential new optimum

let bU = max uc best in

if c == n -- is cand the last candidate?

then bU

else maxUtil' n u bU c



in the following somewhat exaggeratedly literal manner. We hasten to say that
we are not presenting this example as a model of good style, instead, it's main
merit is that it has actually arisen in practice and is a somewhat typical and
instructive case:

maxUtil : {n : Nat} → (Fin (S n) → Float) → Float
maxUtil {O} u = u fO
maxUtil {S n} u = maxUtil' u (u fO) fO

maxUtil' : {n : Nat} →
(Fin (S n) → Float) → Float → Fin n → Float

maxUtil' {n} u bestU c' =
let c = fS c' in -- c is the candidate
let uc = u c in -- uc is potential new optimum
let bU = max uc bestU in

if (c =F= toFin n) -- is cand the last candidate?
then bU
else (maxUtil' u bU c) -- !

But this code does not type check! The reason is that the type of the last
argument to maxUtil', namely c, is Fin (S n) instead of Fin n, as required by our
use of it (namely to increment it in order to obtain a new candidate). We know
that, in fact, c could be cast to a valid value of type Fin n, since it we have just
tested that it is not maximal in Fin (S n), but we are going to have a very hard
time convincing the type checker of it, let alone prove that the resulting max
satis�es maxFinSpec. On top of it all, the termination checker also complains it
does not see why maxUtil' is not just going to loop forever. Unfortunately, this
situation is quite common when attempting to just write Haskell in Agda.

At this point, many a scienti�c programmer can feel like throwing their hands
up and returning to Haskell or Fortran. Which is why it is important that the lan-
guage provides some form of unsafe cast. In Agda, this takes the form of trustMe,
on the basis of which one can write a version of the Haskell function unsafeCoerce
(see the Appendix) which can be used to eliminate the type error. We can get the
above code to work by replacing the last line with else (maxUtil' u bU (coerce c))
and adding a no-temination-check option for the compiler.

But, in so doing we have lost all additional safety provided by the dependently-
typed system: we are just writing Haskell in Agda. Again, the same question
arises: why not just write Haskell then? And, again, the same answer: because
here we can improve. It is an instructive exercise to repair the maxUtil function,
eliminating the unsafe elements, while still keeping it tail-recursive. In doing so,
one discovers that the main culprit is the boolean test, where work is done to
determine if the candidate is maximal, only to immediately discard that work
so that it is unavailable when we need only a couple of lines later. This will
also help with the proof that maxUtil satis�es the speci�cation, leading to the
realization that proving �the correctness of a program . . . at the same time it is
being synthesized� is sometimes the simplest way to go.



The usage of unsafe coercions leads to the possibility of increasing the cor-
rectness of our programs �from below�. They indicate the key points we need to
address to improve the implementations and prove they meet the speci�cations.

In summary, formulating the current speci�cations and implementations in
constructive type theory does not result in immediate ideal correctness for our
programs, which is perhaps disappointing. On the other hand, it leaves us no
worse o� than before, and it o�ers a clear path for improvement: we can better
our speci�cations by making them more constructive, and we can re�ne our
implementations by removing unsafe features and postulates.

4 Conclusions

The approach to increasing the correctness of scienti�c computing presented here
requires us to formalize the current typical mixture of classical and constructive
mathematics within an implementation of constructive type theory, using the
kind of brute-force mechanisms that the dependently-typed programming com-
munity rightly frowns upon. Nevertheless, the possibility to use unsafe features
and postulates, together with a good foreign-function interface, is essential if we
want to take advantage of what we can do now, in our less than ideal circum-
stances.

The results of such a formalization are, as we have seen in the previous
section, not very pretty, but they have the advantage of explicitly �agging the
points where improvements can be made. We are then in a better position to
move towards the Martin-Löf ideal of correctness, by replacing unsafe coercions
and postulates.

In many cases, this requires a shift in the programming style we adopt. There
are (at least) two ways of specifying a computation with inputs of type A and
outputs of type B which have to satisfy a relation R:

1. as a member of the type

∀ [a : A] (∃ [b : B ] (R a b))

that is, a function which, for every input a : A returns a pair consisting of a
value b : B together with a proof that R a b. This is the approach presented
in the textbook of Nordström et al. [14];

2. or as a member of the type

∃ [f : (A → B)] (∀ [a : A ] (R a (f a)))

that is, as a pair consisting of a function f : A → B and a proof that
for every a : A we have R a (f a). This is the approach of the other major
textbook on programming and type theory, that of Thompson [20].

The two approaches are logically equivalent (see also [21]), in the sense that
a member of one can always be turned in a member of the other, but they



encourage a di�erent practice: the Nordström et al. style suggests developing the
proof within the implementation, while the Thompson style advocates developing
the proof alongside the implementation.

The Thompson approach �ts very well the current state of a�airs in scien-
ti�c computing, where implementations are generally considered separately from
speci�cations, and is therefore easier for newcomers to type theory to understand.
This is the style we saw in the previous section, when we translated the Haskell
function maxUtil more or less literally in Agda, and postulated that it ful�lls the
speci�cation maxFinSpec. This approach is also forced on us whenever we use an
external function without a type-theoretical interface.

However, this style usually leads to duplication of e�ort: the same kind of op-
erations needed to implement the computation turn out to be useful for proving
that it ful�lls the speci�cation. Moreover, in the absence of a powerful re�ec-
tion mechanism, the proof cannot be formulated at all. This was the case in the
example from the previous section, where, after the boolean test, we �lost� the
information necessary to prove the type-correctness of our program and had to
appeal to unsafe coercion.

Once these di�culties are encountered in practice, the newcomers quickly
start to appreciate the value of developing the proof and the program in the same
context. The increase in correctness is accompanied by a gradual shift from the
Thompson-style to the Nordström-style. This is not so surprising, after all the
observation that correct-by-construction programming is easier than separating
proof and program predates Martin-Löf's type theory (e.g. Dijkstra [8]).

5 Appendix

We have summarized here the de�nitions of the datatypes and functions we
have used in this article and which are not part of the standard Agda syntax or
library. For more information on the latter, the reader is referred to the Agda
wiki [1], where a wealth of material is available, starting with the ever-growing
reference manual. For an introduction to the Martin-Löf type theory that Agda is
based on we recommend, besides the standard textbooks referred to in Section 4,
also [15]. The various video lectures and associated materials of Conor McBride,
such as [13], are an excellent and entertaining introduction to programming with
dependent types.

Back to the Agda de�nitions: these fall in three categories. The �rst comprises
datatypes and functions designed to maximize the amount of cut-and-paste we
can do between Agda and Idris programs:

data ⊥ : Set where

data One : Set where

one : One

so : Bool → Set
so true = One
so false = ⊥



data _∧_ (A : Set) (B : Set) : Set where

, : A → B → A ∧ B
fst : {A B : Set} → A ∧ B → A
fst (a, b) = a

snd : {A B : Set} → A ∧ B → B
snd (a, b) = b

The second category consists of de�nitions and syntax declarations meant to
increase the similarity of Agda and standard logic notations:

data ∃ (A : Set) (B : A → Set) : Set where

, : (a : A) → (b : B a) → ∃ A B

syntax ∃ A (λ x→ B) = ∃ [x : A] B
Π : (A : Set) → (B : A → Set) → Set
Π A B = (a : A) → B a

syntax Π A (λ x→ B) = ∀ [x : A] B

The third category is that of function de�nitions that are meant to facilitate
the usage of unsafe features and the literal translation of Haskell programs. The
only such function we have used here is

coerce' : {A B : Set} → A ≡ B → A → B
coerce' re� a = a

coerce : {A B : Set} → A → B
coerce = coerce' trustMe
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