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We present an interdisciplinary effort in the field of global environmental change, related

to the understanding of the concept of “vulnerability”. We have used functional

programming to capture the generic aspects of the myriad of definitions of vulnerability,

and have used the resulting formalisation to learn something new about vulnerability

and to write some better software for vulnerability assessment. In the process, we have

also found out something about formalisation in general, about the advantages and

disadvantages of dependent types, and about the role of computing science in the larger

intellectual landscape.

1. Introduction

“Translations can sometimes create a sense of explanation”, says Goldblatt in his

account of categorial logic (Goldblatt 2006). The act of translating from one language to

another requires a much closer reading than usually practiced, and that is perhaps most

true of translations in the language of mathematics. Writing a program, especially in a

high-level declarative language such as Haskell or Agda, is a similar exercise, and it is

the same resulting feeling of explanation which accounts for statements common in the

software world, such as “you only understand it if you’ve implemented it”. Moreover, the

understanding achieved can be more easily shared with others by virtue of the fact that

it is expressed in executable form. For the non-specialist, it is usually easier to play

around with a program than with a theorem.

Perhaps the best-known example of using insights from functional programming to

better understand a “real-world” domain is the work on financial contracts of

Peyton-Jones and Eber described in (Peyton Jones et al. 2000; Peyton Jones and Eber

2003). Our work here aims to achieve similar results in the interdisciplinary world of

global environmental change, by focusing on the concept of vulnerability and the task of

vulnerability assessment in a computational context.

2. Vulnerability

In the past decade, the concept of “vulnerability” has played an important role in global

environmental change (which includes fields such as climate change, development

studies, food security, natural hazard studies, and so on). Vulnerability studies carried

out within these fields have often been successful in alerting policymakers to precarious
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situations. The importance of the concept in the particular field of climate change is

described, for example, as follows (Lemmen and Warren 2004):

. . . Studies based primarily on the output of climate models tend to be characterised

by results with a high degree of uncertainty and large ranges, making it difficult to

estimate levels of risk. In addition, the complexity of the climate, ecological, social and

economic systems that researchers are modelling means that the validity of scenario

results will inevitably be subject to ongoing criticism. . . . Such criticisms should not

be interpreted as questioning the value of scenarios; indeed, there is no other tool

for projecting future conditions. What they do, however, is emphasise the need for a

strong foundation upon which scenarios can be applied, a foundation that provides a

basis for managing risk despite uncertainties associated with future climate changes.

This foundation lies in the concept of vulnerability.

Unfortunately, this foundation has problems of its own. The definitions of vulnerability

differ across the fields mentioned, and even within any one field there seem to be a

bewildering multitude of definitions to choose from (Thywissen, for example, summarises

thirty-five definitions of vulnerability in (Thywissen 2006)!).

This is not the place to describe the detailed work of analysing these definitions: for

that, we refer the reader to (Wolf 2008; Wolf 2010; Ionescu 2009a; Ionescu 2009b).

However, we do want to give a couple of representative examples, in order to give a hint

of the tantalising similarity between the many definitions and between the various uses

of “vulnerability”. We want to suggest that this is the same sort of similarity which

emerges many times when writing computer programs: one finds oneself using the same

computational patterns over and over again, with small yet important differences.

Inventing the proper concepts and tools for describing these patterns as instances of the

same structure has been one of the main driving forces of computer science, and

therefore, the computer scientist should be in a good position to attempt to understand

“the essence” of vulnerability.

On to the definitions. We start with the ordinary language definition, because it is the

source of the more technical usage we will encounter later (besides being easier to

understand for readers outside the fields of global environmental change).

2.1. The Oxford English Dictionary definition

The latest edition of the Oxford English Dictionary gives the following definition for

“vulnerable” (OED 2005):

vulnerable (adj.):

1 exposed to the possibility of being attacked or harmed, either physically or emo-

tionally: we were in a vulnerable position | small fish are vulnerable to predators

2 Bridge (of a partnership) liable to higher penalties, either by convention or through

having won one game towards a rubber.

Vulnerability according to the OED is thus the condition of being vulnerable, and

“vulnerable” is an adjective, a property that is predicated of something. This something

is, in the context of the definition, the entity exposed to the possibility of harm. In the

first example sentence, it is the position, in the second example sentence it is the small

fish, and in the context of the game of Bridge, it is the partnership. The first of these is
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somewhat surprising: one would expect “vulnerable” to be predicated of the subject of

the sentence, “we”, rather than of the position. However, this is an example of a

transferred epithet (a hypallage), and the sentence can be interpreted as “we were in a

position in which we were vulnerable”.

The second example sentence introduces an adjective complement : the idea of

vulnerability to something. The small fish are exposed to the possibility of being harmed

or attacked by the predators. Here, “vulnerable” becomes a binary predicate, since it is

relative not just to the entity exposed to the possibility of harm, but also to the cause of

that harm. This is the typical usage of vulnerable in the context of Climate Change

studies: “vulnerable to climatic change”.

As a final remark, we note the emphasis on potentiality. The entity that is said to be

vulnerable is not “exposed to harm”, but “exposed to the possibility of harm”.

2.2. Vulnerability in the context of poverty analysis

In development studies, the term “vulnerability” has gained prominence after being used

in the 2000/1 World Development Report, where it was defined as “a measure of

resilience against a shock – the likelihood that a shock will result in a decline in

well-being” (The World Bank 2001). Vulnerability is here no longer a boolean predicate,

but a measure which in general is going to take values other than True or False.

We can interpret this definition as a specialisation of the ordinary language usage, in the

following way. The general idea of “being attacked or harmed” is replaced by the more

specialised “suffers a decline in well-being”. The “likelihood of . . . ” refines perhaps the

idea of “exposure to the possibility of . . . ”, suggesting that zero likelihood represents

impossibility, and that harm might be more or less possible.

Many other conceptualisations have been proposed in order to “operationalise” the

World Bank definition, or to account for aspects that were felt lacking, such as taking

into account the magnitude of the decline in well-being, not just the likelihood of that

decline. In (Calvo and Dercon 2005), Calvo and Dercon propose the following definition

of vulnerability to poverty as a synthesis of these various efforts:

vulnerability is the magnitude of the threat of future poverty

where we have

1 The “magnitude of the threat” combines the likelihood of suffering poverty in the

future, as well as the severity of the poverty in that case.

2 Vulnerability is “an ex-ante statement about future poverty”, that is, it is a

statement about an uncertain future.

3 This definition is meant to apply only to a particular situation: “[. . . ] we are

referring to vulnerability to poverty. Individuals face several other threats such as

illness, or crime, or loneliness. Yet we focus on poverty in particular, as this was also

the focus other authors arguably had in mind when using the term ‘vulnerability’.

We thus understand expressions such as ‘vulnerability to an epidemic’ as a shortcut

to ‘vulnerability to poverty due to an epidemic’. ”

The last remark is interesting in the light of the second example sentence in the Oxford

Dictionary: “small fish are vulnerable to predators”. If we take some notion of “harm”

that befalls the fish as analogous to poverty, then Calvo and Dercon seem to suggest
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that this sentence is an abbreviation of “small fish are vulnerable to harm due to

predators”. In the Oxford Dictionary, “vulnerable to” was relative to the factors that

induced the potential harm, here, “vulnerable to” is relative to the potential harm

induced by the given factors.

This asymmetry between the usage of “vulnerability to . . . ” between climate change and

development studies leads sometimes to charged debates, which are hard to understand

for outsiders. The computer scientist involved in interdisciplinary research can perhaps

see the resemblance to some disputes in his own field (see, for example, the entry under

“holy wars” in the latest edition of Eric Raymond’s Jargon file) and approach them with

a certain degree of sympathy.

Calvo and Dercon propose a set of requirements on a measure of vulnerability, which

further elucidate their definition:

1 Vulnerability measures a set of outcomes across possible states of the world. It is

assumed that there are finitely many states of the world, and each state is assigned a

probability that it will occur.

2 Poverty is defined in terms of a threshold, which has the same value in all states of

the world.

3 The states of the world in which the outcomes are above the threshold do not enter

in the vulnerability measurement (this is called the “axiom of focus”).

4 Monotonicity requirements: the likelier the outcomes below the threshold, and the

greater their distance to the threshold, the greater the vulnerability.

A measure of vulnerability to poverty which satisfies these requirements has then the

form:

V = sum [p i ∗ v (x i) | i ← [1 . .n ] ]

where

n :: N -- the number of possible states of the world

p :: N→ [0, 1] -- p i is the probability of state i

v :: R→ R -- a monotonically decreasing and convex function

x i = (y i) / z -- relative distance to threshold of outcome i

y :: N→ R -- y i is the outcome in state i if below the

-- threshold, 0 otherwise

z :: R -- the threshold

This measure generalises many of those proposed in the literature on development

studies.

3. The IPCC definition of vulnerability

Within the climate change research community, the most influential definition of

“vulnerability” is given by the Intergovernmental Panel of Climate Change in its

assessment reports. The most recent of them, the Fourth Assessment Report (Parry et

al. 2007), contains the following:
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vulnerability : the degree to which a system is susceptible to and unable to cope with,

adverse effects of climate change, including climate variability and extremes. Vulnera-

bility is a function of the character, magnitude and rate of climate variation to which

a system is exposed, its sensitivity, and its adaptive capacity.

As in the previous section, vulnerability is not a boolean predicate, but one admitting

degrees: “the degree to which ...”. We can interpret the IPCC definition as a

specialisation of the OED one: there is a notion of “harm”, phrased as the occurrence of

“adverse effects” with which the system is “unable to cope”. The potentiality aspect is

expressed by “susceptible” (versus, for example, “affected”). The role of climate change

(“including climate variability and extremes”) is that of an adjective complement,

similar to the “predators” to which the small fish were said to be vulnerable. Here, the

notion is of vulnerability to climate change. This is in contrast to the vulnerability to

poverty defined in the previous section: climate change is the cause of harm here, poverty

was the harmful effect there.

On the whole, there is an intention of making the context of vulnerability statements

more precise than in the previous two sections. This is also apparent from the evolution

of this definition, compare for example an earlier version (in the Second Assessment

Report (Watson et al. 1995)): “vulnerability defines the extent to which climate change

may damage or harm a system”.

Along the same lines, the second sentence makes explicit some of the determinants of

vulnerability. Besides a characterisation of the climate change factors that vulnerability

is considered relative to, one should also take into account the “sensitivity” and the

“adaptive capacity”, defined as follows.

sensitivity : the degree to which a system is affected, either adversely or beneficially, by

climate variability or change. The effect may be direct (e.g., a change in crop yield in

response to a change in the mean, range or variability of temperature) or indirect (e.g.,

damages caused by an increase in the frequency of coastal flooding due to sea-level

rise).

adaptive capacity : the ability of a system to adjust to climate change (including cli-

mate variability and extremes) to moderate potential damages, to take advantage of

opportunities, or to cope with the consequences.

4. The structure of vulnerability

Common to all the definitions and uses of vulnerability we have seen is (at least) the

idea of potential negative outcomes, formulated by the Oxford Dictionary as “exposed to

the possibility of being harmed”. A first difficulty in modelling comes from having to

deal with the concept of “possibility”. There are several alternatives: for example, one

could try to formulate vulnerability within standard modal logic with possibility.

Instead, we decided to consider a temporal view of possibility: something is possible if it

could happen in the future. This interpretation is consistent with most vulnerability

assessments: computer programs, scenarios, or some form of statistical analysis are used

to determine the possible future evolutions, or characteristics of these future evolutions.

What are these evolutions of? A natural answer is “of the world”, or, to be more precise,
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“of the state of the world” (this is also the terminology of Calvo and Dercon above).

Accordingly, let us assume that we are given a set State of “states of the world”, or

“states of affairs”. An evolution might be represented by a list of states, or by a function

from some time set into states, and so on. For the moment, let us just assume that

Evolution is the type of such evolutions. We might then model possibility by a function

which tells us, given a state, which are the possible future evolutions of the world:

possible :: State → [Evolution ]

However, this is not very generic. In many cases, we do not have just a list of possible

evolutions, but also some more information: for example, we might know the

probabilities of the evolutions, or their likelihood might be expressed by fuzzy degrees of

membership, or they might be ranked according to their plausibility, etc.

A convenient way to accommodate all these cases is to assume that the possible future

evolutions form a functorial structure:

possible :: Functor f ⇒ State → f Evolution

Given a state, we now have a structure of possible evolutions. We are interested in the

potential harm, or damage, or adverse effects. Usually, if the evolution is known, it is

easy to ascertain if and to what degree harm has befallen the entity under consideration.

If we know, for example, how the deal has played out, we know whether the partnership

has overbid and how much they have lost as a result. If we look at a complete evolution

of some coastal area over fifty years, we can tell how many people have lost their

livelihoods (or, indeed, their lives) because of sea-level rise. This suggests that the notion

of harm can be modelled by a function which acts on evolutions. “Harm” has negative

connotations, there might be more or less of it along a trajectory: more is worse. Thus,

we want the target of the function to be some sort of (possibly partial) preorder.

Assuming a suitably defined typeclass Preorder we have

harm :: Preorder v ⇒ Evolution → v

So now, given a state, we can obtain a structure that represents the possible harm values

that might befall the entity we are interested in by applying fmap harm · possible. This is

not yet vulnerability, which is not “possibility of harm” or “susceptibility to adverse

effects”, but rather a measure of this possible harm or susceptibility: a boolean one,

perhaps, as in “exposed to the possibility of harm”, or a more nuanced one, such as

“degree to which a system is susceptible to adverse effects”. In any case, the values of

this measure can, like the values of harm, be compared, so it is natural to require that

they too form a preorder:

measure :: Preorder w ⇒ f v → w

Putting it all together, we obtain the structure of vulnerability:

vulnerability = measure · fmap harm · possible

Before we go any further, let us remark that it is only at this point that one can really

enter into an interdisciplinary dialogue. If we squint away the fmap and the function

composition symbols, this looks very close to a natural language definition:

“vulnerability is a measure of possible harm”. For many a social scientist, mathematics

has to do with “numbers”, and in any case is supposed to take the form of cryptic

strings of cuneiforms of which one can make sense only after abandoning any shred of
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intuition about the human world, and any trace of human sensibility one might possess.

Therefore, this kind of analysis comes as a surprise and is somewhat of a door-opener.

It is easy to see that the definitions we have seen so far can be interpreted in this

structure. A boolean reading of “exposed to the possibility of harm” might have:

possible :: State → [Evolution ]

harm :: Evolution → Bool

measure :: [Bool ]→ Bool

measure = or

As another example, Calvo and Dercon’s vulnerability to poverty has (using the notation

in 2.2 where n and p are defined):

type State = Int -- better would be the set 0, 1, ..., n-1

type Evolution = State -- one-step evolution, with initial step fixed

newtype SimpleProb a = SP [(a,Float)] -- simple probability distribution

possible = SP [(i , p i) | i ← [0 . .n − 1]]

harm = v · x
measure = sum

And so on: Wolf (Wolf 2010) has shown how to read dozens of definitions found in the

literature in terms of this simple structure. Nevertheless, this is not the entire story of

modelling vulnerability, it is just a reasonable start. Among the missing elements is a

more detailed view of evolutions, which we have left unspecified. It would seem

reasonable to define them in terms of states, e.g. as functorial structures of states:

newtype Evolution g = Functor g ⇒ E (g State)

making possible a coalgebra with carrier State. Coalgebras are extensively applied in the

study of dynamical systems and modal logics, and indeed the intuition behind the

possible function is that of a dynamical system (which describes possible future

evolutions). This point of view is further developed in greater detail in (Ionescu 2009a),

see also (Lincke et al. 2009).

5. Applications

Now that we have teased out the basic structure of vulnerability, it is time to see what

are the kinds of things that we can do with it. In this section, we present four

applications of the model: we use it to explore the informal usage, to make the technical

usage more precise and more correct, to help compare vulnerability assessments and

reuse their results, and to ensure the correctness of software components for

vulnerability assessment.

5.1. New perspectives on the informal usage of vulnerability

As a very simple example, consider the translation we made above of the OED

definition. We considered possible to be a list valued function, and harm a boolean one:

either there is some harm, or there isn’t. Vulnerability came out as a predicate:

vulnerability :: State → Bool . The extension of this predicate is represented by the states

in which the entity under consideration might come to harm (or be attacked) in a
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possible future evolution. What we have here, therefore, is a mathematical analogue of

the transferred epithet we found in the first example given by the OED: “we were in a

vulnerable position”, which seemed to assign the exposure to harm to the “position”,

instead of to “us”.

For a less trivial example, consider the difference between using “vulnerable to 〈negative

consequence〉”, as is used in development studies (“vulnerable to poverty”), versus

“vulnerable to 〈cause〉”, as preferred by the climate change community (“vulnerable to

climate change”).

The OED example sentence, “small fish are vulnerable to predators”, is similar to the

second kind of usage. To translate it in our structure, the most natural approach is to

refine the boolean harm assessment above to take into account only the situations in

which the predators have influenced the evolution:

predators :: Evolution → Bool

wounded :: Evolution → Bool

harm :: Evolution → Bool

harm = wounded ∧ predators

We are now computing the resulting harm across an evolution by combining the impacts

(some of the little fish have been wounded) with the presence of the predators.

This is a general pattern: the computation of harm results from assessing the some

impacts along those evolutions which are influenced by some factors of interest (such as

climate change or predators). Both the choice of which impacts to assess, and of which

evolutions are considered relevant, are subjective: for example, health studies disregard

the potential monetary losses of the tobacco industry, emphasising instead the loss of life

caused by smoking (while at the same time largely ignoring climate change).

Similarly, in the context of development studies the focus is on evolutions which end up

with a population subject to poverty, no matter what the cause might be, while the

climate change community is interested in those evolutions influenced by anthropogenic

global warming, no matter what the impacts might be. This distinction is probably what

causes the different emphasis on the components of the harm function. Moreover, as we

have seen, there is a certain symmetry in the combination between impacts and factors

of interest, which makes it particularly easy to slip from one form of expression to the

other. Expressing this in a simple mathematical form has sometimes helped us forestall

what might have developed in a heated debate, and given both sides an appreciation of

the other’s position.

5.2. Correctness of vulnerability assessments

Until now, we have just looked at very general structure, a composition of three

functions of very general types. Except for the preorder requirements on the targets of

the harm and measure functions, we have not constrained the structure in any way

which would make it “for vulnerability”. This is about to change.

Let us look again at the measure function, fixing the type variables:

measure :: F V →W

This function is supposed to act on structures of values representing possible harm, and



Vulnerability Modelling 9

returns an assessment of this possible harm. It seems natural to require that if we

increase the harm values in a structure, the measure should return higher values: the

more possible harm, the higher the vulnerability (all relations are considered non-strict).

This leads us to formulate the following definition:

The monotonicity condition for vulnerability measures:

For all increasing functions inc :: V → V (i.e. for all v :: V we have inc v w v) and for all

v :: F V , we have:

measure (fmap inc v) w measure v

We have formalised the idea of increasing the harm values in a structure by mapping an

increasing function on the structure, making use of the functoriality of F (in fact, it is

difficult to imagine how one would do without that assumption).

Most measures we encounter in practice satisfy this common-sense condition, but not all.

Some vulnerability assessments use a form of “democratic choice” measure: take the

most frequent occurrence, the most common result, or the likeliest harm value. This kind

of measure does not satisfy the monotonicity condition. For example, take

F = SimpleProb, V = N, and define the likeliest harm value measure:

measure :: SimpleProb N→ N
measure (SP ns) = snd (maximum (map swap ns))

where

swap (x , p) = (p, x )

The swap is necessary because in Haskell the order on pairs is the lexicographical

ordering. Take

ns = SP [(10, 0.4), (0, 0.3), (1, 0.3)]

inc :: N→ N
inc 0 = 1

inc (n + 1) = n + 1

The function inc is obviously non-decreasing, but

measure xs = 10>measure (fmap inc xs) = 1. Thus, the measure “likeliest harm or

impact” fails the monotonicity condition and cannot be used as a vulnerability measure.

The monotonicity condition is about the only thing that the various groups of scientists

actually performing vulnerability assessments could unhesitatingly sign off on. As such,

it has come as a big surprise that it was violated in some cases. Since it is simple to

explain and understand, this is is perhaps the best example of something quite useful

coming out of a formalisation effort.

5.3. Assistance in comparing vulnerability assessments

In computational vulnerability assessments, the possible evolutions are given by

computer models. In climate change, these usually take the form of a list of trajectories,

each associated to a different scenario of political measures, technological change, or

resource exploitation. The functor in the type of possible is in this case the (non-empty)

list functor List1 . In development studies, the models are generally stochastic, and each

evolution has a probability of realisation. Therefore, the functor that gives the structure

of possible evolutions is SimpleProb. Often we have combinations of such possibilities:
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lists of stochastic evolutions (leading to List1 (SimpleProb Evolution), or probability

distributions over possible groups of scenarios (SimpleProb (List1 Evolution)).

The structure that holds the possible evolutions is the most volatile element of a

vulnerability assessment. The choice of the harm or measure functions are largely the

result of political decisions, and changing them requires a discussion between many

parties, but the type of the functor used depends only on the model that is used to

compute the evolutions, and that is largely the choice of a few scientists. Indeed,

politicians expect the scientists to use several models, probably because of lack of

confidence in any single model, combined with a certain faith in a democratic process.

The problem is that, unfortunately, the vulnerability measure also depends on the

selected functor. Therefore, the question is, assuming we change the underlying model

type from F1 (say, the list functor) to F2 (for example SimpleProb), can we reuse the

vulnerability measure defined on F1 to obtain a “compatible” one on F2?

A couple of examples show that there is some hope for this. For instance, there is a

strong intuition that averaging a list of numbers should be compatible with taking the

expected value of a probability distribution, or that taking the maximum of a list should

be compared to taking the maximal value with non-zero probability. By the same token,

taking the maximum is not compatible with the expected value, nor is the minimum

compatible with the maximum, and so on. Several other such examples are put forward

and analysed in (Ionescu 2009a), but these should already suffice to get the idea: we

seem to have strong intuitions in cases where there is a natural transformation from one

structure to the other. This suggests the following definition:

Take two vulnerability measures m1 :: F1 V →W and m2 :: F2 V →W . Consider a

natural transformation τ :: F1 a → F2 a. Then, we say that m1 and m2 are compatible

with respect to τ if, for any v1 , v2 :: F1 V , we have

m1 v1 v m1 v2 ⇒ m2 (τ v1 ) v m2 (τ v2 )

This is a natural kind of monotonicity requirement. The interesting thing about it is

that it can provide the sort of reuse we needed:

Proposition 1. Compatible vulnerability measure. With the notation above, given a

vulnerability measure m2 and a natural transformation τ , take

m1 = m2 · τ

Then m1 is a vulnerability measure compatible with m2 with respect to τ .

The compatibility condition is trivially fulfilled. To verify that m1 is indeed a

vulnerability measure, take an arbitrary increasing function inc :: V → V . Then, for any

v :: V , we have:
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m1 (fmap inc v)

= { definition of m1 }
m2 (τ (fmap inc v))

= { naturality of τ }
m2 (fmap inc (τ v))

w { m2 vulnerability measure }
m2 (τ v)

= { definition of m1 }
m1 v

For example, the natural transformation

probToList1 :: SimpleProb a → List1 a

probToList1 (SP aps) = map fst aps

would give, from the maximum harm measure on lists, the maximum non-zero

probability harm on simple probability distributions, while

list1ToProb :: List1 a → SimpleProb

list1ToProb as = SP [(a, p) | x ← xs ] where p = 1.0 / realToFrac (length xs)

gives, from the expected value measure, the average value of a list measure.

5.4. Software correctness: testing and proving

The complete vulnerability model was developed in Haskell, and we have shown how to

use the software components we developed in order to re-implement some of the

computational vulnerability assessments in a generic fashion. The Haskell library was

quite inefficient, and using it for any realistic assessment would have been a hopeless

task, yet it served a useful proof of concept and prototyping role. In the meantime, the

main components have been translated to more efficient C++ code (Lincke et al. 2009),

making them also more accessible to the mainstream scientific programmers, who care a

lot about performance and interoperability with existing tools, and rather less about

functional programming.

One of the benefits of using a high-level programming language as a vehicle for

formalisation is that we can easily transform the mathematical conditions, such as the

monotonicity condition, into tests that have to be passed by the implementation. This is

even more so when one has the benefit of a tool such as QuickCheck (Hughes 2000;

Claessen and Hughes 2003). For example, this is the test for the monotonicity condition:

test monotonicity measure geninc v = forAll geninc

(λinc → (measure (fmap inc v) w measure v))

We have to use a custom generator (geninc) which guarantees that the functions it

generates are increasing. A naive attempt such as

test monotonicity measure inc mv = increasing inc ⇒
mv v measure (fmap inc mv)

is in most cases inadequate because arbitrarily generated functions are unlikely to be
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increasing, and QuickCheck will stop with an inconclusive result once it reaches the

maximum number of attempts for which it is configured.

Even with a custom generator, the coverage for large dimensional spaces can be quite

poor. Unfortunately, many of the conditions imposed on the elements of our library are

of this nature: they quantify over large spaces, and naive testing is likely inadequate.

Moreover, it is not easy to formulate tests generically. We end up having to write a new

custom generator for every change in the type of harm values, with all the disadvantages

this brings: waste of time, introducing new sources of errors, and it’s boring.

The strange thing is that, in all the cases we have seen, it is trivial to prove that the

monotonicity condition is satisfied, or to show that it isn’t. In fact, it is even trivial to do

the proofs formally. The proofs are also more generic than the corresponding tests: for

example, we can show that the maximum of non-empty lists measure fulfils the

monotonicity condition no matter what the type V is, but we can hardly write a

generator for increasing functions independent of their type.

This is a bit of a reversal of the common software engineering wisdom that testing is

easier than proving, and a different argument for the latter than the Dijkstra dictum

that “testing can only show the presence of bugs, never their absence”. What we have

found is that good testing is hard, and in many cases harder than proving the condition

to be tested.

As a result of this, at this stage we have switched from using Haskell as the carrier of our

formalisation, to Agda. This allows us to put all the specifications in the code: a

preorder is represented by a record which includes the reflexivity and transitivity

assumptions, and the monotonicity condition is expressed by

record VulnMeasure {f : Set → Set } {v w : Set }
(F : Functor f ) (V : Preorder v)

(W : Preorder w) (measure : f v → w) : Set where

field

MonotonicityCondition : ∀ {x inc}
(I : Increasing V inc)→W ` measure F : fmap inc x w measure x

which tells the whole story in the code (at least to those who know that the ` w
function extracts and flips the comparison function from a preorder, and the : fmap

function does the same to the fmap of the functor record).

On the other hand, this is perhaps too much information for our partners from the social

sciences, who might still prefer the less precise Haskell version. Moreover, programming

with dependent types is sometimes quite tricky, and reverting to Haskell for a less

precise prototype is something we do quite often (that is the reason for adding “at this

stage” in the first sentence of the previous paragraph: we might have been less successful

if we had started out with Agda).

Finally, we have implemented several examples of vulnerability assessment in Haskell.

Some of them were quite expensive computationally, despite their “toy program” nature.

At present, Agda cannot compete on this front, so we still have to use other

programming languages for efficiency reasons.

6. Conclusions and Perspectives

Here are some of the lessons we have learnt from formalising vulnerability:
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1 formalisation has a lot in common with generic programming: in particular, the

method of writing a high-level (pseudo-) functional program proved very fruitful

2 using a programming language which is syntactically close to the mathematical

language makes it easy to implement the formalised concepts

3 dependent types are the best tool we found for expressing the kind of higher-order

conditions that appeared in the formalisation, and for ensuring that the

implementations satisfy these conditions

4 the existence of dependently typed programming languages does not make a

language like Haskell obsolete: we can use it to make less precise, prototypical

formalisations, and revert to it for more efficient computations.

The formalisation has given rise to a series of on-going activities: extending our library

of vulnerability measures, compatible transformations, and proofs of monotonicity

conditions; comparative analysis of various vulnerability assessments (Hinkel 2011);

writing C++ software components for generic vulnerability modelling (Lincke et al.

2008; Lincke et al. 2009); or investigations of other kinds of mathematical structure that

could be used in vulnerability assessments (Wolf 2010).

On the more conceptual side, we are currently working on formalisation and analysis of

the various equilibria used in economical modelling (Pareto, Nash, Walrasian, correlated,

etc.). We hope to contribute to the correctness and transparency of the economical

models used for integrated assessments for policy advice. The difficulty here is that

integrated assessments are supposed to combine the results of different disciplines: in

particular, this is reflected in coupling economic models with models of climate change,

land use, urban development scenarios, and more. If the assumptions of one model are

not met by another, their coupling can lead at best to a crash, and at worst to seemingly

plausible, but completely arbitrary results. Unfortunately, these assumptions are rarely

specified, in fact, in many cases they are not even known. To tackle this problem requires,

even in the simplest settings, an interdisciplinary effort. We hope that we have shown

that computing science has more to offer to such an enterprise than computer support.
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