
The Challenge of Data Transfer

Ciaron Linstead

Potsdam Institute for Climate Impact Research

Mistra-SWECIA Seminar, 28th May 2008

linstead@pik-potsdam.de

Why data transfer?

 Programs are most flexible when they can be
combined to produce useful effects
 in Unix, "ls" lists files in a directory
 "wc" counts word in a list
 ls | wc

 the data is the interface between programs
 output from one program is input to another
 an idiomatic way to do things in the tradition of Unix

operating system development

The problems with data transfer

 Technical
 the programming language (C, Fortran, Python,

Java...)
 the OS (Linux, IBM AIX, Windows, Mac OS X, Sun

Solaris...)
 the architecture (Intel x86, PowerPC, SPARC)
 communication protocols
 programming style

 Semantic
 does the output of one program make sense as the

input to another?

Typical technical problems

 Endianness
 the order of bytes in a word in memory:

 Big-endian (Motorola 68000 series, PowerPC, SPARC)
0x0A → 0x0B → 0x0C → 0x0D

 Little-endian (Intel x86)
0x0D → 0x0C → 0x0B → 0x0A

 Sizes of datatypes, with my compiler and PC:
struct test {
 unsigned char field1;
 unsigned short field2;
 unsigned long field3;
} __attribute__((__packed__));

 8 bytes unpacked, or 7 bytes packed

 C and Fortran arrays: row vs. column first

Typical technical problems

There are 10 types of people in the world...

those who understand binary and those who
don't.

those who understand ternary, those who don't,
and those who mistake it for binary.

Problems of model semantics

 Are units compatible?
 Does coupling make sense?

 Higher-level problems, but maybe we can help

So, we need to think about...

 the work needed at each end...
 establish point-to-point connections

 sockets, files, shared memory?
 the same protocol at each end?

 check sizes of data
 share information about layout of data in memory
 normalise data

 ...but this is hard
 it's complicated; more bugs are introduced
 it's repetitive and boring

An aside on software design

 A software design philosophy
 software development is about managing

complexity
 do one thing, do it well
 simple design patterns are the most successful

 Rule of Thumb: an API should have about 7 functions
 design and build software to be tried early
 bottom-up development

The Art of UNIX Programming*

 Rule of Modularity
 simple parts connected by clean interfaces

 Rule of Composition
 design programs to be connected to other programs

 Rule of Representation
 Fold knowledge into data, so program logic can be

stupid and robust

 Rule of Extensibility
 Design for the future, it will be here sooner than you

think
* Eric Raymond, 2004

Solving the data transfer problem

 Technology exists for doing this, and often
much more, for example
 OASIS (Ocean-Atmosphere-Sea Ice-Soil)
 CORBA (Common Object Request Broker

Architecture)
 MCT (Model Coupling Toolkit)

But...

 OASIS:
 Ocean-Atmosphere-Sea Ice-Soil

 CORBA: Common Object Request Broker
Architecture
 a standard for connecting software components

defined by the Object Management Group (OMG)
 The specification document index is 14 pages and

750kB

 MCT:
 API (Application Programming Interface) document

is 284 pages

Typed Data Transfer (TDT) Library

 software library for transferring data with known
type (e.g. integer, floating point, or structures)

 programs use simple statements (like "read"
and "write") to move data around

 data should have a description
 connections should have a description
 make all this transparent and easy to extend

TDT - data descriptions

 sending side
int mymatrix[3][4]={0, 1, 2, 3,

 4, 5, 6, 7,
 8, 9, 10, 11};

write(socket, mymatrix, size_of(mymatrix));

 receiving side:
{0, 1, {0, 1, 2, 3, 4, 5,
 2, 3, 6, 7, 8, 9, 10, 11}
 4, 5,
 6, 7,
 8, 9, ???
10, 11}

 How do we interpret "mymatrix"?

TDT - data descriptions

 TDT knows about data types:
 <decl name="mymatrix">

<array size=3>
<array size=4>

int
</array>

</array>
</decl>

 tdt_write(mymatrix, "mymatrix",
connection);

 Side effect: we're writing down our interface

TDT - data descriptions

 Logic is separate from data
 This works transparently where row/column

order are different
 e.g. in C, matrices are organised Row x Column

in Fortran, they're Column x Row

 Also handles the endian problem

TDT – connection descriptions

 creating socket connections by hand...

TDT – connection descriptions

 Or...
 tdt_open(connection);

 Connections, like data, are described
externally:

<channel name="clnt_to_serv”>
mode="out"
host="pc61.pik-potsdam.de"
port="2424"
type="socket"
datadesc="datadesc.xml">

</channel>

TDT – connection descriptions

 We can also use intermediate files for
communication
 dump data for use later
 connect programs that can only read files, e.g.

GAMS (General Algebraic Modeling System) code

 And we don't have to re-write chunks of our
model to do so
 type=socket or type=file

TDT in service

 @PIK: prototyping the Climber 3 alpha climate
system model

 @PIK: modularisation of Integrated
Assessment models

 @PIK: Prototype internet-coupled models with
Centre for Novel Computing, Manchester

 Netherlands Environmental Assessment
Agency hydrological modelling

 Geoforschungs-Zentrum Potsdam hydrological
modelling

TDT in service

 Distributed Model Coupling with Centre for
Novel Computing, Manchester
 communication over the internet via Secure Shell

(ssh)
 TDT-based models at PIK
 CNC's BFG (Bespoke Framework Generator)-

based models at CNC
 Minimal changes to connection descriptions to get

this working in a distributed way
 and no code changes!

TDT in service

 3000 lines of C code
 7 API functions (configure, open, read, write,

close, plus a couple of specialised functions)
 Interfaces exist for Fortran, Python, Java,

MATLAB, Visual Basic
 but any language supporting foreign function

interfaces can be added
 ...and some without (e.g. GAMS)

 TDT is Free Software (GNU GPL)

Conclusions

 Design software to be
 easy to learn
 easy to use
 easy to extend

 Use TDT to
 rapidly prototype a coupled model system, across

different computer platforms and networks
 abstract away low-level, error-prone technical work

 No Silver Bullet

Thanks!

References

 These slides, the TDT software (including sample code) and user
guide: http://www.pik-potsdam.de/software/tdt/

 OASIS:http://www.cerfacs.fr/globc/software/oasis/

 CORBA: http://www.corba.org

 MCT: http://www.mcs.anl.gov/mct

 The Art of UNIX Programming, Eric S. Raymond, Addison-Wesley
2004

 GNU GPL: http://www.gnu.org/licenses/gpl.html

 http://xkcd.com for the comics

 No Silver Bullet - Essence and Accidents of Software Engineering,
Fred Brooks, 1986

http://www.pik-potsdam.de/software/tdt/
http://www.cerfacs.fr/globc/software/oasis/
http://www.corba.org/
http://www.mcs.anl.gov/mct
http://www.gnu.org/licenses/gpl.html
http://xkcd.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

