

Representation of Indirect Risks

Benjamin Blanz, Davide Ferrario, María García, Elco Koks, Lin Ma, Noemi Padrón, Julius Schlumberger, Nikita Strelkovski, Jana Sillmann

> Cross Border Climate Change Impacts Conference 16-18.10.2023

> > The MYRIADEU project has received funding from the European Union's Horizon 2020 research and innovation programme call H2020-LC-CLA-2018-2019-2020 under grant agreement number 101003276

SYSTEMIC RISK INTERDEPENDENCIES THROUGHOUT EUROPE

CANAR	Y ISLANDS				
····• SECTOR		····· HAZARDS			
ENERGY	Ð		7:00		
FOOD & AGRICULTURE	Earthquake	Flood	Landslide		
TOURISM	Storm	Tounami	Volcano		

Effects of Hazards

Total impact of a hazard

- Direct Effects
 - Sectoral, local and immediate impact of a hazard
- Indirect Effects
 - Intersectoral:
 - knock on effects between sectors
 - Interregional:
 - knock on effects between regions
 - Intertemporal:
 - persistence and dynamics of effects

Modelling Methods used in myriad_eu

Veneto Pilot

- Empirical and Machine Learning Methods
- Scandinavian Pilot
 - Computational General Equilibrium model GRACE

Danube Pilot

- Macroeconomic Agent Based Model
- Canary Islands Pilot
 - Descriptive Impact Assessment
- North Sea Pilot
 - Dynamic Adaptive Policy Pathways Integrated Assessment Meta Models
- WP5 with VUE
 - Multiregional Impact Assessment Model

Comparing Models

	1	2	3	4	5
Spatial Resolution	Global	National	Coarse Grid / NUTS 2	Fine Grid / NUTS 3	Household
Temporal Resolution	Multiyear timestep	Yearly	Coarse sub year	Monthly	Daily
Sectoral Coverage	Single production function	Single explicit sector others aggregated	2-6 Sectors	Single digit industry identifier 7-20 Sectors	Two digit industry identifier >20 Sectors
Regional Coverage	Single subnational region	national	multinational region	multi continent	whole globe
Time/Prediction Horizon	sub year	single year	decade	century	centuries
Computational Requirements	long on supercomputer	fast on supercomputer		long on laptop	fast on laptop

Comparing Models: Indirect Effects

	1	2	3	4	5
Intersectoral indirect effects	only direct effects		linear sectoral dependencies		non-linear sectoral dependencies
Interregional indirect effects	only local effects		simple trade or physical links between regions		detailed trade and physical feedbacks
Intertemporal indirect effects	only contemporary effects		simple lagged effects		fully dynamics representation of effects

Indirect effect representation is quantified within the bounds of the modelling approach. E.g. it is possible to have a highly detailed representation between two sectors.

Empirical and ML Modelling

- Neural networks for sector specific endpoints
 - Water quality along river flows
 - Vegetation stress
 - Tourism numbers
- Indirect effects captured by the connectivity within the neural net

Empirical and ML Modelling

General Descriptives SpatialResolution Computation Speed TemporalResolution 3 2 Sectoral Covergoe Time Horizon

RegionalCoverage

Representation of indirect Effects

CGE (GRACE)

- Global model: Country level or aggregated regions
- Annual time step
- Regional myopic optimising behaviour
- Detailed interdependent sectoral production
 - Elastic substitution of inputs
- Endogenous international trade

CGE (GRACE)

General Descriptives

Representation of indirect Effects

Macroeconomic Agent Based Model

- Regional model: Country level or subnational regions
 Pan European extension
- Resolves all actors in the economy
 - Individual households and firms, banks, government
- Boundedly rational forward looking behaviour
- Quarterly time step
- Detailed interdependent sectoral production
 - Fixed input ratios
- Exogenous international trade
 - Endogenous within modelled region

Poledna, S., Miess, M. G., Hommes, C., & Rabitsch, K. (2023). Economic forecasting with an agent-based model. *European Economic Review*, *151*, 104306. <u>https://doi.org/10.1016/j.euroecorev.2022.104306</u>

Macroeconomic Agent Based Model

Representation of indirect Effects

Descriptive Methods

- Detailed description of impact relationships not limited by model structures.
- Natural Hazards are partially independent
 - Geological and meteorological hazards
- Adaptation measures shift multi-risks from one territorial space to another
 - Avoiding geological hazards increases exposure to meteorological hazards
- Two sectors compete for land and water:
 - housing for tourism/residents and agriculture/farming

Descriptive Methods

General Descriptives

Representation of indirect Effects

Dynamic Adaptive Policy Pathways – Integrated Assessment Meta Models

- Dynamic Adaptive Policy Pathways
 - Evaluation of multiple policy options over time
- Integrated Assessment Meta Models
 - Emulator of more complex impact assessment models
 - Combines impact assessment of multiple impact types
 - Fast
- Combined in a representative sector agent model
 - Urban
 - Agriculture
 - Shipping

Haasnoot, M., Van Deursen, W. P. A., Guillaume, J. H. A., Kwakkel, J. H., Van Beek, E., & Middelkoop, H. (2014). Fit for purpose? Building and evaluating a fast, integrated model for exploring water policy pathways. *Environmental Modelling & Software*, *60*, 99–120. <u>https://doi.org/10.1016/j.envsoft.2014.05.020</u>

Dynamic Adaptive Policy Pathways – Integrated Assessment Meta Models General Descriptives

Multiregional Impact Assessment Model (MRIA)

- Pan European model at NUTS 2 level -> built on top of EUREGIO database
- Interregional trade connections
- Input-Output modelling with linear optimization
 - (Multiregional) substitution possibilities
 - Regional production technologies
- Dynamic recursive time dynamics

Multiregional Impact Assessment Model (MRIA)

Comparison of Modelling Approaches

General Descriptives

Representation of indirect Effects

Intersectoral

IAMM (North Sea)

ABM (Danube)

CGE (Scandinavia)

IAMM (North Sea

CGE (Scandinavia)

ABM (Danube)

Outlook

• Evaluation of common hazard sets

- Comparison of magnitude of indirect effects predicted
 - Sectors affected
 - Area affected
 - Persistence of effects
- Hazard sets
 - Floods
 - Earthquakes
 - Heat

- ...

Conclusion

- Indirect effects can make up a large part of the total impact of hazards
- Models are constructed for different research questions
 - Trade off between coverage, resolution and computational requirements
- Quantification of indirect effect magnitude in models with more resolution or coverage could be emulated in more compact models.

Get in touch

www.myriadproject.eu

benjamin.blanz@uni-hamburg.de

