Search results

127 items matching your search terms.
Filter the results.
Item type












New items since



Sort by relevance · date (newest first) · alphabetically
Stability Check on Antarctica Reveals High Risk for Long-Term Sea-Level Rise
09/23/2020 - The warmer it gets, the faster Antarctica loses ice – and much of it will then be gone forever. Consequences for the world’s coastal cities and cultural heritage sites would be detrimental, from London to Mumbai, and from New York to Shanghai. That’s what a team of researchers from the Potsdam Institute for Climate Impact Research, Potsdam University and New York’s Columbia University has found out in their new study, published in Nature (cover story), on how much warming the Antarctic Ice Sheet can survive. In around one million hours of computation time, their unprecedentedly detailed simulations delineate where exactly and at which warming levels the ice would become unstable and eventually melt and drain into the ocean. They find a delicate concert of accelerating and moderating effects, but the main conclusion is that unmitigated climate change would have dire long-term consequences: If the global mean temperature level is sustained long enough at 4 degrees above pre-industrial levels, Antarctic melting alone could eventually raise global sea levels by more than six meters.
Located in News Latest News
Indian monsoon can be predicted better after volcanic eruptions
09/18/2020 - Large volcanic eruptions can help to forecast the monsoon over India – the seasonal rainfall that is key for the country’s agriculture and thus for feeding one billion people. As erratic as they are, volcanic eruptions improve the predictability, an Indian-German research team finds. What seems to be a paradox is in fact due to a stronger coupling between the monsoon over large parts of South and South-East Asia and the El Niño phenomenon after an eruption. Combining data from meteorological observations, climate records, computer model simulations, and geological archives such as tree-rings, corals and ice-cores from past millennia of Earth history, the researchers found that a synchronization of the monsoon with the strongest mode of natural climate variability, the El Niño, makes it easier to anticipate the strength of seasonal rainfall in the Indian subcontinent.
Located in News Latest News
Unraveling 66 million years of climate history from ocean sediments: study in Science
09/10/2020 - Researchers have analyzed data from deep-sea sediments in order to reconstruct Earth’s climate with an unprecedented temporal resolution. To achieve this, the international team, led by Dr. Thomas Westerhold of MARUM – Center for Marine Environmental Sciences at the University of Bremen and Dr. Norbert Marwan of the Potsdam Institute for Climate Impact Research (PIK), compiled and analyzed a comprehensive dataset obtained from sediment cores from the ocean floor. Innovative statistical methods for studying complex dynamical systems were applied revealing fundamental climate states. They show the deterministic nature of climate changes over very long periods of time. The team’s new climate reference curve have been published in the prestigious journal Science.
Located in News Latest News
CAFE
Located in Institute Complexity Science Projects
elena
Located in Output Projects Current Projects
TiPES
Located in Output Projects Current Projects
Recurrence
Located in Output Projects Current Projects
RECEIPT - RD4
Located in Output Projects Current Projects
OPTES
Located in Output Projects Current Projects
Network Models
Located in Output Projects Current Projects