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Figure S1: Warming patterns (left) and precipitation changes (right) projected by GFDL-ESM2M for different levels
of global warming (rows) relative to preindustrial climate conditions. To calculate multi-year-mean temperature
and precipitation for different warming levels, simulation years are pooled in the same way as for the calculation
of changes in areas affected by and people exposed to extremes.

1 Climate and impact model characteristics

Table S1 provides the GCM-specific number of simulation years per global warming level bin for bins
centeredat 1 °C, 1.5 °C, and 2 °C global warming that are used to quantify the pure effect of climate change
on extremes.

Based on these warming level bins, spatial warming and precipitation change patterns at 1 °C, 1.5°C,
and 2 °C global warming for GFDL-ESM2M, IPSL-CM5A-LR and MIROCS5 are depicted in Figs. S1, S2
and S3, respectively.

Table S2 summarizes which direct human influences were considered in the impact model simula-
tions analysed in this study. For details see Tables S5, S6 and S7.

Table S1: GCM-specific number of simulation years (from the historical, RCP2.6 and RCP6.0 simulations done
within CMIP5) per global warming level bin of 1 °C width centered at different global warming levels AT.

GFDL-ESM2M IPSL-CM5A-LR  MIROC5

AT =1.0°C 157 56 279
AT =1.5°C 139 143 324
AT =2.0°C 44 322 115
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Figure S2: Same as Fig. S1 but for IPSL-CM5A-LR.

2 Multi-model ensemble statistics

2.1 Emulation of missing values in the climate model-impact model matrix
of results

Missing values in the climate model-impact model matrix of results are emulated based on available re-
sults using the following procedure, which is independently applied to results for different global warm-
ing levels and categories of extremes.

Let x; denote an available result for climate model i and impact model j. Let further J be the set of
all impact models for which results are available for all three climate models, and let n = Y 1 be the
number of those impact models. Let 4; denote the sample mean value of x;; over all impact models in ],

1
Hi= — XXy (1)
n jeJ

and let o; denote the sample standard deviation of x;; over all impact models in J,

1
a'.2=—2x..—.2. 2

i n— 1],6]( ij lul) ( )
Let further I;; be the set of all climate models k = i for which x,; is available, and let n; = Dk, 1 be the
number of those climate models. Then we emulate &, the formerly missing result for climate model i

and impact model j, by

ij?

R 1 7;
Xij =W+ ) _(xkj = thg)- ©)

2.2 Multi-model ensemble statistics of changes in global land area affected by
and global population exposed to extremes

We use the annual data behind Figures S1 and S3 of the main text to calculate multi-model ensemble
statistics over all climate model-impact model combinations of the change in global land area (absolute
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Figure S3: Same as Fig. S1 but for MIROCS.

numbers in million hectar) affected by and global population (absolute numbers in million, based on 2005
population) exposed to extremes related to different levels of global mean temperature change (Tables S3
and S4).

Also shown in those tables are the results of an analysis of variance (ANOVA) of the changes simulated
by or emulated for all climate model-impact model combinations. The contributions of climate models
and impact models to the overall variance were quantified applying the ANOVA with subsampling intro-
duced by (6). The last column of Tables S3 and S4 shows the contribution of climate model-impact model
interactions to the multi-model variance of multi-year mean changes of the global land area affected by
and the global population exposed to extremes, respectively. The sum of the contributions by climate
models, impact models and climate model-impact model interactions always equals 100%.
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Table S2: Direct human influences (DHIs) considered in impact model simulations analysed in this study. The fol-
lowing abbreviations are used: hist, historical changes of DHIs considered up to 2005 and fixed at 2005 levels there-
after (histsoc and 2005soc according to ISIMIP2b protocol, respectively); fixed, DHIs considered fixed at 2005 levels
(2005s0c¢ according to ISIMIP2b protocol); fixed*, DHIs considered fixed at levels representative of some recent
historical period (see Section 5); NA, DHIs not considered. For details see Tables S5, S6 and S7.

Global hy- land-use pat- irrigation domesticand livestock wa- dams  and
drological terns patterns industrial ter use reservoirs
model water use

CLM4.5 fixed fixed NA NA NA

HO8 fixed fixed fixed NA fixed
LPJmL hist hist hist NA hist
JULES-W1 fixed fixed NA NA NA
MPI-HM hist hist NA NA NA
ORCHIDEE hist hist NA NA NA

PCR- hist hist hist hist hist
GLOBWB

WaterGAP2 fixed hist hist hist hist
Global vegeta- land-use pat- irrigation influence on fire ignition and suppression
tion model terns patterns

CARAIB hist NA NA

LPJ-GUESS hist NA NA

LPJmL hist hist NA

ORCHIDEE hist hist hist

VISIT hist NA NA

Global gridded land-use pat- irrigation cultivars sowing dates  fertilizer in-
crop model terns patterns put
GEPIC hist hist fixed* fixed* fixed
LPJmL hist hist fixed*® fixed* NA
PEPIC hist hist fixed™® fixed™® fixed
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2.3 Relative change in annual national land area affected by and population
exposed to aggregated extremes

Relative changes corresponding to absolute changes shown in Figures S2 and S4 of the main text are
shown in Figures S4 and S5, respectively.

River Flood/Crop Failure/Tropical Cyclone/Wildfire Drought/Heatwave
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Multi-Model Median of Binary Logarithm of Change Factor of
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Figure S4: Pure effect of climate change on the annual national land area fraction affected by aggre-
gated extremes. Multi-model median relative change in multi-year mean annual national land area fraction
affected by (A, C, E) river flood/crop failure/tropical cyclone/wildfire and (B, D, F) drought/heatwave at (A, B)
1°C, (C, D) 1.5°C and (E, F) 2°C global warming. Shown are the binary logarithms of the change factors, i.e.
-2,-1,0, 1,2 means that the new value is 1/4, 1/2, 1, 2, 4 times the old value, which is equivalent to a relative change
by -75 %, —50 %, 0 %, +100 %, +300 %, respectively.
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River Flood/Crop Failure/Tropical Cyclone/Wildfire Drought/Heatwave
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Figure S5: Pure effect of climate change on the annual national population fraction exposed to aggregated
extremes. Same as Figure S4 but for the annual national population fraction exposed.
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3 Calculation of land area affected by and number of people ex-
posed to river floods

Flooded areas are derived from seven Global Hydrological Models (GHM) (see Table S5. All models are
forced by bias-corrected daily climate data provided within ISIMIP2b (20). They assume fixed socioe-
conomic conditions (e.g. changes in land-use patterns) before 1860 (1860soc for 1661-1860 according
to the ISIMIP2b protocol), and if possible account for varying socioeconomic drivers during the his-
torical period (indicated with “histsoc” for 1861-2005 according to the ISIMIP2b protocol, Table S5).
After 2005 socioeconomic conditions are held constant at present-day levels (2005soc for 2005-2099 or
2005-2299, respectively, according to the ISIMIP2b protocol).

S11



SpIeMIdIJE S[OAJ] S00T

Ayrprre
[[9> pud uo 3ur

ad £y 10000
pue] uo Surpuad

Je paxy ‘G007 [un uonerddo I10AIdSAI pue uonpunj -puadop s10308] -dp W 0) [0
‘SN I93eM MYD0ISIAI] PUE [ELIISNPUI PUE JTISIUL ©39q ‘ssooxo  eydre om] ym  jo yadop Surkiea
-op ‘uonjedLian ‘edte worjeSLLIT SurfIeA-owir], Ke( 99139 uonjernjeS JIO[Ae], A9[ISALI UM JoKe[ [IOS | ON (IS ‘SS) TdVOIARA
P2IPISUOD SIOUD yidap
-N[JUI UBWNY JOY3IO0 OU ‘SPIEMIdIJE STIA] S00T soueeq $S90X9 wyg 0] umop
Je poxy ‘GO0¢ [BuUn asn pue] Jurkres-owii], A310uq uonenyu| e[nuIoj yng sIoke[ [0S ] SO (82) I9AIHDYO
SpIemIalje S[oA9] SO0T I8 PaxXY ‘6007 [Hun
uonerado II0AI2SAI pue ‘Osn Idjem [BLI}SNpUl uordUNJ yidap
pU® DIISOQWOP PuUe YD0ISAAI] ‘UONESLLII ‘BdIe ©1oq ‘SS90X9 wz'l pue ¢0
uonedril ‘@Injnoride pajurel JurAIeA-owil], e 92132(] uorjeInies uowlel JO SIdAe[ [IOS ¢ ON (16 :06) aMIOTOIDd
P2I9PISUOD SIOUIN[FUI UBWNY IdYI0 yidap
ou ‘SpIemIdlje S[OAJ] G007 I8 PIXY ‘G007 1 JedUI[-uoU ‘SS9 yojuolNy  Sunoox  juerd
-un sdoio p2yeSLLI pue pajurel SUIATeA-dWI ], Ae 92189 -Xo uUonEINIEg -wewud] Aq  paqLIdSAI] ON (08 ‘67) INH-IdIN
SpIemIalje S[9A] 00T I8 SSOUOIY}
PoxXY ‘6007 [IIun uorje1ddo I10AISS2I pue ‘Osn wo 0] pue Q0]
JI9)eM [eLIISNPUI PUE d1}SIWOP ‘UOIIESLLII ‘BdTe $S90Xd ‘oS ‘0¢ ‘oz Jo
uonedriil ‘QInjnoride pajurel JurAIeA-owil], Ke( 92132(] uonjernjeS  IO[AB]-A9[ISALIJ SIoAe] [0S G ON (02 ‘99) T[T
s1030€] ogIoads
uonejagoa
£q paoueyqud SSUDIY)
WISTUBYIIUW w007 pue
P2IOPISUOD SIOUINFUI UBTUNY Joue[Eq  SSIOXD UONIRIY PIDIUON  S9 ‘ST ‘01 Jo
JI9Y30 OU S[9A3] SOOT J© PIXY sAem[e asn pue] A310ug -ur  UBIUOMOY -uewud] SIdAe[ [0S ¢ SOX (6S ‘¥) IM-STTINS
S[2A9] SO0T ¥e poXI
skem[e uonjerddo IIOAIdSAI PuUEB ‘Osn Jdjem Jdoue[eq  JBIUI[-UOU ‘SS90 w | jo yadop
[eLIISNpUI pUe d1)SIWOP ‘UOIJESLIII ‘Osn pue] AS19U7g -Xo UOIjRINIES e[nuLIo} Yng e YIIM IoKe[ 108 | SO (0€) 8OH
Pa1pISUO0D
uonerado II0AIISI OU ‘OSn Idjem [eLI}Snpul w 7} 03
10 21JSAWOP OU ‘S[OAJ[ GOOT I PIXY BaJe UOH SI94e] eore  AI09U3 AJLIB[IWUIS UMOP SSIUIIY)
-e31111 pue asn pue] ‘puewop 1ajem doid uo ¢ o3 dn ‘9oue  JeuordeRIj  ‘SSID AOUNQQO  O[qelreA  Im
Surpuadop junowe uonedLur Jurlrea-oawl], -Jeq ASIOUY -Xo  UOIJRINJES -UTuOj\| SI9Ke[ [0S 6] SOX (LS ‘sy) SYIN'ID
saouaNjul WAYDS Joueeq [PPOIN
UBWIN J02I1(]  JUIdYDS MOUS QWIAYDS Joumy uonjerodeaqy owayds Io§  A319uq [eo18o[0IpAH [eqo[D

(SINHD) SI?POIAl [e2130]0IPAH [2qOTD) Y3 JO SOTISLISIORIBYD UTRIA :GS d[qR],

S12



3.1 Land area affected
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Figure S6: Pure effect of climate change on global land area fraction annually affected by river floods.
Absolute change in global land area fraction annually affected by river floods at different levels of global mean
temperature (GMT) change relative to the long-term preindustrial mean GMT as simulated by different impact
models (symbols) driven by different climate models (colors). Symbols indicate the climate model-impact model
combination-specific multi-year mean change caused by global warming (these are identical to the red solid lines in
Panel D of Figures S49...S67). Symbols connected by dashed lines represent emulated multi-year mean changes.
Solid lines are the medians over all impact models per climate model. Shaded areas represent the multi-impact
model median *1 standard deviation range of the interannual variability of the global land area fraction annually
affected by river floods.

Since the GHMs provide grid-scale river discharge and runoff instead of flooded area, it is necessary
to apply the global river model CaMa-Flood (94; 95), which is forced only by the runoff simulations of
each GHM. Simulated daily runoff is translated into the annual maximum daily discharge by CaMa-Flood
to estimate the fraction of each grid cell that has been affected by a river flood event at least once in a
considered year. CaMa-Flood has been shown to improve the reproduction of the multi-model ensemble
mean of observed peak discharge in a majority of areas compared to the original routing schemes used
within the GHMs, although individual GHM discharge might still fit better to observations (98). The river
flood inundation scheme enables simulation of global gridded flooded area and depth, and the model is
widely used to estimate global river flood risk under climate change (43; 32; 60).

A grid cell is considered to be affected by river flooding if the maximum annual discharge exceeds the
100-year return level derived from the preindustrial simulations. While dams and levees are often effec-
tive measures to prevent river flooding, river flood defense in most developing regions are currently
insufficient to prevent large floods with return periods longer than 100 years (73). Assuming universal
protection against river floods with return periods shorter than 100 years is thus expected to underes-
timate flooded land area in developing countries, but overestimate it in some industrialized countries.
Since regions with protection levels higher than 100-year return levels are small (see Figure S8), our
default projections of areas affected by river flooding are expected to be conservative.

Specifically, for each GCM-GHM combination and at every grid cell, a Generalized Extreme Value
(GEV) distribution (38) is fitted to the distribution of annual maximum discharge (up to 639 years) using
L-moment estimators (37). The considered preindustrial reference samples are much larger than the 30
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Figure S7: Pure effect of climate change on global land area fraction annually affected by river floods.
Same as Figure S6 but for the relative change in global land area fraction annually affected by river floods.

historical years often considered in previous studies and allow for a more robust estimate of return pe-
riods. Since the climate forcing could still contain biases, the frequency distribution of annual maximum
daily discharge, instead of flood depth and area directly simulated by CaMa-Flood, is used. Following
the approach by (32), annual maximum daily discharge with a return period of more than 100 years
is mapped to corresponding river flood depth from a retrospective CaMa-Flood run with MATSIRO
(82) runoft, driven by observed climate forcing. To estimate the fraction of the 0.5°x 0.5° grid cell that
is affected by the flood, the flood depth mapped to the retrospective MATSIRO run is then downscaled
by CaMa-Flood based on high resolution topography data (about 100 m spatial resolution) to yield the
annual maximum flood inundation area fraction on a 2.5’x 2.5 grid.

Separation of pure effect of climate change from direct human influences Changing human water
management and use in the historical period mostly affects river discharge (e.g. through water abstrac-
tion from rivers, lakes, and reservoir management) but only has a minor effect on gridded runoff. As
CaMa-Flood uses the gridded daily runoff instead of routed discharge from the GHMs, the majority of
human water management, such as dams and reservoirs (not simulated by CaMa-Flood), has a negligible
effect on the derived land area affected by river flooding. In those cases where water demand is satisfied
from groundwater resources, a reasonable reduction of groundwater runoff (one component of runoff)
can be expected. However, for flooded area this effect seems to be negligible (see preindustrial and future
segments of the reference simulations shown in Panel A (gray dots) from multiple GHM-GCM combi-
nations).

3.2 Number of people exposed

For each cell we multiplied the annual inundated area fraction by the cell population in the corresponding
year. Before 1860 and after 2005, population data were held fixed at 1860 and 2005 levels, respectively.
The estimates of exposed people on the 2.5 2.5" grid were aggregated to the common ISIMIP2b 0.5°x0.5°
grid.

Compared to the area fraction affected, the fraction of population exposed to river flooding increases
faster with increasing global warming levels. This suggests that river floods with a return period of over
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Figure S8: Estimated present day protection levels against river floods expressed in return levels of dis-
charge based on the FLOPROS database (73). Red areas: Flood protection is lower than the river flood protec-
tion assumed in our default simulations. Yellow areas: Flood protection corresponds to the protection assumed
in the default simulations. Green areas: Flood protection exceeds the level of protection considered in our default
calculations.

100 years increase more in areas with denser population (while change in population distribution in
the historical period may play a role, it should not affect the change at higher warming levels where
population is fixed at 2005 levels).

Differences between projected relative changes are much larger between GCMs (for a fixed GHM)
than between GHMs (for a fixed GCM). This suggests that river flood projections are mainly driven by
high precipitation as provided by the climate projections and less dependent on e.g. the implementation
of evapotranspiration in the GHMs.

Separation of pure effect of climate change from direct human influences As shown in the previ-
ous section, direct human influences only have a minor influence on the extent of river flooded land area
derived by CaMaFlood. The additional effect of the historical changes in population patterns (1860-2005)
on people exposed to river flooding is minor, too (see preindustrial and future segments of the reference
simulations shown in Panel A (median values for the gray dots), the differences shown in some individ-
ual GCM-GHM combinations are likely due to difference in population patterns, although they are also
possibly affected by different climate realizations).

3.3 Land area affected and number of people exposed at the national scale

Figure S11 shows, in absolute terms, how the national land area affected by and population exposed
to river floods change under the different warming levels. As a general trend one can see that the area
affected by river flood events with a larger than 100 year return period increase with global warming.
The increase is largest in the tropical regions (most notably East Africa, with the aforementioned caveat,
and Southeast Asia) and particularly pronounced under 2 °C global warming. Some boreal regions, such
as in Russia or Argentina experience a substantial increase as well. In a few countries the affected area
decreases, most notably in South Europe and Northwest Africa. Most of the changes are already visible
under 1.0 °C global warming and are further enhanced under 2 °C warming. These spatial patterns largely
agree with previous findings on projected changes in the frequency of river floods (32).

A rather similar picture emerges for the exposed population. In some countries in Southeast Asia,
such as Myanmar or Vietnam, the exposed population rises in particular. The same phenomenon occurs
in Egypt and in Sudan. Both of these thrends are particularly noticable under 2.0 °C of global warming.

Figure S12 shows the same results, albeit this time they are depicted as relative changes. The patterns
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Figure S9: Pure effect of climate change on global population fraction annually exposed to river floods.
Absolute change in global population fraction annually exposed to river floods at different levels of global mean
temperature (GMT) change relative to the long-term preindustrial mean GMT as simulated by different impact
models (symbols) driven by different climate models (colors). Symbols indicate the climate model-impact model
combination-specific multi-year mean change caused by global warming (these are identical to the red solid lines in
Panel D of Figures S68... S86). Symbols connected by dashed lines represent emulated multi-year mean changes.
Solid lines are the medians over all impact models per climate model. Shaded areas represent the multi-impact
model median +1 standard deviation range of the interannual variability of the global population fraction annually
exposed to river floods.

in both plots are largely the same, i.e. often the countries with large absolute changes experience large
relative changes as well. However, there are a few countries, suche as Syria or Ethiopia, where the relative
changes are particularly severe. This is effect is exacerbated with increased global warming.
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Figure S10: Pure effect of climate change on global population fraction annually exposed to river floods.
Same as Figure S9 but for the relative change in global population fraction annually exposed to river floods.
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Figure S11: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river floods. Colors indicate multi-model median absolute changes in multi-year mean
annual national (A, C, E) land area fraction affected by and (B, D, F) population fraction exposed to river floods at
(A,B) 1°C, (C, D) 1.5°C and (E, F) 2 °C global warming. Stippling indicates that at least 80% of all model combina-
tions agree on an increase or decrease that is larger than 2o of the preindustrial interannual variability. Hatching
indicates that at least 80% of all model combinations agree that the change is smaller than 1o of the preindus-
trial interannual variability. The climate model-impact model combination-specific results are shown in Figures
S$87...8123.
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Figure S12: Pure effect of climate change on annual national land area fraction affected by and population
fraction exposed to river floods. Same as Figure S11 but for relative changes expressed in terms of binary loga-
rithms of change factors, i.e. =2, —1, 0, 1, 2 means that the new value is 1/4, 1/2, 1, 2, 4 times the old value, which is
equivalent to a relative change by -75 %, —50 %, 0 %, +100 %, +300 %, respectively. White indicates undefined rela-
tive changes due to division by zero. The climate model-impact model combination-specific results are shown in

Figures S88...S124.
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4 Calculation of land area affected by and number of people ex-
posed to tropical cyclones

4.1 Land area affected
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Figure S13: Pure effect of climate change on global land area fraction annually affected by tropical cy-
clones. Absolute change in global land area fraction annually affected by tropical cyclones at different levels of
global mean temperature (GMT) change relative to the long-term preindustrial mean GMT as simulated by differ-
ent model realizations (bars) driven by different climate models (colors). Bars indicate the climate model-model
realization combination-specific multi-year mean change caused by global warming (these are identical to the red
solid lines in Panel D of Figures S125...S127). Symbols connected by dashed lines represent emulated multi-year
mean changes. Solid lines are the medians over all model realizations per climate model. Shaded areas represent
the multi-model realization median +1 standard deviation range of the interannual variability of the global land
area fraction annually affected by tropical cyclones.

Land area affected by tropical cyclones (TCs) is defined as all grid cells subject to 1-minute sustained
hurricane-force winds (wind speed larger or equal to 64 knots) at least once a year. Potential TC tracks
are simulated using a dynamical tropical cyclone model (14) forced by GCM data. Affected land area
is derived from a windfield model (33) providing bare track coordinates with a realistic extension of
winds around the TC center, and implemented in the open-source climate risk modeling toolbox cli-
mada (8; 24; 22). The dynamical downscaling approach (15) as well as the windfield model have been
shown to realistically reproduce observational TC data (33; 22), and have been applied to project socioe-
conomic TC impacts (50; 23).

Generation of 100 potential realizations of tropical cyclones for each year of the historical pe-
riod and the RCP scenarios For each of the considered years a global total of 300 potential TCs per
year and the expected number of cyclones for each year are provided. For the scenario runs, each under-
lying GCM vyear corresponds to the same year considered within all other sectors. To provide 100 sets
of potential hurricane realizations for each year, we randomly draw the expected number of tracks from
the sample of 300 tracks provided for each year. Each set of tracks is referred to as one realization in the
following.
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Figure S14: Pure effect of climate change on global land area fraction annually affected by tropical cy-
clones. Same as Figure S13 but for the relative change in global land area fraction annually affected by tropical
cyclones.

Generation of 100 potential realizations of tropical cyclones for each year of the preindustrial
reference scenario The preindustrial control simulations only comprise 100 TCs tracks per year. In
addition, the underlying GCM years do not necessarily match the years considered within all other sec-
tors as the downscaling is partly forced by other segments of the preindustrial GCM runs. To generate
a sample of 100 potential realizations of cyclone tracks that correspond to the individual year consid-
ered within the other sectors, we select at least three years of cyclone simulations that match a con-
sidered year in the other sectors in terms of the low frequency variability of global mean temperature
(21-year running-mean) and the 3-month running-mean of the Equatorial Southern Oscillation Index
(as defined by NOAA’s Climate Prediction Center http://www.cpc.ncep.noaa.gov/data/indices/). The al-
gorithm initially sets a very strong threshold of similarity and iteratively and alternatively for GMT and
ESOI lowers the threshold until at least three years have been selected. In this way we create a sample
of at least 300 TCs we can draw from. The expected number of TCs to draw is randomly selected from
the expected numbers of cyclones associated with the years contributing to the sample. As both GMT
and ESOI (or variants thereof) have been shown to significantly modulate the occurrence of climate ex-
tremes, see e.g. Ref. (19; 92), we thereby account for relevant regional climate extreme patterns within
this sector and across sectors.

For each year and each realization of tracks a binary map of affected land area with hurricane-force
winds is generated with 0.1°x0.1° spatial resolution. This map is then aggregated to a grid with 0.5° spatial
resolution and the area fraction affected of the larger grid cell is then saved and compared to the other
climate extremes.

Discussion of Results The absolute change in global land area fraction affected (AFA) by TCs shows
an increase across all models with increasing GMT (Fig. S13). Two GCMs (GFDL-ESM2M and IPSL-
CM5A-LR) show a comparable result with less than 0.1 % rise in AFA for 2 °C of warming, while for
MIROCS5 the AFA rises by almost 0.3 %. Since TCs only affect a small portion of the global land mass,
these small absolute increases translate to large relative increases, e.g. to a greater than 50 % rise in TC-
affected global land area for MIROCS5 (Fig. S14).

The difference in AFA changes for different GCMs can be explained by how TC characteristics change
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in different models and ocean basins. While GFDL-ESM2M and IPSL-CM5A-LR predict large changes
in annual TC frequency with rising GMT (see Figures S16 and S17), MIROCS5 additionally predicts large
changes in annual maximum TC intensities (see Figure S15). Both, changes in frequency and intensity
result in rising AFA as more events can potentially cause more landfalls and more intense events cause
higher wind speeds that can exceed the here-applied threshold of 64 knots over land.

Across all GCMs and all basins we observe similar changes in TC frequency and intensity with rising
GMT for both RCP scenarios, indicating that GMT is sufficient to explain most changes in TC-specific
impacts under global warming.

4.2 Number of people exposed

On the high resolution grid (0.1° x 0.1°) all people living in a grid cell affected by hurricane-force winds
are considered to be exposed to the respective tropical cyclone. The number of people living in these grid
cells is taken from the SSP2-based population distribution on the 0.1° grid provided within ISIMIP2b.
The high resolution maps of people exposed are then spatially aggregated to obtain the global population
fraction exposed (PFE) by TCs on the 0.5° grid.

Discussion of Results For PFE we obtain similar findings as for AFA (Figs. S18 and S19). For all GCMs
we sind increases in the number of exposed people with rising GMT, with MIROCS5 again simulating
an increase that is about three times as large as the increases simulated by GFDL-ESM2M and IPSL-
CMS5A-LR. Changes in PFE are somewhat larger than changes in AFA, which can be explained by the fact
that a large fraction of global population resides close to the coast. Hence, an additional unit of coastal
AFA hosts over-proportionally more people than a non-coastal area, and thus small changes in AFA can
cause larger changes in PFE.

For PFE we also find larger interannual variability than for AFA (shaded areas in Figs. S18 and S19).
This is related to the stochastic nature of TC occurrence (see also the large variability of the thin lines in
Figures S15...S17). This stochasticity also affects the specific landfall location and the associated number
of people exposed: Whether a major city is directly hit or barely missed contributes significantly to the
interannual variability of the population exposed.

4.3 Land area affected and number of people exposed at the national scale

Absolute changes in country area affected by and population exposed to TCs under various levels of
warming are positive almost everywhere (Fig. S20). Only some countries with very little historical TC
experience in Southern America, Africa, and the South Pacific show some tendency for a decrease in ab-
solute terms, in particular, for very low levels of warming. On the other side, there exist hot-spot regions,
namely Mexico and some parts of the Caribbean, the South-East coast of Africa, in particular Madagas-
car, South-East Asia, in particular the Philippines and Vietnam, and Japan and the Korean Peninsula that
show rather large and rising increases in absolute terms and with higher levels of global warming. These
hot-spot regions are consistently found in terms of affected land area and exposed population. Nonethe-
less, none of these country-level changes in absolute terms are large relative to the year-to-year variability
under preindustrial climate conditions. This is not surprising in particular for rather small countries, for
which the year-to-year variability is tremendous.

When analyzing relative changes in country area affected by and population exposed to TCs under
various levels of warming one similarly observes the hot-spot regions mentioned above (Fig. S21). In
addition, the USA, Australia, China, India, and the countries in the Bay of Bengal show major positive
changes. This is caused by the fact that these countries have large areas of which only a small fraction is
regularly affected by TCs and hence changes in absolute terms are small while relative changes can be
large. We also find that relative changes in terms of population exposed are somewhat larger than for
area affected. This is in line with the fact that the coastal regions in those large countries are usually more
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densely populated and thus exposure increases over-proportionally.
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Figure S15: Changes in annual ocean basin-specific TC frequency and intensity for different levels of
global mean temperature for GCM MIROCS. Per-cent changes relative to the long-term preindustrial mean
in ocean basin-specific annual TC frequency (left column) and mean annual maximum TC intensity (right col-
umn) analyzed over all simulated TCs for each year. Annual changes (thin colored lines) are overlaid with 11-year
running-mean changes (thick colored lines) for the historical period (black), and the RCP26 (blue) and RCP60 (or-
ange) scenarios. Basin abbreviations are as follows: NA — North Atlantic Ocean, SA - South Atlantic Ocean, EP
— East Pacific Ocean, WP — West Pacific Ocean, SP — South Pacific Ocean, NI — North Indian Ocean, SI — South
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Figure S16: Changes in annual ocean basin-specific TC frequency and intensity for different levels of
global mean temperature for GCM GFDL-ESM2M. Similar to Figure S15 but for GCM GFDL-ESM2M.
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Figure S17: Changes in annual ocean basin-specific TC frequency and intensity for different levels of
global mean temperature for GCM IPSL-CM5A-LR. Similar to Figure S15 but for GCM IPSL-CM5A-LR.
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Figure S18: Pure effect of climate change on global population fraction annually exposed to tropical cy-
clones. Absolute change in global population fraction annually exposed to tropical cyclones at different levels of
global mean temperature (GMT) change relative to the long-term preindustrial mean GMT as simulated by differ-
ent model realizations (bars) driven by different climate models (colors). Bars indicate the climate model-model
realization combination-specific multi-year mean change caused by global warming (these are identical to the red
solid lines in Panel D of Figures S128... S130). Symbols connected by dashed lines represent emulated multi-year
mean changes. Solid lines are the medians over all model realizations per climate model. Shaded areas represent the
multi-model realization median +1 standard deviation range of the interannual variability of the global population
fraction annually exposed to tropical cyclones.
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Figure S19: Pure effect of climate change on global population fraction annually exposed to tropical cy-
clones. Same as Figure S18 but for the relative change in global population fraction annually exposed to tropical
cyclones.
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Figure S20: Pure effect of climate change on annual national land area fraction affected by and population
fraction exposed to tropical cyclone. Colors indicate multi-climate model-model realization median absolute
changes in multi-year mean annual national (A, C, E) land area fraction affected by and (B, D, F) population fraction
exposed to tropical cyclone at (A, B) 1°C, (C, D) 1.5 °C and (E, F) 2 °C global warming,. Stippling indicates that at least
80% of all climate model-model realization combinations agree on an increase or decrease that is larger than 20 of
the preindustrial interannual variability. Hatching indicates that at least 80% of all climate model-model realization
combinations agree that the change is smaller than 1o of the preindustrial interannual variability. Results for one

specific climate model-model realization combination are shown in Figures S131...S135.
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Figure S21: Pure effect of climate change on annual national land area fraction affected by and population
fraction exposed to tropical cyclone. Same as Figure S20 but for relative changes expressed in terms of binary
logarithms of change factors, i.e. -2, —1, 0, 1, 2 means that the new value is 1/4, 1/2, 1, 2, 4 times the old value, which
is equivalent to a relative change by —75 %, —50 %, 0 %, +100 %, +300 %, respectively. White indicates undefined rel-
ative changes due to division by zero. Results for one specific climate model-model realization combination are
shown in Figures S132...S136.
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5 Calculation of land area affected by and number of people ex-
posed to crop failure

Crop failure is derived from three process-based crop models (GEPIC, LPJmL and PEPIC, see Table S6
for their basic characteristics) providing yields [t/ha] of wheat, maize, rice and soy on the ISIMIP2b 0.5°
grid. The original simulations do not account for land use patterns. Instead, models provide pure crop
runs assuming that each crop grows everywhere. For each crop, the individual modeling groups provide
simulations assuming fully irrigated conditions, ignoring potential constraints on water availability and
a separate set of simulations assuming purely rainfed management conditions everywhere. In this way
LU patterns can be applied in post-processing ensuring maximum flexibility. Here, we apply historical
land use and irrigation patterns for 5 crop classes (21) that have been downscaled to maize, rice, and soy
(20). The ISIMIP2b LU patterns only provide grid cell fractions for “temperate cereals” without consid-
ering wheat separately. The wheat patterns considered within this study are derived from the “annual
C3 crops” category in LUH2 assuming constant wheat shares according to (51). Before 1860 and after
2005 land use and irrigation patterns were held constant. Model simulations do not account for water
constraints but assume that crops are fully irrigated on irrigated areas. All models provide 2005soc simu-
lations according to the ISIMIP2b protocol, i.e. they do not account for historical or future management
changes or technological progress but assume a fixed management setting described in Table S6. Yields
are provided as annual output, assuming one single cropping cycle per crop and year. All considered crop
models account for the CO, fertilization effects (See Table S6).
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Crop failure at each grid cell and for irrigated and rainfed yields is defined of simulated yields falling
below the 2.5th percentile of the associated reference distribution based on the model simulations forced
by preindustrial climate. As the crop models do not account for management changes the entire time
series of reference simulations has been used.

5.1 Land area affected
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Figure S22: Pure effect of climate change on global land area fraction annually affected by crop failures.
Absolute change in global land area fraction annually affected by crop failures at different levels of global mean
temperature (GMT) change relative to the long-term preindustrial mean GMT as simulated by different impact
models (symbols) driven by different climate models (colors). Symbols indicate the climate model-impact model
combination-specific multi-year mean change caused by global warming (these are identical to the red solid lines in
Panel D of Figures S137 ... S145). Symbols connected by dashed lines represent emulated multi-year mean changes.
Solid lines are the medians over all impact models per climate model. Shaded areas represent the multi-impact
model median *1 standard deviation range of the interannual variability of the global land area fraction annually
affected by crop failures.

To estimate the area affected by crop failure we assume that it only affects the fraction of the grid cell
where the crop is grown under irrigated and rainfed conditions, respectively. To estimate the total area
affected the individual affected areas are added up across the different crops and irrigation settings.

Historical expansion of cropland alone lead to an increase in land area affected by crop failure (as a
fraction of the global land area) simply because more land is used for cropping activities and all crop-
land is subject to crop failure (2.5th percentile). This is visible in the results of the crop models assuming
preindustrial climate (see gray dots in panel A of Figures S137 ... S145). In addition, the annual vari-
ability of the global land area affected by crop failure increases with the expansion of global cropland.
On top of this increase in variability that is driven by the expansion of cropland, we find that climate
change drives further increases in crop failure. In spite of the CO, fertilization effect all models show
an increase in land area affected by crop failure with increasing levels of global warming (see dots with
color of black, yellow, and blue in Figures S137 ... S145). This increase in area affected is robust across all
GCMs and GGCMs, even though the uncertainty between different climate scenarios and crop models is
substantial. For the climate scenarios, this is mainly due to how spatial and temporal patterns of climate
change overlap with cropland and growing seasons, whereas the differences between GGCMs stem from
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Figure S23: Pure effect of climate change on global land area fraction annually affected by crop failures.
Same as Figure S22 but for the relative change in global land area fraction annually affected by crop failures.

different assumptions in crop management systems and model-specific differences (16; 53). There is no
evident difference between the impacts of the concentration pathways RCP2.6 and 6.0 for a given change
in GMT (Figures S137 ... S145). An exception is MIROCS5, where impacts are often stronger for RCP2.6
in the +1 °C to +2 °C bin than for RCP 6.0 (Figures S139, S142, S145).

5.2 Number of people exposed

When calculating the number of people exposed to crop failure we only account for local effects on peo-
ple working in agriculture. Large-scale market effects cannot be captured here with biophysical impact
models. Also, we argue that most crop failure events are too small-scale to significantly affect consumers
thanks to buffering by the market.

If fraction Ay, of the land area of a grid cell is affected by crop failure, then the fraction P of the
population of that grid cell that is exposed to that crop failure is calculated as

A,
P=F failure
A

where F is a national estimate of the employment in agriculture as a fraction of total employment (34), and
A griculture 18 the area fraction of the grid cell used for agriculture. The factor Ay, /A gricutture 1 SUPPOsed
to estimate the fraction of the local population working in agriculture that is exposed to the crop failure.
This factor is smaller than one in cases where not all of the crops grown in the grid cell failed. Gaps in
the national time series of employment in agriculture have been filled by linear interpolation and the
fraction is assumed to stay constant before the first and the last available data point at the first and last
available value, respectively.

In contrast to the land area affected, the historical reduction in employment in agriculture leads to
decreasing numbers of people directly (see definition above) exposed to crop failure under preindus-
trial climate conditions over the historical period according to the applied definition (see gray dots in
Panel A of Figures S146 ... S154). In addition the inter-annual variability of the numbers also decreases.
However, the number of people exposed to crop failure is consistently increasing with global warming,
which is mainly due to the expanded land area affected despite population reduction in employment in
agriculture.

)
agriculture
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Figure S24: Pure effect of climate change on global population fraction annually exposed to crop failures.
Absolute change in global population fraction annually exposed to crop failures at different levels of global mean
temperature (GMT) change relative to the long-term preindustrial mean GMT as simulated by different impact
models (symbols) driven by different climate models (colors). Symbols indicate the climate model-impact model
combination-specific multi-year mean change caused by global warming (these are identical to the red solid lines in
Panel D of Figures S146 ... S154). Symbols connected by dashed lines represent emulated multi-year mean changes.
Solid lines are the medians over all impact models per climate model. Shaded areas represent the multi-impact
model median +1 standard deviation range of the interannual variability of the global population fraction annually
exposed to crop failures.

5.3 Land area affected and number of people exposed at the national scale

In Figure S26 the changes in crop failures on the country levels are depicted. More specifically, absolute
changes in the affected land area and the exposed population at various warming levels are shown. Similar
to earlier findings (65; 9), tropical regions see an increase in the frequency of crop failure with global
warming. The highest increases are simulated in presently semi-arid regions or tropical and temperate
regions that are prone to crop failure also under preindustrial climate conditions. Hotspots are the Indo-
Gangetic Plain, Sudano-Sahelian belt and Central America. The temperate latitudes, on the other hand,
experience only amoderate increase in crop failures, or even decline, as in large parts of northern Europe,
Russia or Argentina. These patterns intensify with increased warming,

As before, relative changes in the affected land area/number of exposed people are shown as well,
see Figure S27. Here one can see that in terms of relative changes central Africa and the Sahel zone are
particularly struck by an increase in the affected land area and the number of people exposed.

The aforementioned hotspot regions of adverse impacts are also the locations in which most cli-
mate model-crop model combinations agree on the sign of the impact (Figures S155... S171). Noticeable
differences in impact estimates among climate model-crop model combinations occur e.g. for Central to
Southern Africa and North America, which is - depending on the crop - in agreement with an earlier
crop model intercomparison study (65).
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Figure S25: Pure effect of climate change on global population fraction annually exposed to crop failures.
Same as Figure S24 but for the relative change in global population fraction annually exposed to crop failures.
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Figure S26: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to crop failure. Colors indicate multi-model median absolute changes in multi-year mean
annual national (A, C, E) land area fraction affected by and (B, D, F) population fraction exposed to crop failure at
(A,B) 1°C, (C, D) 1.5°C and (E, F) 2 °C global warming. Stippling indicates that at least 80% of all model combina-
tions agree on an increase or decrease that is larger than 2o of the preindustrial interannual variability. Hatching
indicates that at least 80% of all model combinations agree that the change is smaller than 1o of the preindus-
trial interannual variability. The climate model-impact model combination-specific results are shown in Figures
S155...S171.
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Figure S27: Pure effect of climate change on annual national land area fraction affected by and population
fraction exposed to crop failure. Same as Figure S26 but for relative changes expressed in terms of binary loga-
rithms of change factors, i.e. =2, —1, 0, 1, 2 means that the new value is 1/4, 1/2, 1, 2, 4 times the old value, which is
equivalent to a relative change by -75 %, —50 %, 0 %, +100 %, +300 %, respectively. White indicates undefined rela-
tive changes due to division by zero. The climate model-impact model combination-specific results are shown in
Figures S156...5172.
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6 Calculation of land area affected by and number of people ex-
posed to wildfires

Grid-cell area fractions affected by wildfire are derived directly from the output of burned area by five
Global Vegetation Models (GVMs; see Table S7). All GVMs are forced by bias-corrected daily climate
data provided within ISIMIP2b (20). With the exception of ORCHIDEE, all GVMs have been run at a
0.5° grid resolution. ORCHIDEE has been run on a 1° grid because of computational constraints. All
GVMs assume fixed socioeconomic conditions (e.g. changes in land use patterns) before 1860 (1860soc
for 1661-1860 according to the ISIMIP2b protocol) and account for land-use changes and nitrogen de-
position during the historical period (histsoc for 1861-2005 according to the ISIMIP2b protocol). Af-
ter 2005 socioeconomic conditions including land-use patterns are held constant at present-day levels
(2005soc for 2005-2100 or 2005-2300, respectively, according to the ISIMIP2b protocol). All GVMs ex-
cept VISIT simulate dynamic natural vegetation distribution over time where the total area of natural
vegetation is externally described by the ISIMIP2b land-use patterns. VISIT’s fixed vegetation distribu-
tion is based on Olson’s vegetation map (58) with modification by the potential vegetation data by (64).

All GVMs assume that fires burn natural vegetation. Pasture is not considered as natural vegetation
and therefore not subject to dynamic vegetation changes simulated by the models but externally pre-
scribed by land use patterns. LPJ-GUESS, ORCHIDEE and VISIT allow pastures to burn. LPJ-GUESS is
the only model additionally allowing even croplands to burn. Thus, for most models land-use changes
from natural vegetation to cropland reduce the area potentially subject to wildfires, whereas land use
change from natural vegetation to pasture only reduces the area for CARAIB and LPJmL. The main ele-
ments of the fire modules used in the GVMs are described in Table S7.
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6.1 Land area affected

The global land area fraction affected by wildfire is directly derived from monthly or annual data of
burned area provided by the five GVMs. LPJmL and LPJ-GUESS provided annual burned area while
VISIT, ORCHIDEE and CARAIB provided monthly data. For the latter three models, the annual area
fraction affected by wildfire is calculated as the sum of the monthly values (capped at 100%) assuming
that an area that has burned during one month of a year is unlikely to burn again during the same year,
because fires would reduce the available fuel for the next burning and in most GVMs fire ignitions are
limited by fuel availability. This mechanism holds true for most of the globe (3; 87; 1) even though fire
return intervals may be smaller than one year in strongly fire-dominated ecosystems such as in Sub-
Saharan Africa (2).

CARAIB, LPJmL and LPJ-GUESS simulate a global land area affected by wildfire in the 20th century
ranging from 0.05 to 1.2 % per year while the global land area affected by wildfire in the 20th century
reaches about 5.5 % and even up to 12.0 % per year for some years for VISIT and ORCHIDEE, respec-
tively. Hence, three GVMs underestimate and two overestimate the global land area affected by wildfire
compared to a reconstruction from a wide array of sources over the same period of about 4.0 % per year
by (52). As shown in Figures S12-14, this pattern remains the same when the simulated burned area is
compared to three satellite-derived burned area datasets, namely GLOBCARBON (63), L3JRC (83) and
GFED3.1 (25). However, this comparison has to be interpreted with caution given that the satellite data
only cover a short time period (2001-2005) and the climate data used to drive the GVM simulations
during this time period do not correspond to the actual, observed climate.

The underestimation of burned area by some GVMs might be partly explained by an underestima-
tion of fire return intervals in strongly fire-dominated ecosystem as outlined above. However, we expect
a more important factor to be the neglectance of GVMs to account for fire being intentionally or unin-
tentionally used to clear natural vegetation as part of land-use changes. Even though the reconstruction
by (52) does not account for burning of agricultural wastes, nor for prescribed burning as part of land-
scape clearing or deforestation, overall, it does account for a wider range of fires than considered by
the GVMs such as fires escaping from agricultural lands and during land clearing (as long as these have
been reported by firefighters). Additionally, there are model-specific reasons for an underestimation of
burned area: CARAIB only considers natural ignitions from lightning and the fire model parameters are
uncalibrated, i.e. have not been adjusted to observed burned area. LPJmL underestimates fire occurrence
in savannah regions due to lack of human ignition, and also defines rangelands and other extensively
managed grasslands as pastures that cannot burn. LPJ-GUESS, despite allowing fire to occur on crop-
lands and pastures, features a rather small burned area. LP]-GUESS has been found to be very sensitive
to the choice of the fire module (1) and the fire module used in this study (GlobFIRM; (86)) is known to
underestimate burned area, since at the time it was developed estimates of burned area were lower (26)
and GlobFIRM was calibrated with data on fire return intervals rather than burned area (86).

The reasons for overestimating the global burned area are also model specific. One reason why VISIT
is slightly overestimating the global burned area might be that VISIT is the only GVM in our ensemble
that does not simulate dynamic vegetation, which might lead to increasing maladaptation of regrowing
vegetation after a fire to climate change-induced changes in fire risk. Additionally, the overestimation of
fire in boreal regions and in Northern China/India and several other regions due to a lack of fire sup-
pression in VISIT is known to outweigh the underestimation of fire in savannah regions due to lacking
human ignitions (40). ORCHIDEE overestimates global burned area because of the large grassland and
pasture fraction available to burn and a lower tree fraction as compared to previous burned area evalua-
tions of the model (96). In ORCHIDEE, the fire spread rate is inversely linked with the fuel bulk density.
Grassland have a low fuel bulk density (more loosely packed fuel) so a higher grassland fraction leads to
lower fuel bulk density and a high spread rate, which leads to higher burned area. Another reason for the
difference between the burned area simulations of ORCHIDEE in this study and the ORCHIDEE model
evaluation study presented in (96) could be the different climate input data used.
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Figure S28: Mean annual burned area fraction at grid scale (color, in percent) and annual global burned area (an-
notated in the lower left corner of each panel) over 2001-2005 as simulated by (A) CARAIB, (B) LPJ-GUESS, (C)
LPJmL, (D) ORCHIDEE and (E) VISIT driven with IPSL-CM5A-LR historical climate input data, and as observed
according to the satellite-derived burned area datasets (F) GLOBCARBON (63), (G) L3JRC (83) and (H) GFED3.1
(25).

Separation of pure effect of climate change from direct human influences

CARAIB and especially LPJmL show a clear decrease of the global area affected by wildfire in the 1860-2005
period in the simulations driven with preindustrial climate and changing land use. This trend can be ex-
plained by the set-up of these models and the land-use change dynamics because CARAIB and LPJmL
do not allow pastures and cropland to burn and hence because the pasture and cropland area increases
during the historical time period, the area available to burn decreases. This effect of land-use change
also dominates the historical simulations of CARAIB and LPJmL including land-use and climate change
where burned area substantially decreases. The patterns of decreasing global land area affected by wildfire
with increasing land-use change in CARAIB and LPJmL seem counter-intuitive at a first glance because,
historically, fire has been a key tool to clear natural vegetation (7). However, as noted above, the current
GVM setup does neither capture the application of fire as a way to clear land nor the associated risk
of burning adjacent natural vegetation unintendedly through escaping fires. The decrease of global land
area affected by wildfire as a result of changing land use mimics historical tendencies to suppress fires on
agricultural and other human-dominated lands (61; 42).

ORCHIDEE, VISIT and LPJ-GUESS only show minor changes in burned area over the 1860-2005
period in the simulations driven by preindustrial climate and changing land use (see gray dots in panels
A of Figures S173 ... S186). Because these models do allow pastures, and in the case of LPJ-GUESS even
croplands, to burn the small changes in burned area can possibly be attributed to the effects of decreasing
natural vegetation available to burn (as outlined above) and increasing pastures (and croplands in the case
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Figure S29: Same as Figure S28 but for GVMs driven with GFDL-ESM2M historical climate input data.

of LPJ-GUESS) available to burn largely cancelling each other off. The pure climatic effect on burned
area during the 1860-2005 period is weak for most GVM-GCM combinations (black dots in panel C
of Figures S173 ... S186) but shows slightly increasing global area affected by wildfire, most visibly for
VISIT and CARAIB.

ORCHIDEE, VISIT and LPJ-GUESS only show minor changes in burned area over the 1860-2005
period in the simulations driven by preindustrial climate and changing land use (see gray dots in panels
A of Figures S173 ... S186). Because these models do allow pastures, and in the case of LPJ-GUESS even
croplands, to burn the small changes in burned area can possibly be attributed to the effects of decreasing
natural vegetation available to burn (as outlined above) and increasing pastures (and croplands in the case
of LPJ-GUESS) available to burn largely cancelling each other off. The pure climatic effect on burned
area during the 1860-2005 period is weak for most GVM-GCM combinations (black dots in panel C
of Figures S173 ... S186) but shows slightly increasing global area affected by wildfire, most visibly for
VISIT and CARAIB.

In ORCHIDEE, the decline in burned area mainly occurs in the grassland areas that burn so much
during the historical simulations. Because of the strong contribution of grasses to burned area (due to
the inverse relationship of fire spread and fuel bulk density described above), the decrease in burned
area is explained by a decrease in grassland available to burn. In fact, an additional analysis has revealed
that ORCHIDEE simulates substantial vegetation shifts from grassland to forest in response to global
warming in most parts of the world, arguably because higher atmospheric CO, concentrations favor C3
over C4 plants. Compared to grassland, forests are characterised by more compact fuel, which decreases
the fire spread rate and hence burned area. Additionally, the effects of increasing CO, on plant water
relations might increase soil moisture and hence reduce combustibility of the fuel, counterbalancing
increasing climatic fire risk.
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Figure S30: Same as Figure S28 but for GVMs driven with MIROCS historical climate input data.

6.2 Number of people exposed

We assume that the fraction of the population of a grid cell that is exposed to a wildfire occurring in
that grid cell scales with the grid cell’s area fraction affected by the wildfire. Therefore, the fraction of
the population exposed to wildfire is set equal to the fraction of the grid cell area affected by wildfire at
the 0.5° grid level. This reasoning is based on the assumption that densely populated area such as cities,
even though not being able to burn in the GVMs, will still be exposed to a fire in the same grid cell, for
example due to air pollution from smoke (44). Before 1860 and after 2005, population data are held fixed
at 1860 and 2005 levels, respectively.

Compared to the global land area fraction affected by wildfire, the fraction of the global population
exposed to wildfire is slightly higher throughout all GVMs and GCM combinations with value ranges of
2-12 % per year for VISIT, 7-12 % per year for ORCHIDEE and 0-1.2 % per year for all other models.
This suggests that an area affected by wildfire houses slightly more people than an average area.

Separation of pure effect of climate change from direct human influences

LPJmL, ORCHIDEE, CARAIB and VISIT (the latter two only when driven by MIROC5) show a decrease
of the global population affected by wildfire over the 1860-2005 period in the simulations driven with
preindustrial climate and changing land use (see gray dots in panels A of Figures S187 ... $200). CARAIB
and VISIT, when driven by GFDL-ESM2M and IPSL-CM5A-LR, do not show a clear trend. In general
the trends of CARAIB and VISIT are small and the different responses to the different GCMs might sim-
ply be explained by the climatic differences underlying these forcings. The clear decrease in LPJmL can be
explained by the decreasing area affected by wildfire due to changes from natural vegetation to cropland
and pastures (as explained above). In ORCHIDEE, the increasing population leads to increasing fire sup-
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Figure S31: Pure effect of climate change on global land area fraction annually affected by wildfires. Abso-
lute change in global land area fraction annually affected by wildfires at different levels of global mean temperature
(GMT) change relative to the long-term preindustrial mean GMT as simulated by different impact models (sym-
bols) driven by different climate models (colors). Symbols indicate the climate model-impact model combination-
specific multi-year mean change caused by global warming (these are identical to the red solid lines in Panel D
of Figures S173...S186). Symbols connected by dashed lines represent emulated multi-year mean changes. Solid
lines are the medians over all impact models per climate model. Shaded areas represent the multi-impact model
median +1 standard deviation range of the interannual variability of the global land area fraction annually affected
by wildfires.

pression (see Table S7). LPJ-GUESS shows an slightly increasing trend in population affected by wildfire
over the 1860-2005 period that is consistent with the increasing area affected by wildfire due to an in-
creasing area of pastures and cropland available to burn. The simulations driven with changing climate
and land-use change during the 1860-2005 period show the same patterns. The pure climatic effect dur-
ing the historical period is rather weak but for most GVM-GCM combinations (with the exception of
ORCHIDEE) there is an increasing trend of population affected by wildfire over time (black dots in panel
C). For ORCHIDEE, the clearly negative pure climatic effect on the global population exposed is possibly
due to the corresponding decrease in burned area.

In the 21st century, the pure climatic effect leads to an increasing trend in the global population ex-
posed to wildfire for CARAIB, LPJ-GUESS, LPJmL and VISIT (blue and yellow dots in panel C of Figures
S187 ... 5200). For ORCHIDEE, the pure climatic effect in the 21st century is decreasing the population
exposed to wildfire. For the longer-term simulations covering 2100-2300 under RCP2.6 there is no clear
trend in the global population exposed to wildfire for most of the GVM-GCM combinations. Generally,
increasing global mean temperature leads to an increase in global population exposed to wildfire be-
yond the preindustrial and historical levels according to all considered GVMs except ORCHIDEE (blue
and yellow dots in panel D of Figures S173 ... S186). The decreasing population exposed to wildfire in
ORCHIDEE can possibly be explained by the decrease in burned area discussed above.

6.3 Land area affected and number of people exposed at the national scale

Spatial multi-model median change patterns (Figures S35 and S36) show increases in land area affected by
and population exposed to wildwire for almost all countries of the world. Exceptions include Indonesia
as well as a few Sub-Saharan and Latin-American countries. The largest absolute increases in burnt land
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Figure S32: Pure effect of climate change on global land area fraction annually affected by wildfires. Same
as Figure S31 but for the relative change in global land area fraction annually affected by wildfires.

area are simulated for some South African countries, but even at 2°C global warming for no country at
least 80% of all model combinations simulate a change in the multi-year mean national burned land area
that is larger than 20 of the preindustrial interannual variability. This is due to the substantial differences
in signs and magnitudes of the pure effect of climate change on wildfire occurrences simulated with
the different GVMs. While CARAIB simulates increasing burned area in response to global warming for
almost all countries, ORCHIDEE simulates a decreasing burned area over large parts of the tropics and
high latitudes. Decreasing fire danger is also simulated by LPJmL for North Europe, and by VISIT for
Indonesia, India, parts of Central, East and North Africa, and some Central American countries. Model
agreement is high about an increasing fire danger in southern South America, the USA, South Europe,
the Middle East, Central Asia, East Asia, South Africa and parts of East Africa.
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Figure S33: Pure effect of climate change on global population fraction annually exposed to wildfires.
Absolute change in global population fraction annually exposed to wildfires at different levels of global mean
temperature (GMT) change relative to the long-term preindustrial mean GMT as simulated by different impact
models (symbols) driven by different climate models (colors). Symbols indicate the climate model-impact model
combination-specific multi-year mean change caused by global warming (these are identical to the red solid lines in
Panel D of Figures S187 ... S200). Symbols connected by dashed lines represent emulated multi-year mean changes.
Solid lines are the medians over all impact models per climate model. Shaded areas represent the multi-impact
model median +1 standard deviation range of the interannual variability of the global population fraction annu-
ally exposed to wildfires.
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Figure S34: Pure effect of climate change on global population fraction annually exposed to wildfires.
Same as Figure S33 but for the relative change in global population fraction annually exposed to wildfires.
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Figure S35: Pure effect of climate change on annual national land area fraction affected by and population
fraction exposed to wildfire. Colors indicate multi-model median absolute changes in multi-year mean annual
national (A, C, E) land area fraction affected by and (B, D, F) population fraction exposed to wildfire at (A, B) 1°C,
(C,D) 1.5°Cand (E, F) 2 °C global warming. Stippling indicates that at least 80% of all model combinations agree on
an increase or decrease that is larger than 20 of the preindustrial interannual variability. Hatching indicates that
at least 80% of all model combinations agree that the change is smaller than 1o of the preindustrial interannual
variability. The climate model-impact model combination-specific results are shown in Figures S201 ... S227.
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Figure S36: Pure effect of climate change on annual national land area fraction affected by and popu-
lation fraction exposed to wildfire. Same as Figure S35 but for relative changes expressed in terms of binary
logarithms of change factors, i.e. -2, —1, 0, 1, 2 means that the new value is 1/4, 1/2, 1, 2, 4 times the old value, which
is equivalent to a relative change by —75 %, —50 %, 0 %, +100 %, +300 %, respectively. White indicates undefined rel-
ative changes due to division by zero. The climate model-impact model combination-specific results are shown in
Figures S202...5228.
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7 Calculation of land area affected by and number of people ex-
posed to droughts

Severe drought conditions are defined by monthly soil moisture (10; 75) falling below the 2.5th percentile
variable monthly threshold, based on using of the preindustrial reference distribution (1661-1859), for
at least 7 consecutive months (74). Moisture in the top meter of soil shows the combined effects of pro-
cesses like precipitation, soil evaporation, plant transpiration, infiltration, runoff, snow accumulation
and melt, and is therefore a good indicator for drought conditions (76). The monthly soil moisture infor-
mation used in this study that was provided by the individual hydrological models refers to soil layers
of different thicknesses (see Table S5). Here we use root moisture as directly provided by H08, MPI-HM,
PCR-GLOBWB, and WaterGAP2. To approximate this variable we integrated soil moisture across the
first seven soil layers of CLM45 (down to a depth of 78 cm), the first three layers of JULES-W1 (down
to a depth of 1 m), the first three layers of LPJmL (down to a depth of 1m), and the first 9 layers of OR-
CHIDEE (down to a depth of 75 cm). Further properties of the models are shown in Table S5.

The variable monthly threshold level method (88; 39; 56; 31; 89) was applied here to distinguish pe-
riods of soil moisture drought from periods of no drought. The use of a variable monthly threshold ac-
counts for seasonal climatology (76; 31), which is relevant for the management of water resources.

For each month individually we identified per model and climatological forcing combination the
2.5th percentile soil moisture value at the grid-level, using the preindustrial scenario as reference period.
Using these spatially and monthly explicit threshold-levels we, subsequently, evaluated for the different
scenarios applied how often the soil moisture conditions fall below this threshold. Subsequently, we
applied a six-month threshold to distinguish the longer, prolonged drought events from the short, inci-
dental ones (75). Only these prolonged droughts were taken into account when evaluating the land area
and population exposed to drought conditions at the yearly scale. In doing so, we checked for each year
whether a grid-cell was exposed to at least one of a period of prolonged droughts (i.e. drought condi-
tions that last longer than 6 months). In case the grid-cell was exposed this cell was accounted as ‘being
exposed to drought’ for that respective year, in case the grid-cell was not exposed to drought conditions
or only to relatively short drought conditions, the grid-cell was classified as ‘not exposed to drought’ for
that respective year.

To evaluate the impacts of human actions and climate change on the occurrence and spatial extent
of droughts we superimpose the critical drought thresholds that were defined for the preindustrial ref-
erence period over the scenarios that represent the historical (including human actions) and/or climate
change conditions (including both human actions and climate change impacts). Hence, the difference in
exposure between these scenarios give indication to the attribution of climate change and human activ-
ities to droughts. It must be said, though, that with such an approach we only evaluate the attribution of
climate change and human activities to the increase in the exposure of drought events in time and place.
Any changes in the severity of drought conditions, nor in the duration or of frequency (if consistently
lower or higher than 6 months) of drought events at sub-yearly scales were not accounted for in this
evaluation.

7.1 Land area affected

To estimate the area affected by drought, we sum the grid cells with a fraction of the grid cell suffering
drought. To estimate the total area affected the individual affected areas are added up.

For preindustrial climate conditions and 1860/2005 socioeconomic conditions, the distribution of
the annual global land area fraction affected (AFA) remains almost constant for all model and GCM com-
binations. Such ranges vary depending on the model and GCM combination, but are mostly within the
2 % and never go beyond the 5 %.

For historical climate conditions, the pure effect of climate change in AFA by drought for HO8 and
WaterGAP2 is small, as the differences between the annual AFA by drought and the median of the sim-
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Figure S37: Pure effect of climate change on global land area fraction annually affected by drought. Abso-
lute change in global land area fraction annually affected by drought at different levels of global mean temperature
(GMT) change relative to the long-term preindustrial mean GMT as simulated by different impact models (sym-
bols) driven by different climate models (colors). Symbols indicate the climate model-impact model combination-
specific multi-year mean change caused by global warming (these are identical to the red solid lines in Panel D
of Figures S229...S250). Symbols connected by dashed lines represent emulated multi-year mean changes. Solid
lines are the medians over all impact models per climate model. Shaded areas represent the multi-impact model
median +1 standard deviation range of the interannual variability of the global land area fraction annually affected
by drought.

ulations assuming preindustrial climate conditions are of at most 2 %. For JULES-W1, PCR-GLOBWB,
ORCHIDEE, MPI-HM and LPJmL, the change in AFA by drought increases over time, and such ranges
depend on the model and GCM, but in general reach the 4 %. These results are in line with Dai (10), who
showed an increasing trend in drought exposure between 1950 and 2010 using a Palmer Drought Sever-
ity Index (PDSI) based drought indicator. According to Dai (10), the global land area affected by drought
has an initial increase of around 0.5 % by 1950, which grows up to 5% by 2010. Dai (10) showed that
increasing global temperatures since the 1980s have contributed significantly to the increase in land area
affected by drought globally (+8 %), mainly as a result of increased evaporation.

The increase in AFA by drought starting in the historical period highlights the effects of human forc-
ing. WaterGAP2 and HO8 models show little increase in the AFA by drought, while other models show
significantly larger effects. All models include human impacts, but they do so in a different way. Methods
of human impact parameterization may give rise to the differences in the observed impacts and it would
be worth to analyze this further.

For RCP2.6 climate conditions, the change in AFA by drought for HO8 and WaterGAP2 follows the
same behavior as for the historical climate conditions. For all other models, the change in AFA by drought
increases in time, reaching up to 8 %. For RCP6.0 climate conditions, the change in AFA by drought in-
creases over time for all models. Such change is small for HO8 and WaterGAP2, where the largest change
occurs for HO8 + IPSL-CM5A-LR, reaching the 8 %, but remains under 2 % for all other cases. For all other
models and GCMs, the change is larger, reaching up to 15 % for PCR-GLOBWB + IPSL-CM5A-LR. All
of Dai (10), Lehner et al. (46) and Sheffield & Wood (75) support our observations of increases in drought
exposure under climate change. Dai (10) suggest that severe and widespread droughts will occur in the
next decades in many regions as a result of either decreased precipitation and/or increased evapotranspi-
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Figure S38: Pure effect of climate change on global land area fraction annually affected by drought. Same
as Figure S37 but for the relative change in global land area fraction annually affected by drought.

ration. The results of Lehner et al. (46) indicate a widespread drying under both 1.5 °C and 2.0 °C degree
climates, for example in the Mediterranean, central Europe, the Amazon, and southern Africa. Sheffield
& Wood (75) show that most models show decreases in soil moisture globally under future projections
which results in a doubling of the area exposed to severe soil moisture deficits and the frequency of short
term soil moisture droughts. Longer, prolonged droughts triple under the scenarios applied by Sheffield
& Wood (75), although model results vary.

7.2 Number of people exposed

The fraction of the population of a grid cell exposed to drought scales with the area of the grid cell affected
by drought at the 0.5° grid level. Before 1860, the population is fixed at 1860 levels, and after 2005, the
population is fixed at 2005 levels.

The behavior of the time series of annual global population fraction exposed (PFE) to drought is very
similar to the one seen in the AFA by drought. The difference is in the percentage of change due to the
pure effect of climate change in PFE, which is considerably smaller.

For preindustrial climate conditions, the percentage of the global population exposed to drought
ranges for all models between 0.2 % and 5 %, being HO8 and WaterGAP2 the models with smaller per-
centages of PFE, up to 2 %. The change of PFE due to historical climate conditions shows a small increase
over time for all models, being IPSL-CM5A-LR + MPI-HM the one with the largest change over time,
from 3 % to 6 %. For RCP2.6 and RCP6.0 climate conditions we see consistent increments in the PFE to
drought over time, being the largest changes under the IPSL-CM5A-LR GCM, which reaches up to 10 %
change for PCR-GLOBWB and 12 % for MPI-HM.

Despite the similar behavior in trends for the AFA and PFE to drought, the lower percentages found
in the pure effect of climate change may be due to the population being unequally distributed, which
introduces changes in exposure of to soil moisture.

An interesting feature of these results is the decrease in the PFE to drought for historical climate
conditions for most models, being the decrease more significant for LPJmL and PCR-GLOBWB, two
models considering reservoir storage and detailed land-use classification (79). This finding also suggests
astrong effect of the population density, growth and distribution, which should be considered for further
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Figure S39: Pure effect of climate change on global population fraction annually exposed to drought. Abso-
lute change in global population fraction annually exposed to drought at different levels of global mean temperature
(GMT) change relative to the long-term preindustrial mean GMT as simulated by different impact models (sym-
bols) driven by different climate models (colors). Symbols indicate the climate model-impact model combination-
specific multi-year mean change caused by global warming (these are identical to the red solid lines in Panel D of
Figures S251 ... S272). Symbols connected by dashed lines represent emulated multi-year mean changes. Solid lines
are the medians over all impact models per climate model. Shaded areas represent the multi-impact model median
+1 standard deviation range of the interannual variability of the global population fraction annually exposed to
drought.

analysis.

It is also worth mentioning that the exposure to this drought calculation does not take into account
vulnerability, i.e. how much water one would need to accommodate its daily needs (27). This, being a
relative threshold on a specific hydrological condition, does not consider the absolute water availability.
Therefore, exposure to drought should not be confused with exposure to water scarcity (water-demand
versus water-supply).

7.3 Land area affected and number of people exposed at the national scale

Figure S41 shows absolute changes in the national land area affected by as well as the national popu-
lation exposed to droughts. For most countries of the world, the occurrence of as well as the exposure
to droughts are projected to increase with global warming. A decline in the national land area affected
is only simulated for Russia and parts of northern Europe. The largest changes are projected for South
America, North Africa, South Europe, the Middle East and China. These patterns do not agree well with
those found in other studies (10; 46), yet comparisons are difficult due to the different drought indicators
used and because drought modelling uncertainty is so large (see Figs. S37 and S39).

The largest relative changes in drought occurrences (Fig. S42) are projected for Latin America, South-
ern Europe, the Middle East, Africa and Australia.
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Figure S40: Pure effect of climate change on global population fraction annually exposed to drought. Same
as Figure S39 but for the relative change in global population fraction annually exposed to drought.
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Figure S41: Pure effect of climate change on annual national land area fraction affected by and population
fraction exposed to drought. Colors indicate multi-model median absolute changes in multi-year mean annual
national (A, C, E) land area fraction affected by and (B, D, F) population fraction exposed to drought at (A, B) 1°C,
(C,D) 1.5°Cand (E, F) 2 °C global warming. Stippling indicates that at least 80% of all model combinations agree on
an increase or decrease that is larger than 20 of the preindustrial interannual variability. Hatching indicates that
at least 80% of all model combinations agree that the change is smaller than 1o of the preindustrial interannual
variability. The climate model-impact model combination-specific results are shown in Figures S273 ... S315.
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Figure S42: Pure effect of climate change on annual national land area fraction affected by and popu-
lation fraction exposed to drought. Same as Figure S41 but for relative changes expressed in terms of binary
logarithms of change factors, i.e. -2, —1, 0, 1, 2 means that the new value is 1/4, 1/2, 1, 2, 4 times the old value, which
is equivalent to a relative change by —75 %, —50 %, 0 %, +100 %, +300 %, respectively. White indicates undefined rel-
ative changes due to division by zero. The climate model-impact model combination-specific results are shown in
Figures S274...8316.
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8 Calculation of land area affected by and number of people ex-
posed to heatwaves

8.1 Land area affected
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Figure S43: Pure effect of climate change on global land area fraction annually affected by heatwaves.
Absolute change in global land area fraction annually affected by heatwaves at different levels of global mean
temperature (GMT) change relative to the long-term preindustrial mean GMT as simulated by different impact
models (symbols) driven by different climate models (colors). Symbols indicate the climate model-impact model
combination-specific multi-year mean change caused by global warming (these are identical to the red solid lines in
Panel D of Figures S317 ... S319). Symbols connected by dashed lines represent emulated multi-year mean changes.
Solid lines are the medians over all impact models per climate model. Shaded areas represent the multi-impact
model median +1 standard deviation range of the interannual variability of the global land area fraction annually
affected by heatwaves.

Heatwaves are defined based on GCM output of daily mean relative humidity and daily mean and
maximum temperature. A grid cell is considered to be affected by a heatwave in a given year if (i) the Heat
Wave Magnitude Index daily (HWMId, 67; 68) of that year exceeds the 97.5th percentile of the HWMId
distribution under preindustrial climate conditions of that grid cell, and if (ii) the humidex exceeds 45
on all days of heatwave period corresponding to the HWMId. If both criteria are fulfilled then the area
fraction affected by heatwave of the grid cell in that year is set to one, otherwise it is set to zero.

Our heatwave definition combines a relative criterion, which assesses the magnitude of a heatwave
relative to magnitudes that are normal under preindustrial climate conditions, with an absolute criterion
that is to prevent us from labeling a period that would be considered exceptionally warm under prein-
dustrial climate conditions as a heatwave even though the period is not hot enough in an absolute sense
to have a negative impact on human health. In the following we describe how HWMId and humidex are
defined and computed here.

The HWMId is defined as the maximum magnitude of all hot periods occurring in a year, where a hot
period is a period of at least 3 consecutive days with daily maximum temperature exceeding a threshold
value T o, which is defined as the 90th percentile of daily maximum temperatures under preindustrial
climate conditions, centered on a 31-day window. The magnitude of each hot period in ayear is the sum of
the daily magnitudes on the consecutive days composing the hot period, with daily magnitude calculated
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Figure S44: Pure effect of climate change on global land area fraction annually affected by heatwaves.
Same as Figure S43 but for the relative change in global land area fraction annually affected by heatwaves.

according to My(Ty) = 0if Ty < Ty else (Ty — Tyip5)/(Tyi05 — Toips) where Ty is the daily maximum
temperature on day d of the hot period, and T,;,; and T ;5 are the 25th and 75th percentile, respectively,
of the annual maximum of the daily maximum temperature under preindustrial climate conditions. In
order to estimate T,;q9, T},,5 and T ;;5, we use more than 400 years of daily maximum temperature data
of 0.5° spatial resolution representing preindustrial climate conditions as available from the ISIMIP2b
climate input data set. Based on these more than 400 years of temperature data we then derive Mo, 5,
the 97.5th percentile of the HWMId distribution under preindustrial climate conditions.

The humidex (49) was developed to capture the experienced effects of hot weather on the human

body by combining temperature and relative humidity via the dew point to an effective temperature:

Humidex = T, +0.5555[6.11 77 mn-mmai) — 10].

We calculate the humidex at the time of maximum daily temperature using the above formula, the daily
maximum temperature for T, , and the daily mean temperature and relative humidity to approximately
compute the dew point temperature T, at the time of maximum daily temperature, exploiting that
the dew point does usually not vary much over the course of a day (62; 72). The Canadian Center for

Occupational Health and Safety links the humidex to human stress as follows (18).

20-29 comfortable

30-39 some discomfort

40-45 great discomfort, avoid exertion
above 45 dangerous, heat stroke possible

The resulting probabilities of occurrence are very low under preindustrial climate conditions, with less
than 1% of the global land area being affected by heatwaves annually. This area fraction rises to about
7 % at 2°C of global warming, and to about 10% at 4°C of global warming. The emissions scenario-
dependence of the relationship between global mean temperature change and global land area affected
by heatwave is low as are differences between GCMs.
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Figure S45: Pure effect of climate change on global population fraction annually exposed to heatwaves.
Absolute change in global population fraction annually exposed to heatwaves at different levels of global mean
temperature (GMT) change relative to the long-term preindustrial mean GMT as simulated by different impact
models (symbols) driven by different climate models (colors). Symbols indicate the climate model-impact model
combination-specific multi-year mean change caused by global warming (these are identical to the red solid lines in
Panel D of Figures S320... $322). Symbols connected by dashed lines represent emulated multi-year mean changes.
Solid lines are the medians over all impact models per climate model. Shaded areas represent the multi-impact
model median +1 standard deviation range of the interannual variability of the global population fraction annually
exposed to heatwaves.

8.2 Number of people exposed

It is assumed that if a grid cell is struck by a heatwave, then all people living in that grid cell are affected
by that heatwave. Therefore, the population fraction exposed to heatwave is set equal to the area fraction
affected by heatwave at the 0.5° grid level. Less than 1% of the global population is exposed to heat-
waves annually under preindustrial climate conditions. This fraction rises to about 12 % at 2 °C of global
warming, and to 24 % at 4 °C of global warming. Interestingly, the global population fraction exposed to
heatwaves increases with about twice as large a rate as the global area fraction affected by heatwaves. This
is because many people currently live (and arguably will continue to live) in those areas that are projected
to be most increasingly struck by heatwaves in the future, in particular West, Central and East Africa as
well as South and Southeast Asia (see Fig. S47). The emissions scenario-dependence of the relationship
between global mean temperature change and heatwave exposure of the global population is low as are
differences between GCM:s.

8.3 Land area affected and number of people exposed at the national scale

Figures S47 and S48 show how the affected national land area and exposed national population change
under global warming, both in terms of absolute changes (Figure S47) and relative changes (Figure S48).
As expected global warming increases the area affected by and the number of people exposed to heat-
waves in practically all parts of the world. The spatial patterns of increases in heatwave occurrence do not
differ much between GCMs (Figures S317...S319). For many countries, the increases are large relative
to preindustrial interannual variability. We find the strongest increases in the tropical regions, in par-
ticular in Central America and northern South America, large parts of Africa, around the Persian Gulf,
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Figure S46: Pure effect of climate change on global population fraction annually exposed to heatwaves.
Same as Figure S45 but for the relative change in global population fraction annually exposed to heatwaves.

and in South and Southeast Asia. These regions are largely consistent with the areas projected to witness
dangerous wet-bulb (globe) temperature increases in response to global warming (77; 11). Figure S48
demonstrates drastic relative changes in both, the affected land area and the number of exposed people.
At 2 °C global warming, a rather large number of countries experience increases by a factor of 30 or more.
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Figure S47: Pure effect of climate change on annual national land area fraction affected by and population
fraction exposed to heatwave. Colors indicate multi-model median absolute changes in multi-year mean annual
national (A, C, E) land area fraction affected by and (B, D, F) population fraction exposed to heatwave at (A, B) 1°C,
(C,D) 1.5°Cand (E, F) 2 °C global warming. Stippling indicates that at least 80% of all model combinations agree on
an increase or decrease that is larger than 20 of the preindustrial interannual variability. Hatching indicates that
at least 80% of all model combinations agree that the change is smaller than 1o of the preindustrial interannual
variability. The climate model-impact model combination-specific results are shown in Figures S323 ... S327.
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Figure S48: Pure effect of climate change on annual national land area fraction affected by and population
fraction exposed to heatwave. Same as Figure S47 but for relative changes expressed in terms of binary loga-
rithms of change factors, i.e. =2, —1, 0, 1, 2 means that the new value is 1/4, 1/2, 1, 2, 4 times the old value, which is
equivalent to a relative change by —75 %, =50 %, 0 %, +100 %, +300 %, respectively. White indicates undefined rela-
tive changes due to division by zero. The climate model-impact model combination-specific results are shown in
Figures S324...58328.
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9 Model specific results

9.1 River floods
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Figure S49: Derivation of the pure effect of climate change on the global land area fraction annually
affected by river flood (GFDL-ESM2M + CLM45). Panel A: Time series of annual global land area fraction
affected (AFA) by river flood for preindustrial climate (grey dots), historical climate (black dots), climate projec-
tions for RCP2.6 (blue dots), and RCP6.0 (orange dots). In all simulations, socioeconomic conditions are varied
according to the historically observed development between 1860 and 2005, and held fixed at 1860 conditions be-
fore 1860 and at 2005 conditions after 2005. The horizontal gray lines before 1860 and after 2005 represent the
multi-year mean global land area fraction annually affected by river flood under preindustrial climate conditions
and socioeconomic conditions of 1860 and 2005, respectively. The gray line between 1860 and 2005 is a linear
interpolation of these mean values. Panel B: Data shown in Panel A plotted against the associated GCM-specific
annual global mean temperature (GMT) change relative to the long-term preindustrial mean GMT. Panel C: Pure
effect of climate change on AFA, calculated as the difference between the annual data shown in Panel A and the
multi-year mean AFA under preindustrial climate conditions (gray line in Panel A). Panel D: Data shown in Panel
C plotted against annual GMT change. The red line represents the mean values of the annual data points per 1 °C-
wide GMT change bin, with bins centered at GMT change levels increasing from 0 °C to 4°C in steps of 0.5 °C.
The area shaded in red represents the mean value £1 standard deviation ranges of the annual data points per GMT
change bin.
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Figure S50: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by river flood (GFDL-ESM2M + H08). Analogous to Figure S49.
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Figure S51: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by river flood (IPSL-CM5A-LR + H08). Analogous to Figure S49.
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Figure S52: Derivation of the pure effect of climate change on the global land area fraction annually
affected by river flood (MIROC5 + H08). Analogous to Figure S49.
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Figure S53: Derivation of the pure effect of climate change on the global land area fraction annually
affected by river flood (IPSL-CM5A-LR + JULES-W1). Analogous to Figure $49.

S64



River Flood [%]

o
N

Global Land Area Fraction
Annually Affected by

Absolute Change in Global
Land Area Fraction Annually
Affected by River Flood [%]

Figure S54: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by river flood (GFDL-ESM2M + LPJmL). Analogous to Figure S49.

Global Land Area Fraction
Annually Affected by
River Flood [%]

Absolute Change in Global
Land Area Fraction Annually
Affected by River Flood [%]

Figure S55: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by river flood (IPSL-CM5A-LR + LPJmL). Analogous to Figure S49.
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Figure S56: Derivation of the pure effect of climate change on the global land area fraction annually
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River Flood [%]

o
[N)

Global Land Area Fraction
Annually Affected by

Absolute Change in Global
Land Area Fraction Annually
Affected by River Flood [%]

Figure S57: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by river flood (GFDL-ESM2M + MPI-HM). Analogous to Figure S49.
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Figure S58: Derivation of the pure effect of climate change on the global land area fraction annually
affected by river flood (IPSL-CM5A-LR + MPI-HM). Analogous to Figure S49.
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Figure S59: Derivation of the pure effect of climate change on the global land area fraction annually
affected by river flood (MIROC5 + MPI-HM). Analogous to Figure S49.
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Figure S60: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by river flood (GFDL-ESM2M + ORCHIDEE). Analogous to Figure S49.
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Figure S61: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by river flood (IPSL-CM5A-LR + ORCHIDEE). Analogous to Figure S49.
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Figure S62: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by river flood (GFDL-ESM2M + PCR-GLOBWB). Analogous to Figure S49.
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Figure S63: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by river flood (IPSL-CM5A-LR + PCR-GLOBWB). Analogous to Figure S49.
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Figure S64: Derivation of the pure effect of climate change on the global land area fraction annually
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Figure S65: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by river flood (GFDL-ESM2M + WaterGAP2). Analogous to Figure S49.
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Figure S66: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by river flood (IPSL-CM5A-LR + WaterGAP2). Analogous to Figure S49.
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Figure S67: Derivation of the pure effect of climate change on the global land area fraction annually
affected by river flood (MIROC5 + WaterGAP2). Analogous to Figure S49.
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Figure S68: Derivation of the pure effect of climate change on the global population fraction annually
exposed to river flood (GFDL-ESM2M + CLM45). Panel A: Time series of annual global population fraction
exposed (PFE) to river flood for preindustrial climate (grey dots), historical climate (black dots), climate projec-
tions for RCP2.6 (blue dots), and RCP6.0 (orange dots). In all simulations, socioeconomic conditions are varied
according to the historically observed development between 1860 and 2005, and held fixed at 1860 conditions
before 1860 and at 2005 conditions after 2005. The horizontal gray lines before 1860 and after 2005 represent
the multi-year mean global population fraction annually exposed to river flood under preindustrial climate con-
ditions and socioeconomic conditions of 1860 and 2005, respectively. The gray line between 1860 and 2005 is a
linear interpolation of these mean values. Panel B: Data shown in Panel A plotted against the associated GCM-
specific annual global mean temperature (GMT) change relative to the long-term preindustrial mean GMT. Panel
C: Pure effect of climate change on PFE, calculated as the difference between the annual data shown in Panel A
and the multi-year mean PFE under preindustrial climate conditions (gray line in Panel A). Panel D: Data shown
in Panel C plotted against annual GMT change. The red line represents the mean values of the annual data points
per 1°C-wide GMT change bin, with bins centered at GMT change levels increasing from 0 °C to 4 °C in steps of
0.5 °C. The area shaded in red represents the mean value £1 standard deviation ranges of the annual data points per
GMT change bin.
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Figure S69: Derivation of the pure effect of climate change on the global population fraction annually
exposed to river flood (GFDL-ESM2M + H08). Analogous to Figure S68.
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Figure S70: Derivation of the pure effect of climate change on the global population fraction annually
exposed to river flood (IPSL-CM5A-LR + H08). Analogous to Figure S68.
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Figure S71: Derivation of the pure effect of climate change on the global population fraction annually

exposed to river flood (MIROCS5 + H08). Analogous to Figure S68.
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Figure S72: Derivation of the pure effect of climate change on the global population fraction annually
exposed to river flood (IPSL-CM5A-LR + JULES-W1). Analogous to Figure S68.
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Figure S73: Derivation of the pure effect of climate change on the global population fraction annually
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exposed to river flood (GFDL-ESM2M + LPJmL). Analogous to Figure S68.

Global Population Fraction
Annually Exposed to
River Flood [%]

Absolute Change in Global
Population Fraction Annually
Exposed to River Flood [%]

Figure S74: Derivation of the pure effect of climate change on the global population fraction annually
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exposed to river flood (IPSL-CM5A-LR + LPJmL). Analogous to Figure S68.
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Figure S75: Derivation of the pure effect of climate change on the global population fraction annually
exposed to river flood (MIROCS5 + LPJmL). Analogous to Figure S68.
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Figure S76: Derivation of the pure effect of climate change on the global population fraction annually
exposed to river flood (GFDL-ESM2M + MPI-HM). Analogous to Figure S68.
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Figure S77: Derivation of the pure effect of climate change on the global population fraction annually
exposed to river flood (IPSL-CM5A-LR + MPI-HM). Analogous to Figure S68.
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Figure S78: Derivation of the pure effect of climate change on the global population fraction annually
exposed to river flood (MIROC5 + MPI-HM). Analogous to Figure S68.
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Figure S79: Derivation of the pure effect of climate change on the global population fraction annually
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exposed to river flood (GFDL-ESM2M + ORCHIDEE). Analogous to Figure S68.
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Figure S80: Derivation of the pure effect of climate change on the global population fraction annually
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exposed to river flood (IPSL-CM5A-LR + ORCHIDEE). Analogous to Figure S68.
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Figure S81: Derivation of the pure effect of climate change on the global population fraction annually
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exposed to river flood (GFDL-ESM2M + PCR-GLOBWB). Analogous to Figure S68.
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Figure S82: Derivation of the pure effect of climate change on the global population fraction annually
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exposed to river flood (IPSL-CM5A-LR + PCR-GLOBWB). Analogous to Figure S68.
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Figure S83: Derivation of the pure effect of climate change on the global population fraction annually
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exposed to river flood (MIROC5 + PCR-GLOBWB). Analogous to Figure S68.
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Figure S84: Derivation of the pure effect of climate change on the global population fraction annually
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exposed to river flood (GFDL-ESM2M + WaterGAP2). Analogous to Figure S68.
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Figure S85: Derivation of the pure effect of climate change on the global population fraction annually
exposed to river flood (IPSL-CM5A-LR + WaterGAP2). Analogous to Figure S68.
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Figure S86: Derivation of the pure effect of climate change on the global population fraction annually
exposed to river flood (MIROC5 + WaterGAP2). Analogous to Figure S68.
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Figure S87: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (GFDL-ESM2M + CLM45). Absolute changes in multi-year mean annual
national (A, C, E) land area fraction affected by and (B, D, F) population fraction exposed to river flood at (A, B)
1°C,(C,D) 1.5°C and (E, F) 2 °C global warming.
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Figure S88: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (GFDL-ESM2M + CLM45). Same as Figure S87 but for relative changes
expressed in terms of binary logarithms of change factors, i.e. —1 means a change by a factor of 0.5, 0 means no
change, and 1 means a change by a factor of 2. White indicates undefined relative changes due to division by zero.
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Figure S89: Pure effect of climate change on annual national land area fraction affected by and population
fraction exposed to river flood (GFDL-ESM2M + H08). Analogous to Figure S87.
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Figure S90: Pure effect of climate change on annual national land area fraction affected by and population
fraction exposed to river flood (GFDL-ESM2M + H08). Analogous to Figure S88.
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Figure S91: Pure effect of climate change on annual national land area fraction affected by and population
fraction exposed to river flood (IPSL-CM5A-LR + H08). Analogous to Figure S87.
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Figure S92: Pure effect of climate change on annual national land area fraction affected by and population
fraction exposed to river flood (IPSL-CM5A-LR + H08). Analogous to Figure S88.
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Figure S93: Pure effect of climate change on annual national land area fraction affected by and population
fraction exposed to river flood (MIROCS5 + HO08). Analogous to Figure S87.
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Figure S94: Pure effect of climate change on annual national land area fraction affected by and population
fraction exposed to river flood (MIROC5 + HO08). Analogous to Figure S88.
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Figure S95: Pure effect of climate change on annual national land area fraction affected by and population
fraction exposed to river flood (IPSL-CM5A-LR + JULES-W1). Analogous to Figure S87.
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Figure S96: Pure effect of climate change on annual national land area fraction affected by and population
fraction exposed to river flood (IPSL-CM5A-LR + JULES-W1). Analogous to Figure S88.
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Figure S97: Pure effect of climate change on annual national land area fraction affected by and population

fraction exposed to river flood (GFDL-ESM2M + LPJmL). Analogous to Figure S87.

Land Area Population

1.0°C

1.5°C

2.0°C

-3.0 -25 -20 -15 -1.0 -05 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Binary Logarithm of Change Factor of Multi-Year Mean Annual National
Land Area Fraction Affected by/Population Fraction Exposed to River Flood

Figure S98: Pure effect of climate change on annual national land area fraction affected by and population

fraction exposed to river flood (GFDL-ESM2M + LPJmL). Analogous to Figure S88.
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Figure S99: Pure effect of climate change on annual national land area fraction affected by and population
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fraction exposed to river flood (IPSL-CM5A-LR + LPJmL). Analogous to Figure S87.
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Figure S100: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (IPSL-CM5A-LR + LPJmL). Analogous to Figure S88.
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Figure S101: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (MIROCS5 + LPJmL). Analogous to Figure S87.
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Figure S102: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (MIROC5 + LPJmL). Analogous to Figure S88.

S90



Land Area Population

A g Area 5 opLaor
-y 3 - g . 3 ]
— i fe%)’:%f;;‘m:}’j; — i }%}f}?‘?mﬁ;ﬁ;;
o — 7] 9\\ v ;S)’gs ) 4 — ‘/ Vw\ f“», jl,) ; 4
2 o BT AR i
oL je” g - 1 pet® 7 - - |
i R 5y | }zk £ |
L { L L L L - L L L L L L L L
| L 73 |
~ 7 t%?\ ngi"i\ <y
Al . S ’
KN if&
i S 3 |
L L L L é L L L L L L L L
- L |
RSN
or L i
2 | ﬂ/ L %V/{ﬁ? 4
'}s

-1.2 -10 -08 -06 -04 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Absolute Change in Multi-Year Mean Annual National
Land Area Fraction Affected by/Population Fraction Exposed to River Flood [%]

Figure S103: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (GFDL-ESM2M + MPI-HM). Analogous to Figure S87.
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Figure S104: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (GFDL-ESM2M + MPI-HM). Analogous to Figure S88.
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Figure S105: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (IPSL-CM5A-LR + MPI-HM). Analogous to Figure S87.
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Figure S106: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (IPSL-CM5A-LR + MPI-HM). Analogous to Figure S88.
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Figure S107: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (MIROC5 + MPI-HM). Analogous to Figure S87.
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Figure S108: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (MIROC5 + MPI-HM). Analogous to Figure S88.
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Figure S109: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (GFDL-ESM2M + ORCHIDEE). Analogous to Figure S87.
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Figure S110: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (GFDL-ESM2M + ORCHIDEE). Analogous to Figure S88.
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Figure S111: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (IPSL-CM5A-LR + ORCHIDEE). Analogous to Figure S87.
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Figure S112: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (IPSL-CM5A-LR + ORCHIDEE). Analogous to Figure S88.
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Figure S113: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (GFDL-ESM2M + PCR-GLOBWB). Analogous to Figure S87.
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Figure S114: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (GFDL-ESM2M + PCR-GLOBWB). Analogous to Figure S88.
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Figure S115: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (IPSL-CM5A-LR + PCR-GLOBWB). Analogous to Figure S87.

Land Area Population

1.0°C

1.5°C

2.0°C

-3.0 -25 -20 -15 -1.0 -05 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Binary Logarithm of Change Factor of Multi-Year Mean Annual National
Land Area Fraction Affected by/Population Fraction Exposed to River Flood

Figure S116: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (IPSL-CM5A-LR + PCR-GLOBWB). Analogous to Figure S88.
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Figure S117: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (MIROC5 + PCR-GLOBWB). Analogous to Figure S87.
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Figure S118: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (MIROC5 + PCR-GLOBWB). Analogous to Figure S88.

S98



Land Area Population

- oy o

N 7 ¥ 53‘“( ‘N}:'z}’
1 = |
'/:j .

1.0°C

1.5°C

2.0°C

-1.2 -10 -08 -06 -04 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Absolute Change in Multi-Year Mean Annual National
Land Area Fraction Affected by/Population Fraction Exposed to River Flood [%]

Figure S119: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (GFDL-ESM2M + WaterGAP2). Analogous to Figure S87.
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Figure S120: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (GFDL-ESM2M + WaterGAP2). Analogous to Figure S88.
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Figure S121: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (IPSL-CM5A-LR + WaterGAP2). Analogous to Figure S87.
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Figure S122: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (IPSL-CM5A-LR + WaterGAP2). Analogous to Figure S88.
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Figure S123: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (MIROC5 + WaterGAP2). Analogous to Figure S87.
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Figure S124: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to river flood (MIROC5 + WaterGAP2). Analogous to Figure S88.
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9.2 Tropical cyclones

For tropical cyclones we provide 100 model realizations of the same model. Here we show one example,
i.e. one realization for each GCM. Despite slight differences between different realizations, that account
for the stochasticity of tropical cyclone impacts, we do not observe relevant realization-specific devia-
tions that require a detailed discussion. All climate model-model realizations combinations are available
on request.
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Figure S125: Derivation of the pure effect of climate change on the global land area fraction annually
affected by tropical cyclone (GFDL-ESM2M + KE-TG-001). Panel A: Time series of annual global land area
fraction affected (AFA) by tropical cyclone for preindustrial climate (grey dots), historical climate (black dots), cli-
mate projections for RCP2.6 (blue dots), and RCP6.0 (orange dots). In all simulations, socioeconomic conditions
are varied according to the historically observed development between 1860 and 2005, and held fixed at 1860
conditions before 1860 and at 2005 conditions after 2005. The horizontal gray lines before 1860 and after 2005
represent the multi-year mean global land area fraction annually affected by tropical cyclone under preindustrial
climate conditions and socioeconomic conditions of 1860 and 2005, respectively. The gray line between 1860 and
2005 is a linear interpolation of these mean values. Panel B: Data shown in Panel A plotted against the associated
GCM-specific annual global mean temperature (GMT) change relative to the long-term preindustrial mean GMT.
Panel C: Pure effect of climate change on AFA, calculated as the difference between the annual data shown in Panel
A and the multi-year mean AFA under preindustrial climate conditions (gray line in Panel A). Panel D: Data shown
in Panel C plotted against annual GMT change. The red line represents the mean values of the annual data points
per 1°C-wide GMT change bin, with bins centered at GMT change levels increasing from 0 °C to 4 °C in steps of
0.5 °C. The area shaded in red represents the mean value +1 standard deviation ranges of the annual data points per
GMT change bin.
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Figure S126: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by tropical cyclone (IPSL-CM5A-LR + KE-TG-001). Analogous to Figure S125.
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Figure S127: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by tropical cyclone (MIROC5 + KE-TG-001). Analogous to Figure S125.

S103

X e piControl -
. o historical
e % rcp26 -
® rcp60
1700 1800 1900 2000 2100 2200 0 1 2 3 4
Year AGMT [°C]



Number of people exposed

A B
.S 3.0t ° T ° .
o
528 25 :
92,0 ]
sg8”
®di> 15 |
=S
8% 8 1.0 |
as-= .
—-c 5 o piControl |
o c 05 . .
S<F L) hlstzogcal
o o rcp
[G) 0.0 rcp60
B >§ . ‘ ‘. ‘ ‘ ‘ S ‘. ‘ ‘ ‘ ‘
© 5 2.0} 1S 4
e ge ° .
L2 co
9fs 13 . - e |
=c0 ° ° ®
gSw® 1.0} A ] .
co.Y ° 4 (4
T o LIS 0. o
SES os) “ R aease |
o) S'Z 8op %% .... PO
R R
232 st L0
258 -05| e TR f
o g— L] w e
w Il Il Il Il Il Il Il Il Il Il Il
1700 1800 1900 2000 2100 2200 0 1 2 3 4
Year AGMT [°C]

Figure S128: Derivation of the pure effect of climate change on the global population fraction annually
exposed to tropical cyclone (GFDL-ESM2M + KE-TG-001). Panel A: Time series of annual global population
fraction exposed (PFE) to tropical cyclone for preindustrial climate (grey dots), historical climate (black dots), cli-
mate projections for RCP2.6 (blue dots), and RCP6.0 (orange dots). In all simulations, socioeconomic conditions
are varied according to the historically observed development between 1860 and 2005, and held fixed at 1860
conditions before 1860 and at 2005 conditions after 2005. The horizontal gray lines before 1860 and after 2005
represent the multi-year mean global population fraction annually exposed to tropical cyclone under preindustrial
climate conditions and socioeconomic conditions of 1860 and 2005, respectively. The gray line between 1860 and
2005 is a linear interpolation of these mean values. Panel B: Data shown in Panel A plotted against the associated
GCM-specific annual global mean temperature (GMT) change relative to the long-term preindustrial mean GMT.
Panel C: Pure effect of climate change on PFE, calculated as the difference between the annual data shown in Panel
A and the multi-year mean PFE under preindustrial climate conditions (gray line in Panel A). Panel D: Data shown
in Panel C plotted against annual GMT change. The red line represents the mean values of the annual data points
per 1°C-wide GMT change bin, with bins centered at GMT change levels increasing from 0 °C to 4 °C in steps of
0.5 °C. The area shaded in red represents the mean value £1 standard deviation ranges of the annual data points per
GMT change bin.
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Figure S129: Derivation of the pure effect of climate change on the global population fraction annually
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exposed to tropical cyclone (IPSL-CM5A-LR + KE-TG-001). Analogous to Figure S128.
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Figure S130: Derivation of the pure effect of climate change on the global population fraction annually
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exposed to tropical cyclone (MIROC5 + KE-TG-001). Analogous to Figure S128.
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Land area affected and number of people exposed at the national scale
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Figure S131: Pure effect of climate change on annual national land area fraction affected by and popu-
lation fraction exposed to tropical cyclone (GFDL-ESM2M + KE-TG-001). Absolute changes in multi-year
mean annual national (A, C, E) land area fraction affected by and (B, D, F) population fraction exposed to tropical
cyclone at (A, B) 1°C, (C, D) 1.5°C and (E, F) 2 °C global warming.
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Figure S132: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to tropical cyclone (GFDL-ESM2M + KE-TG-001). Same as Figure S131 but for relative
changes expressed in terms of binary logarithms of change factors, i.e. —1 means a change by a factor of 0.5, 0 means
no change, and 1 means a change by a factor of 2. White indicates undefined relative changes due to division by
zero.
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Figure S133: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to tropical cyclone (IPSL-CM5A-LR + KE-TG-001). Analogous to Figure S131.
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Figure S134: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to tropical cyclone (IPSL-CM5A-LR + KE-TG-001). Analogous to Figure S132.
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Figure S135: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to tropical cyclone (MIROC5 + KE-TG-001). Analogous to Figure S131.
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Figure S136: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to tropical cyclone (MIROC5 + KE-TG-001). Analogous to Figure S132.
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9.3 Crop failure
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Figure S137: Derivation of the pure effect of climate change on the global land area fraction annually
affected by crop failure (GFDL-ESM2M + GEPIC). Panel A: Time series of annual global land area fraction
affected (AFA) by crop failure for preindustrial climate (grey dots), historical climate (black dots), climate projec-
tions for RCP2.6 (blue dots), and RCP6.0 (orange dots). In all simulations, socioeconomic conditions are varied
according to the historically observed development between 1860 and 2005, and held fixed at 1860 conditions be-
fore 1860 and at 2005 conditions after 2005. The horizontal gray lines before 1860 and after 2005 represent the
multi-year mean global land area fraction annually affected by crop failure under preindustrial climate conditions
and socioeconomic conditions of 1860 and 2005, respectively. The gray line between 1860 and 2005 is a linear
interpolation of these mean values. Panel B: Data shown in Panel A plotted against the associated GCM-specific
annual global mean temperature (GMT) change relative to the long-term preindustrial mean GMT. Panel C: Pure
effect of climate change on AFA, calculated as the difference between the annual data shown in Panel A and the
multi-year mean AFA under preindustrial climate conditions (gray line in Panel A). Panel D: Data shown in Panel
C plotted against annual GMT change. The red line represents the mean values of the annual data points per 1 °C-
wide GMT change bin, with bins centered at GMT change levels increasing from 0°C to 4 °C in steps of 0.5 °C.
The area shaded in red represents the mean value +1 standard deviation ranges of the annual data points per GMT
change bin.
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Figure S138: Derivation of the pure effect of climate change on the global land area fraction annually
affected by crop failure (IPSL-CM5A-LR + GEPIC). Analogous to Figure S137.
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Figure S139: Derivation of the pure effect of climate change on the global land area fraction annually
affected by crop failure (MIROC5 + GEPIC). Analogous to Figure S137.
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Figure S140: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by crop failure (GFDL-ESM2M + LPJmL). Analogous to Figure S137.

Figure S141: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by crop failure (IPSL-CM5A-LR + LPJmL). Analogous to Figure S137.
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Figure S142: Derivation of the pure effect of climate change on the global land area fraction annually

affected by crop failure (MIROC5 + LPJmL). Analogous to Figure S137.
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Figure S143: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by crop failure (GFDL-ESM2M + PEPIC). Analogous to Figure S137.
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Figure S144: Derivation of the pure effect of climate change on the global land area fraction annually

affected by crop failure (IPSL-CM5A-LR + PEPIC). Analogous to Figure S137.

% piControl

o historical

o rCP26
rcp60

' °
L ]
o
°e o, %
i 3
° ®
°
° P
L ® _o
°
.
.
- .
o0
i °
L ° o Bl
i (¢
1 1 L& GO 1 1 1
< m N — Q m N — Q
o o o o o o o o o

[%] @4njie4 doud
AQ pa1dayy Ajlenuuy
uoljdel4 ealy pueT |eqo|9

[%] @4njieq doid Aq pajoayy
Ajlenuuy uonoeld ealy pue
[ego|9 ul abuey) aInjosqy

1900 2000 2100 2200
Year

1800

1700

AGMT [°C]

Figure S145: Derivation of the pure effect of climate change on the global land area fraction annually

affected by crop failure (MIROC5 + PEPIC). Analogous to Figure S137.
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Figure S146: Derivation of the pure effect of climate change on the global population fraction annually
exposed to crop failure (GFDL-ESM2M + GEPIC). Panel A: Time series of annual global population fraction
exposed (PFE) to crop failure for preindustrial climate (grey dots), historical climate (black dots), climate projec-
tions for RCP2.6 (blue dots), and RCP6.0 (orange dots). In all simulations, socioeconomic conditions are varied
according to the historically observed development between 1860 and 2005, and held fixed at 1860 conditions be-
fore 1860 and at 2005 conditions after 2005. The horizontal gray lines before 1860 and after 2005 represent the
multi-year mean global population fraction annually exposed to crop failure under preindustrial climate condi-
tions and socioeconomic conditions of 1860 and 2005, respectively. The gray line between 1860 and 2005 is a linear
interpolation of these mean values. Panel B: Data shown in Panel A plotted against the associated GCM-specific
annual global mean temperature (GMT) change relative to the long-term preindustrial mean GMT. Panel C: Pure
effect of climate change on PFE, calculated as the difference between the annual data shown in Panel A and the
multi-year mean PFE under preindustrial climate conditions (gray line in Panel A). Panel D: Data shown in Panel
C plotted against annual GMT change. The red line represents the mean values of the annual data points per 1 °C-
wide GMT change bin, with bins centered at GMT change levels increasing from 0°C to 4 °C in steps of 0.5 °C.
The area shaded in red represents the mean value +1 standard deviation ranges of the annual data points per GMT
change bin.
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Figure S147: Derivation of the pure effect of climate change on the global population fraction annually

exposed to crop failure (IPSL-CM5A-LR + GEPIC). Analogous to Figure S146.
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Figure S148: Derivation of the pure effect of climate change on the global population fraction annually
exposed to crop failure (MIROC5 + GEPIC). Analogous to Figure S146.
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Figure S149: Derivation of the pure effect of climate change on the global population fraction annually
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exposed to crop failure (GFDL-ESM2M + LPJmL). Analogous to Figure S146.
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Figure S150: Derivation of the pure effect of climate change on the global population fraction annually
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exposed to crop failure (IPSL-CM5A-LR + LPJmL). Analogous to Figure S146.
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Figure S151: Derivation of the pure effect of climate change on the global population fraction annually
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Figure S152: Derivation of the pure effect of climate change on the global population fraction annually
exposed to crop failure (GFDL-ESM2M + PEPIC). Analogous to Figure S146.
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Figure S153: Derivation of the pure effect of climate change on the global population fraction annually
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exposed to crop failure (IPSL-CM5A-LR + PEPIC). Analogous to Figure S146.
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Figure S154: Derivation of the pure effect of climate change on the global population fraction annually
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exposed to crop failure (MIROCS5 + PEPIC). Analogous to Figure S146.
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Land area affected and number of people exposed at the national scale
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Figure S155: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to crop failure (GFDL-ESM2M + GEPIC). Absolute changes in multi-year mean annual
national (A, C, E) land area fraction affected by and (B, D, F) population fraction exposed to crop failure at (A, B)
1°C,(C,D) 1.5°C and (E, F) 2 °C global warming.
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Figure S156: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to crop failure (GFDL-ESM2M + GEPIC). Same as Figure S155 but for relative changes
expressed in terms of binary logarithms of change factors, i.e. —1 means a change by a factor of 0.5, 0 means no
change, and 1 means a change by a factor of 2. White indicates undefined relative changes due to division by zero.
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Figure S157: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to crop failure (IPSL-CM5A-LR + GEPIC). Analogous to Figure S155.
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Figure S158: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to crop failure (IPSL-CM5A-LR + GEPIC). Analogous to Figure S156.
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Figure S159: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to crop failure (MIROC5 + GEPIC). Analogous to Figure S155.
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Figure S160: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to crop failure (MIROC5 + GEPIC). Analogous to Figure S156.
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Figure S161: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to crop failure (GFDL-ESM2M + LPJmL). Analogous to Figure S155.
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Figure S162: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to crop failure (GFDL-ESM2M + LPJmL). Analogous to Figure S156.
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Figure S163: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to crop failure (IPSL-CM5A-LR + LPJmL). Analogous to Figure S155.
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Figure S164: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to crop failure (IPSL-CM5A-LR + LPJmL). Analogous to Figure S156.
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Figure S165: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to crop failure (MIROCS5 + LPJmL). Analogous to Figure S155.
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Figure S166: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to crop failure (MIROC5 + LPJmL). Analogous to Figure S156.
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Figure S167: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to crop failure (GFDL-ESM2M + PEPIC). Analogous to Figure S155.
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Figure S168: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to crop failure (GFDL-ESM2M + PEPIC). Analogous to Figure S156.
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Figure S169: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to crop failure (IPSL-CM5A-LR + PEPIC). Analogous to Figure S155.
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Figure S170: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to crop failure (IPSL-CM5A-LR + PEPIC). Analogous to Figure S156.
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Figure S171: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to crop failure (MIROCS5 + PEPIC). Analogous to Figure S155.
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Figure S172: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to crop failure (MIROCS5 + PEPIC). Analogous to Figure S156.
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9.4 Wildfires
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Figure S173: Derivation of the pure effect of climate change on the global land area fraction annually
affected by wildfire (GFDL-ESM2M + CARAIB). Panel A: Time series of annual global land area fraction
affected (AFA) by wildfire for preindustrial climate (grey dots), historical climate (black dots), climate projections
for RCP2.6 (blue dots), and RCP6.0 (orange dots). In all simulations, socioeconomic conditions are varied according
to the historically observed development between 1860 and 2005, and held fixed at 1860 conditions before 1860
and at 2005 conditions after 2005. The horizontal gray lines before 1860 and after 2005 represent the multi-year
mean global land area fraction annually affected by wildfire under preindustrial climate conditions and socioeco-
nomic conditions of 1860 and 2005, respectively. The gray line between 1860 and 2005 is a linear interpolation
of these mean values. Panel B: Data shown in Panel A plotted against the associated GCM-specific annual global
mean temperature (GMT) change relative to the long-term preindustrial mean GMT. Panel C: Pure effect of climate
change on AFA, calculated as the difference between the annual data shown in Panel A and the multi-year mean
AFA under preindustrial climate conditions (gray line in Panel A). Panel D: Data shown in Panel C plotted against
annual GMT change. The red line represents the mean values of the annual data points per 1 °C-wide GMT change
bin, with bins centered at GMT change levels increasing from 0 °C to 4 °C in steps of 0.5 °C. The area shaded in red
represents the mean value +1 standard deviation ranges of the annual data points per GMT change bin.
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Absolute Change in Global
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Figure S174: Derivation of the pure effect of climate change on the global land area fraction annually
affected by wildfire (IPSL-CM5A-LR + CARAIB). Analogous to Figure S173.
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Figure S175: Derivation of the pure effect of climate change on the global land area fraction annually
affected by wildfire (MIROC5 + CARAIB). Analogous to Figure S173.
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Figure S176: Derivation of the pure effect of climate change on the global land area fraction annually

affected by wildfire (GFDL-ESM2M + LPJ-GUESS). Analogous to Figure S173.
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Figure S177: Derivation of the pure effect of climate change on the global land area fraction annually

affected by wildfire (IPSL-CM5A-LR + LPJ-GUESS). Analogous to Figure S173.
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Figure S178: Derivation of the pure effect of climate change on the global land area fraction annually

affected by wildfire (MIROC5 + LPJ-GUESS). Analogous to Figure S173.
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Figure S179: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by wildfire (GFDL-ESM2M + LPJmL). Analogous to Figure S173.
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Figure S180: Derivation of the pure effect of climate change on the global land area fraction annually
affected by wildfire (IPSL-CM5A-LR + LPJmL). Analogous to Figure S173.
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Figure S181: Derivation of the pure effect of climate change on the global land area fraction annually
affected by wildfire (MIROCS5 + LPJmL). Analogous to Figure S173.
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Figure S182: Derivation of the pure effect of climate change on the global land area fraction annually

affected by wildfire (GFDL-ESM2M + ORCHIDEE). Analogous to Figure S173.
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Figure S183: Derivation of the pure effect of climate change on the global land area fraction annually
affected by wildfire (IPSL-CM5A-LR + ORCHIDEE). Analogous to Figure S173.
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Figure S184: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by wildfire (GFDL-ESM2M + VISIT). Analogous to Figure S173.
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Figure S185: Derivation of the pure effect of climate change on the global land area fraction annually

% piControl

o historical

o rCp26
rcp60

2000 2100

Year

1700 1800 1900

2200

AGMT [°C]

affected by wildfire (IPSL-CM5A-LR + VISIT). Analogous to Figure S173.
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Figure S186: Derivation of the pure effect of climate change on the global land area fraction annually
affected by wildfire (MIROCS5 + VISIT). Analogous to Figure S173.
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Figure S187: Derivation of the pure effect of climate change on the global population fraction annually
exposed to wildfire (GFDL-ESM2M + CARAIB). Panel A: Time series of annual global population fraction
exposed (PFE) to wildfire for preindustrial climate (grey dots), historical climate (black dots), climate projections
for RCP2.6 (blue dots), and RCP6.0 (orange dots). In all simulations, socioeconomic conditions are varied according
to the historically observed development between 1860 and 2005, and held fixed at 1860 conditions before 1860 and
at 2005 conditions after 2005. The horizontal gray lines before 1860 and after 2005 represent the multi-year mean
global population fraction annually exposed to wildfire under preindustrial climate conditions and socioeconomic
conditions of 1860 and 2005, respectively. The gray line between 1860 and 2005 is a linear interpolation of these
mean values. Panel B: Data shown in Panel A plotted against the associated GCM-specific annual global mean
temperature (GMT) change relative to the long-term preindustrial mean GMT. Panel C: Pure effect of climate
change on PFE, calculated as the difference between the annual data shown in Panel A and the multi-year mean
PFE under preindustrial climate conditions (gray line in Panel A). Panel D: Data shown in Panel C plotted against
annual GMT change. The red line represents the mean values of the annual data points per 1 °C-wide GMT change
bin, with bins centered at GMT change levels increasing from 0 °C to 4 °C in steps of 0.5 °C. The area shaded in red
represents the mean value +1 standard deviation ranges of the annual data points per GMT change bin.
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Figure S188: Derivation of the pure effect of climate change on the global population fraction annually
exposed to wildfire (IPSL-CM5A-LR + CARAIB). Analogous to Figure S187.
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Figure S189: Derivation of the pure effect of climate change on the global population fraction annually
exposed to wildfire (MIROC5 + CARAIB). Analogous to Figure S187.
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Figure S190: Derivation of the pure effect of climate change on the global population fraction annually
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exposed to wildfire (GFDL-ESM2M + LPJ-GUESS). Analogous to Figure S187.
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Figure S191: Derivation of the pure effect of climate change on the global population fraction annually
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exposed to wildfire (IPSL-CM5A-LR + LPJ-GUESS). Analogous to Figure S187.
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Figure S192: Derivation of the pure effect of climate change on the global population fraction annually
exposed to wildfire (MIROC5 + LPJ-GUESS). Analogous to Figure S187.
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Figure S193: Derivation of the pure effect of climate change on the global population fraction annually
exposed to wildfire (GFDL-ESM2M + LPJmL). Analogous to Figure S187.
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Figure S194: Derivation of the pure effect of climate change on the global population fraction annually
exposed to wildfire (IPSL-CM5A-LR + LPJmL). Analogous to Figure S187.
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Figure S195: Derivation of the pure effect of climate change on the global population fraction annually
exposed to wildfire (MIROC5 + LPJmL). Analogous to Figure S187.

S142



A\
s uf f
o
s 10} 1
3%
S85 of |
BdE
a>2 8r ]
£8=
< S 7F .
‘85 % historical
& o mrie
_> c
m_l—|
<& 1} |
vol Wo o
[@) brurjiy )
ct= ) &
ggg O —f‘;’ﬂ. ) N
ULL; [ ® j‘)
(0] g QO -1} o ? ) s i
+ 0 [ ] 0Ty ~
=] °0%e 0x =
s % o A
Saaouw =2 LY i
<9 <

1700 1800 1900 2000 2100 2200 0 1 2 3 4

Year AGMT [°C]

Figure S196: Derivation of the pure effect of climate change on the global population fraction annually
exposed to wildfire (GFDL-ESM2M + ORCHIDEE). Analogous to Figure S187.
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Figure S197: Derivation of the pure effect of climate change on the global population fraction annually
exposed to wildfire (IPSL-CM5A-LR + ORCHIDEE). Analogous to Figure S187.

S143



Figure S198: Derivation of the pure effect of climate change on the global population fraction annually
exposed to wildfire (GFDL-ESM2M + VISIT). Analogous to Figure S187.

Global Population Fraction
Annually Exposed to

Absolute Change in Global
Population Fraction Annually
Exposed to Wildfire [%]

Wildfire [%]
N

[e)]

w

Af T T T T T T T T
c 5.0 |
RS
E S 45 ,
« O
a0 1
£85 35 |
555 3.0
323> *
£3= 25 |
= E e piControl
8< 2.0 % historical
5 s =~ ez
—> L€
T=_ 25} ,
3%
GEg 20 ]
c<2
—_ =
955 15 .
-
58g 10 |
c 4+ S
Yoo 05 |
2o
383 00
0 3u>j
2 § -05} 1
1700 1800 1900 2000 2100 2200 2 3 4
Year AGMT [°C]

3 .
% piControl
o historical
25 o rCp26
rcp60

o

|
=

!

1700 1800 1900 2000 2100
Year

2200

AGMT [°C]

Figure S199: Derivation of the pure effect of climate change on the global population fraction annually
exposed to wildfire (IPSL-CM5A-LR + VISIT). Analogous to Figure S187.
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Figure S200: Derivation of the pure effect of climate change on the global population fraction annually
exposed to wildfire (MIROCS5 + VISIT). Analogous to Figure S187.
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Land area affected and number of people exposed at the national scale
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Figure S201: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (GFDL-ESM2M + CARAIB). Absolute changes in multi-year mean annual
national (A, C, E) land area fraction affected by and (B, D, F) population fraction exposed to wildfire at (A, B) 1°C,
(C,D) 1.5°C and (E, F) 2 °C global warming.
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Figure S202: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (GFDL-ESM2M + CARAIB). Same as Figure S201 but for relative changes
expressed in terms of binary logarithms of change factors, i.e. —1 means a change by a factor of 0.5, 0 means no
change, and 1 means a change by a factor of 2. White indicates undefined relative changes due to division by zero.
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Figure S203: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (IPSL-CM5A-LR + CARAIB). Analogous to Figure S201.
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Figure S204: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (IPSL-CM5A-LR + CARAIB). Analogous to Figure $202.
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Figure S205: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (MIROC5 + CARAIB). Analogous to Figure S201.
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Figure S206: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (MIROC5 + CARAIB). Analogous to Figure S202.
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Figure S207: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (GFDL-ESM2M + LPJ-GUESS). Analogous to Figure S201.

Land Area Population
A B
L ) L
Y ™
0 T
(@] — N
B : :
o . N
— s Ryt
27 J
R "
! |
C D
L L
™~ ™~
S e
U - N
% o ot
- gt e
2 i
T N
7R {0
L {
E F
L\
-
(] e
5 ~
N o
& -

-1.5 -125 -1.0 -0.75 -05 -0.25 0.0 0.25 0.5 0.75 1.0 1.25 1.5

Binary Logarithm of Change Factor of Multi-Year Mean Annual National
Land Area Fraction Affected by/Population Fraction Exposed to Wildfire

Figure S208: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (GFDL-ESM2M + LPJ-GUESS). Analogous to Figure S202.
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Figure S209: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (IPSL-CM5A-LR + LPJ-GUESS). Analogous to Figure S201.
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Figure S210: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (IPSL-CM5A-LR + LPJ-GUESS). Analogous to Figure S202.
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Figure S211: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (MIROC5 + LPJ-GUESS). Analogous to Figure S201.
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Figure S212: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (MIROCS5 + LPJ-GUESS). Analogous to Figure S202.
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Figure S213: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (GFDL-ESM2M + LPJmL). Analogous to Figure S201.
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Figure S214: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (GFDL-ESM2M + LPJmL). Analogous to Figure S202.
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Figure S215: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (IPSL-CM5A-LR + LPJmL). Analogous to Figure S201.
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Figure S216: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (IPSL-CM5A-LR + LPJmL). Analogous to Figure $202.
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Figure S217: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (MIROC5 + LPJmL). Analogous to Figure S201.
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Figure S218: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (MIROCS5 + LPJmL). Analogous to Figure S202.
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Figure S219: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (GFDL-ESM2M + ORCHIDEE). Analogous to Figure S201.
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Figure S220: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (GFDL-ESM2M + ORCHIDEE). Analogous to Figure $202.
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Figure S221: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (IPSL-CM5A-LR + ORCHIDEE). Analogous to Figure S201.
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Figure S222: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (IPSL-CM5A-LR + ORCHIDEE). Analogous to Figure S202.
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Figure S223: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (GFDL-ESM2M + VISIT). Analogous to Figure S201.

Land Area Population

1.0°C

1.5°C

2.0°C

-1.5 -125 -1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1.0 1.25 15

Binary Logarithm of Change Factor of Multi-Year Mean Annual National
Land Area Fraction Affected by/Population Fraction Exposed to Wildfire

Figure S224: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (GFDL-ESM2M + VISIT). Analogous to Figure S202.
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Figure S225: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (IPSL-CM5A-LR + VISIT). Analogous to Figure S201.
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Figure S226: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (IPSL-CM5A-LR + VISIT). Analogous to Figure S202.
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Figure S227: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (MIROCS5 + VISIT). Analogous to Figure S201.
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Figure S228: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to wildfire (MIROCS5 + VISIT). Analogous to Figure S202.
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9.5 Droughts
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Figure S229: Derivation of the pure effect of climate change on the global land area fraction annually
affected by drought (GFDL-ESM2M + CLM45). Panel A: Time series of annual global land area fraction affected
(AFA) by drought for preindustrial climate (grey dots), historical climate (black dots), climate projections for RCP2.6
(blue dots), and RCP6.0 (orange dots). In all simulations, socioeconomic conditions are varied according to the
historically observed development between 1860 and 2005, and held fixed at 1860 conditions before 1860 and at
2005 conditions after 2005. The horizontal gray lines before 1860 and after 2005 represent the multi-year mean
global land area fraction annually affected by drought under preindustrial climate conditions and socioeconomic
conditions of 1860 and 2005, respectively. The gray line between 1860 and 2005 is a linear interpolation of these
mean values. Panel B: Data shown in Panel A plotted against the associated GCM-specific annual global mean
temperature (GMT) change relative to the long-term preindustrial mean GMT. Panel C: Pure effect of climate
change on AFA, calculated as the difference between the annual data shown in Panel A and the multi-year mean
AFA under preindustrial climate conditions (gray line in Panel A). Panel D: Data shown in Panel C plotted against
annual GMT change. The red line represents the mean values of the annual data points per 1 °C-wide GMT change
bin, with bins centered at GMT change levels increasing from 0 °C to 4 °C in steps of 0.5 °C. The area shaded in red
represents the mean value +1 standard deviation ranges of the annual data points per GMT change bin.
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Figure S230: Derivation of the pure effect of climate change on the global land area fraction annually
affected by drought (IPSL-CM5A-LR + CLM45). Analogous to Figure S229.
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Figure S231: Derivation of the pure effect of climate change on the global land area fraction annually
affected by drought (MIROC5 + CLM45). Analogous to Figure S229.
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Figure S232: Derivation of the pure effect of climate change on the global land area fraction annually
affected by drought (GFDL-ESM2M + H08). Analogous to Figure S229.
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Figure S233: Derivation of the pure effect of climate change on the global land area fraction annually
affected by drought (IPSL-CM5A-LR + H08). Analogous to Figure $229.
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Figure S234: Derivation of the pure effect of climate change on the global land area fraction annually
affected by drought (MIROC5 + H08). Analogous to Figure $229.

A\
C [ ]
S, 20r 1
g;:
- O
e oE ’
R
528
245005 . i
© % piControl
S5 o historical
5 0.0 o rCpP26
rcp60
—_— > C °
Z3g 15| f
—_— C‘—‘
(O] c ¥
£Sg 10 *
[} n
20 05
ouwo
© T
ggg 00
_ < (9]
°c -9
a cg —05¢ g
<5
1700 1800 1900 2000 2100 2200 2 3 4
Year AGMT [°C]

c 3.5 ]
°
3 30 _
@©
« O
oo 2.5 g
555
EEE 2.0 g
°5.315 |
Cé’e '
8c51.0 ) .
= e, piControl
'8<C( 0.5 % historical -
o o rCP26
O 0.0 rcp60 i

R c ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
oS <25} ®e 1
328 *
Ocz 20} . o by .
= c 9 . oz "
oo 15} oo go .
%ﬁﬂ . ®e Ct’

@©
L& 10t s T A Sy A l
v®Y o 08 ¢ t“f“ 4
209 o0 W o ol
>5505¢ {t-'o.s‘ s° 1
[e] (9 [ ]
k= 9 é °
Q<< 0.0 °®
<®© o

— e

1700 1800 1900 2000 2100 2200 3 4
Year AGMT [°C]

Figure S235: Derivation of the pure effect of climate change on the global land area fraction annually
affected by drought (GFDL-ESM2M + JULES-W1). Analogous to Figure S229.
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Figure S236: Derivation of the pure effect of climate change on the global land area fraction annually
affected by drought (IPSL-CM5A-LR + JULES-W1). Analogous to Figure S229.
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Figure S237: Derivation of the pure effect of climate change on the global land area fraction annually
affected by drought (GFDL-ESM2M + LPJmL). Analogous to Figure S229.
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Figure S238: Derivation of the pure effect of climate change on the global land area fraction annually
affected by drought (IPSL-CM5A-LR + LPJmL). Analogous to Figure $229.
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Figure S239: Derivation of the pure effect of climate change on the global land area fraction annually
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Figure S240: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by drought (GFDL-ESM2M + MPI-HM). Analogous to Figure $229.
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Figure S241: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by drought (IPSL-CM5A-LR + MPI-HM). Analogous to Figure $229.
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Figure S242: Derivation of the pure effect of climate change on the global land area fraction annually
affected by drought (MIROC5 + MPI-HM). Analogous to Figure S229.
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Figure S243: Derivation of the pure effect of climate change on the global land area fraction annually
affected by drought (GFDL-ESM2M + ORCHIDEE). Analogous to Figure S229.
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Figure S244: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by drought (IPSL-CM5A-LR + ORCHIDEE). Analogous to Figure S229.
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Figure S245: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by drought (GFDL-ESM2M + PCR-GLOBWB). Analogous to Figure S$229.
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Figure S246: Derivation of the pure effect of climate change on the global land area fraction annually
affected by drought (IPSL-CM5A-LR + PCR-GLOBWB). Analogous to Figure S229.
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Figure S247: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by drought (MIROC5 + PCR-GLOBWB). Analogous to Figure S229.
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Figure S248: Derivation of the pure effect of climate change on the global land area fraction annually
affected by drought (GFDL-ESM2M + WaterGAP2). Analogous to Figure $229.
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Figure S249: Derivation of the pure effect of climate change on the global land area fraction annually
affected by drought (IPSL-CM5A-LR + WaterGAP2). Analogous to Figure $229.

S171



Global Land Area Fraction

Absolute Change in Global
Land Area Fraction Annually

Drought [%]

o
U

Annually Affected by

Affected by Drought [%]

N
o

=
5

=
=}

o
o

1.5

1.0

0.5

0.0

o piControl

% historical

o CP26
rcp60

T

1700

1800

1900 2000 2100
Year

2200

AGMT [°C]

Figure S250: Derivation of the pure effect of climate change on the global land area fraction annually

affected by drought (MIROCS5 + WaterGAP2). Analogous to Figure S229.
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Figure S251: Derivation of the pure effect of climate change on the global population fraction annually
exposed to drought (GFDL-ESM2M + CLM45). Panel A: Time series of annual global population fraction ex-
posed (PFE) to drought for preindustrial climate (grey dots), historical climate (black dots), climate projections for
RCP2.6 (blue dots), and RCP6.0 (orange dots). In all simulations, socioeconomic conditions are varied according to
the historically observed development between 1860 and 2005, and held fixed at 1860 conditions before 1860 and
at 2005 conditions after 2005. The horizontal gray lines before 1860 and after 2005 represent the multi-year mean
global population fraction annually exposed to drought under preindustrial climate conditions and socioeconomic
conditions of 1860 and 2005, respectively. The gray line between 1860 and 2005 is a linear interpolation of these
mean values. Panel B: Data shown in Panel A plotted against the associated GCM-specific annual global mean tem-
perature (GMT) change relative to the long-term preindustrial mean GMT. Panel C: Pure effect of climate change
on PFE, calculated as the difference between the annual data shown in Panel A and the multi-year mean PFE under
preindustrial climate conditions (gray line in Panel A). Panel D: Data shown in Panel C plotted against annual GMT
change. The red line represents the mean values of the annual data points per 1 °C-wide GMT change bin, with bins
centered at GMT change levels increasing from 0 °C to 4 °C in steps of 0.5 °C. The area shaded in red represents the
mean value £1 standard deviation ranges of the annual data points per GMT change bin.
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Figure S252: Derivation of the pure effect of climate change on the global population fraction annually

exposed to drought (IPSL-CM5A-LR + CLM45). Analogous to Figure S251.
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Figure S253: Derivation of the pure effect of climate change on the global population fraction annually
exposed to drought (MIROC5 + CLM45). Analogous to Figure S251.
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Figure S254: Derivation of the pure effect of climate change on the global population fraction annually
exposed to drought (GFDL-ESM2M + H08). Analogous to Figure S251.
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Figure S255: Derivation of the pure effect of climate change on the global population fraction annually
exposed to drought (IPSL-CM5A-LR + HO08). Analogous to Figure S251.
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Figure S256: Derivation of the pure effect of climate change on the global population fraction annually
exposed to drought (MIROC5 + H08). Analogous to Figure S251.
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Figure S257: Derivation of the pure effect of climate change on the global population fraction annually
exposed to drought (GFDL-ESM2M + JULES-W1). Analogous to Figure S251.
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Figure S258: Derivation of the pure effect of climate change on the global population fraction annually

exposed to drought (IPSL-CM5A-LR + JULES-W1). Analogous to Figure S251.
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Figure S259: Derivation of the pure effect of climate change on the global population fraction annually
exposed to drought (GFDL-ESM2M + LPJmL). Analogous to Figure S251.
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Figure S260: Derivation of the pure effect of climate change on the global population fraction annually
exposed to drought (IPSL-CM5A-LR + LPJmL). Analogous to Figure S251.
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Figure S261: Derivation of the pure effect of climate change on the global population fraction annually
exposed to drought (MIROCS5 + LPJmL). Analogous to Figure S251.
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Figure S262: Derivation of the pure effect of climate change on the global population fraction annually
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Figure S263: Derivation of the pure effect of climate change on the global population fraction annually
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exposed to drought (IPSL-CM5A-LR + MPI-HM). Analogous to Figure S251.
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Figure S264: Derivation of the pure effect of climate change on the global population fraction annually
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Figure S265: Derivation of the pure effect of climate change on the global population fraction annually
exposed to drought (GFDL-ESM2M + ORCHIDEE). Analogous to Figure S251.
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Figure S266: Derivation of the pure effect of climate change on the global population fraction annually
exposed to drought (IPSL-CM5A-LR + ORCHIDEE). Analogous to Figure S251.
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Figure S267: Derivation of the pure effect of climate change on the global population fraction annually
exposed to drought (GFDL-ESM2M + PCR-GLOBWB). Analogous to Figure S251.

S181



Figure S268: Derivation of the pure effect of climate change on the global population fraction annually

exposed to drought (IPSL-CM5A-LR + PCR-GLOBWB). Analogous to Figure S251.
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Figure S269: Derivation of the pure effect of climate change on the global population fraction annually
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exposed to drought (MIROC5 + PCR-GLOBWB). Analogous to Figure S251.
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Figure S270: Derivation of the pure effect of climate change on the global population fraction annually
exposed to drought (GFDL-ESM2M + WaterGAP2). Analogous to Figure S251.
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Figure S271: Derivation of the pure effect of climate change on the global population fraction annually
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exposed to drought (IPSL-CM5A-LR + WaterGAP2). Analogous to Figure S251.
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Figure S272: Derivation of the pure effect of climate change on the global population fraction annually

exposed to drought (MIROC5 + WaterGAP2). Analogous to Figure S251.
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Figure S273: Pure effect of climate change on annual national land area fraction affected by and popu-
lation fraction exposed to drought (GFDL-ESM2M + CLM45). Absolute changes in multi-year mean annual
national (A, C, E) land area fraction affected by and (B, D, F) population fraction exposed to drought at (A, B) 1°C,
(C,D) 1.5°C and (E, F) 2 °C global warming.
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Figure S274: Pure effect of climate change on annual national land area fraction affected by and popu-
lation fraction exposed to drought (GFDL-ESM2M + CLM45). Same as Figure S273 but for relative changes
expressed in terms of binary logarithms of change factors, i.e. —1 means a change by a factor of 0.5, 0 means no
change, and 1 means a change by a factor of 2. White indicates undefined relative changes due to division by zero.

S186



Land Area Population

1.0°C

1.5°C

2.0°C

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Absolute Change in Multi-Year Mean Annual National
Land Area Fraction Affected by/Population Fraction Exposed to Drought [%]

Figure S275: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (IPSL-CM5A-LR + CLM45). Analogous to Figure S273.
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Figure S276: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (IPSL-CM5A-LR + CLM45). Analogous to Figure S274.
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Figure S277: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (MIROC5 + CLM45). Analogous to Figure S273.
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Figure S278: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (MIROC5 + CLM45). Analogous to Figure S274.
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Figure S279: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (GFDL-ESM2M + H08). Analogous to Figure S273.
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Figure S280: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (GFDL-ESM2M + H08). Analogous to Figure S274.

S189



Land Area Population

ry T T T 5 T T T
B s oy ‘ |
e e e 2
ol — + oy Ay & i
S £ £ S
o Sk e Q\sﬁ
— L pet 1 e % |
™~ b Ef;
- i
- { 2 + R ,
! L
C f f f f ; f f f i f f ) f f f f ; f i f f f f
T L\. - 7
- =
o 1 — Iz |
o % . B
1 N |
28 ®
Y % ;%
1 57 2 o i
i
f f f f f ; f f f f f f
F
1 L 2 J
o 1 ~— é e B
.Y il
) ey %J‘z\ 53
1 \j UL o o 7
N il ZE
L T
1 ‘/ » i i
!,
-2 -1 0 1 2 3 4 5 6

Absolute Change in Multi-Year Mean Annual National
Land Area Fraction Affected by/Population Fraction Exposed to Drought [%]

Figure S281: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (IPSL-CM5A-LR + H08). Analogous to Figure S273.
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Figure S282: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (IPSL-CM5A-LR + H08). Analogous to Figure S274.
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Figure S283: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (MIROCS5 + H08). Analogous to Figure S273.
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Figure S284: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (MIROCS5 + H08). Analogous to Figure S274.
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Figure S285: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (GFDL-ESM2M + JULES-W1). Analogous to Figure S273.
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Figure S286: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (GFDL-ESM2M + JULES-W1). Analogous to Figure S274.
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Figure S287: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (IPSL-CM5A-LR + JULES-W1). Analogous to Figure S273.
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Figure S288: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (IPSL-CM5A-LR + JULES-W1). Analogous to Figure S274.
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Figure S289: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (GFDL-ESM2M + LPJmL). Analogous to Figure S273.
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Figure S290: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (GFDL-ESM2M + LPJmL). Analogous to Figure S274.
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Figure S291: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (IPSL-CM5A-LR + LPJmL). Analogous to Figure S273.
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Figure S292: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (IPSL-CM5A-LR + LPJmL). Analogous to Figure S274.
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Figure S293: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (MIROC5 + LPJmL). Analogous to Figure S273.
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Figure S294: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (MIROC5 + LPJmL). Analogous to Figure S274.
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Figure S295: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (GFDL-ESM2M + MPI-HM). Analogous to Figure S273.
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Figure S296: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (GFDL-ESM2M + MPI-HM). Analogous to Figure S274.
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Figure S297: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (IPSL-CM5A-LR + MPI-HM). Analogous to Figure S273.
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Figure S298: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (IPSL-CM5A-LR + MPI-HM). Analogous to Figure S274.
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Figure S299: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (MIROC5 + MPI-HM). Analogous to Figure S273.
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Figure S300: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (MIROC5 + MPI-HM). Analogous to Figure S274.
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Figure S301: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (GFDL-ESM2M + ORCHIDEE). Analogous to Figure S273.
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Figure S302: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (GFDL-ESM2M + ORCHIDEE). Analogous to Figure S274.
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Figure S303: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (IPSL-CM5A-LR + ORCHIDEE). Analogous to Figure S273.
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Figure S304: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (IPSL-CM5A-LR + ORCHIDEE). Analogous to Figure S274.
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Figure S305: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (GFDL-ESM2M + PCR-GLOBWB). Analogous to Figure S273.
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Figure S306: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (GFDL-ESM2M + PCR-GLOBWB). Analogous to Figure S274.
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Figure S307: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (IPSL-CM5A-LR + PCR-GLOBWB). Analogous to Figure S273.
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Figure S308: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (IPSL-CM5A-LR + PCR-GLOBWB). Analogous to Figure S274.
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Figure S309: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (MIROC5 + PCR-GLOBWB). Analogous to Figure S273.
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Figure S310: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (MIROC5 + PCR-GLOBWB). Analogous to Figure S274.
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Figure S311: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (GFDL-ESM2M + WaterGAP2). Analogous to Figure S273.
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Figure S312: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (GFDL-ESM2M + WaterGAP2). Analogous to Figure S274.
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Figure S313: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (IPSL-CM5A-LR + WaterGAP2). Analogous to Figure S273.
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Figure S314: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (IPSL-CM5A-LR + WaterGAP2). Analogous to Figure S274.
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Figure S315: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (MIROC5 + WaterGAP2). Analogous to Figure S273.
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Figure S316: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to drought (MIROC5 + WaterGAP2). Analogous to Figure S274.
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9.6 Heatwaves
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Figure S317: Derivation of the pure effect of climate change on the global land area fraction annually
affected by heatwave (GFDL-ESM2M + HWMId-humidex). Panel A: Time series of annual global land area
fraction affected (AFA) by heatwave for preindustrial climate (grey dots), historical climate (black dots), climate
projections for RCP2.6 (blue dots), and RCP6.0 (orange dots). In all simulations, socioeconomic conditions are var-
ied according to the historically observed development between 1860 and 2005, and held fixed at 1860 conditions
before 1860 and at 2005 conditions after 2005. The horizontal gray lines before 1860 and after 2005 represent the
multi-year mean global land area fraction annually affected by heatwave under preindustrial climate conditions
and socioeconomic conditions of 1860 and 2005, respectively. The gray line between 1860 and 2005 is a linear
interpolation of these mean values. Panel B: Data shown in Panel A plotted against the associated GCM-specific
annual global mean temperature (GMT) change relative to the long-term preindustrial mean GMT. Panel C: Pure
effect of climate change on AFA, calculated as the difference between the annual data shown in Panel A and the
multi-year mean AFA under preindustrial climate conditions (gray line in Panel A). Panel D: Data shown in Panel
C plotted against annual GMT change. The red line represents the mean values of the annual data points per 1 °C-
wide GMT change bin, with bins centered at GMT change levels increasing from 0°C to 4 °C in steps of 0.5 °C.
The area shaded in red represents the mean value +1 standard deviation ranges of the annual data points per GMT
change bin.
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Figure S318: Derivation of the pure effect of climate change on the global land area fraction annually
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affected by heatwave (IPSL-CM5A-LR + HWMId-humidex). Analogous to Figure S317.
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Figure S319: Derivation of the pure effect of climate change on the global land area fraction annually
affected by heatwave (MIROC5 + HWMId-humidex). Analogous to Figure S317.
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Figure S320: Derivation of the pure effect of climate change on the global population fraction annually
exposed to heatwave (GFDL-ESM2M + HWMId-humidex). Panel A: Time series of annual global population
fraction exposed (PFE) to heatwave for preindustrial climate (grey dots), historical climate (black dots), climate
projections for RCP2.6 (blue dots), and RCP6.0 (orange dots). In all simulations, socioeconomic conditions are var-
ied according to the historically observed development between 1860 and 2005, and held fixed at 1860 conditions
before 1860 and at 2005 conditions after 2005. The horizontal gray lines before 1860 and after 2005 represent the
multi-year mean global population fraction annually exposed to heatwave under preindustrial climate conditions
and socioeconomic conditions of 1860 and 2005, respectively. The gray line between 1860 and 2005 is a linear
interpolation of these mean values. Panel B: Data shown in Panel A plotted against the associated GCM-specific
annual global mean temperature (GMT) change relative to the long-term preindustrial mean GMT. Panel C: Pure
effect of climate change on PFE, calculated as the difference between the annual data shown in Panel A and the
multi-year mean PFE under preindustrial climate conditions (gray line in Panel A). Panel D: Data shown in Panel
C plotted against annual GMT change. The red line represents the mean values of the annual data points per 1 °C-
wide GMT change bin, with bins centered at GMT change levels increasing from 0°C to 4 °C in steps of 0.5 °C.
The area shaded in red represents the mean value +1 standard deviation ranges of the annual data points per GMT
change bin.
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Figure S321: Derivation of the pure effect of climate change on the global population fraction annually
exposed to heatwave (IPSL-CM5A-LR + HWMId-humidex). Analogous to Figure S$320.
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Figure S322: Derivation of the pure effect of climate change on the global population fraction annually
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exposed to heatwave (MIROC5 + HWMId-humidex). Analogous to Figure S320.
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Land area affected and number of people exposed at the national scale
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Figure S323: Pure effect of climate change on annual national land area fraction affected by and popu-
lation fraction exposed to heatwave (GFDL-ESM2M + HWMId-humidex). Absolute changes in multi-year
mean annual national (A, C, E) land area fraction affected by and (B, D, F) population fraction exposed to heatwave
at (A, B) 1°C, (C, D) 1.5°C and (E, F) 2 °C global warming.
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Figure S324: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to heatwave (GFDL-ESM2M + HWMId-humidex). Same as Figure $323 but for relative
changes expressed in terms of binary logarithms of change factors, i.e. —1 means a change by a factor of 0.5, 0 means
no change, and 1 means a change by a factor of 2. White indicates undefined relative changes due to division by
zero.

S213



Land Area Population

1.0°C

1.5°C

2.0°C

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

Absolute Change in Multi-Year Mean Annual National
Land Area Fraction Affected by/Population Fraction Exposed to Heatwave [%]

Figure S325: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to heatwave (IPSL-CM5A-LR + HWMId-humidex). Analogous to Figure $323.

Land Area Population

L2 .

.

1.0°C

1.5°C

2.0°C

-70 -60 -50 -40 -30 -20 -10 00 10 20 30 40 50 60 7.0

Binary Logarithm of Change Factor of Multi-Year Mean Annual National
Land Area Fraction Affected by/Population Fraction Exposed to Heatwave

Figure S326: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to heatwave (IPSL-CM5A-LR + HWMId-humidex). Analogous to Figure $324.
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Figure S327: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to heatwave (MIROC5 + HWMId-humidex). Analogous to Figure S323.
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Figure S328: Pure effect of climate change on annual national land area fraction affected by and popula-
tion fraction exposed to heatwave (MIROC5 + HWMId-humidex). Analogous to Figure $324.
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