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Abstract A simple tutorial model of open-ocean deep
convection is presented, based on the seminal box model
of Welander. The model is extended to include prog-
nostic variables of the deep box. An approximate ana-
Iytical solution is found and discussed for a surface
forcing which includes a seasonal cycle. The model helps
to illustrate, e.g., the basic balances at work in
determining the duration of the winter convection sea-
son or the rate dependence of the response of convection
to surface warming.
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1 Introduction

Oceanic convection is a key process in the climate sys-
tem. In essence, it is a vertical mixing process (Send and
Marshall 1995) driven by static instability of the water
column. In thermally driven convection, heat is taken
from throughout the convecting water column and re-
leased to the atmosphere. In the global thermohaline
circulation system, convection provides the mechanism
of upward heat transport which balances the downward
heat diffusion by turbulent diabatic mixing in the stably
stratified bulk of the ocean (the latter being the ultimate
driving force of the circulation, Sandstrém 1908). Cur-
rents provide the large-scale horizontal heat transport
which connects the regions of upward and downward
heat flux. In other words, convection, together with wind
mixing, is the mechanism by which the heat transported
by ocean currents is brought up to the surface to be
passed on to the atmosphere. Since mixing heat upwards
requires an unstable thermal stratification, wind or other
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sources of turbulent energy are only needed for heat
release where convection is hampered by a stable salinity
stratification. Convection can thus be called the chief
heat extraction process from the oceans. In the Atlantic,
about 1 PW of heat are transported across 24°N
(Roemmich and Wunsch 1985) and vented to the at-
mosphere north of this latitude. The main convection
regions, where much of this heat is extracted, are in the
Greenland-Norwegian Sea, the Labrador Sea, and pos-
sibly the Irminger Sea.

There are many studies investigating the convection
process in detail from observations, in laboratory ex-
periments, or with the help of numerical models (for a
review see, e.g., Marshall and Schott 1999). Never-
theless, it can be instructive to use the most simple
conceptual or “tutorial” models to illustrate some fun-
damental qualitative aspects of convection. A main
benefit of simple models is that analytical solutions can
often be found. The seminal convection model of
Welander (1982) illustrates fundamental feedbacks of
the convection process resulting from the different time
scales of heat and freshwater exchange at the surface.
They lead to oscillatory solutions for salinity-driven
convection, and bistable solutions for thermally driven
convection.

One important application of conceptual models is to
interpret properties of more complex circulation models.
In ocean circulation and climate models, oceanic con-
vection is parameterized as a mixing of vertically ad-
jacent grid boxes when static instability occurs (known
as convective adjustment parameterization). Individual
grid cells of such models resemble in many respects
Welander’s conceptual model. Indeed, both the oscilla-
tory and the bistable flip-flop behavior of the conceptual
model are found in general circulation models and can
play an important role for the climate of such models
(Lenderink and Haarsma 1994; Rahmstorf 1995).

In this paper, we extend Welander’s model in two
respects: a seasonal cycle is introduced to the forcing,
and the deep-ocean reservoir is not infinite but has a
finite storage capacity and response time scale. In this



way, a simple representation of the heat flow through
the system as discussed above is achieved, i.e., the
delivery of heat to the deep box by currents and its
extraction by seasonal convection. An approximate
analytical solution for this system is presented. A num-
ber of fundamental questions can be asked of the con-
ceptual model, e.g., what determines the duration of
convection each winter? What is the role of the “mem-
ory” in the deep water column? How does the system
respond to changing surface conditions, e.g., mimicking
global warming, on different time scales? Does the bis-
table behavior of Welander’s model still hold for sea-
sonal convection, or is it an artifact of the permanent
convection in his model? A companion paper
(Kuhlbrodt et al. 2001, part II of this paper) investigates
the effects of stochastic variability in the conceptual
model.

2 The model

A schematic view of the model is presented in Fig. 1.
The model domain is a convection region, surrounded
by stratified water. The convective column is modeled
with two layers: a surface layer of thickness /4, corre-
sponding to the mixed-layer thickness in the absence of
convection, and a deep layer of thickness H, represent-
ing the water involved in convective overturning. Mixing
between the two layers is considered intense during times
of convective activity, and absent at other times. Con-
vection is thus grossly simplified as a rapid vertical
mixing process which is either “on” or “off’’; all sub-
tleties of the process are ignored. A major simplification
is that mixing to variable depths is not considered. This
is a feature of convection which could be accounted for
by including more vertical layers, as is done in one-
dimensional column models (e.g., Rahmstorf 1992). To
allow analytical treatment, only the simple case with two
layers is considered here. The model is driven at the
surface by a restoring condition on temperature and a
prescribed freshwater flux.
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Fig. 1 Schematic of the simple convection box model. The prognostic
variables are the temperatures and salinities of the upper and (in
contrast to Welander’s seminal box model) the deep box
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In these respects, the model is identical to Welander’s
(1982) flip-flop model. However, we relax Welander’s
condition that temperature and salinity of the deep box
are fixed, allowing the deep water column to adjust in
response to convection. Introducing a “memory” in the
deep box in this way allows us to investigate a range of
phenomena which cannot be modeled by Welander’s
model, e.g., the transient response to changes in surface
forcing. The two model layers are coupled to the sur-
rounding surface and deep waters by simple restoring
conditions, which represent the heat and salt exchange
due to horizontal mixing and currents.

The prognostic variables of the model are the tem-
peratures and salinities of both layers, with index 1 for
the surface and 2 for the deep layer. The model equa-
tions are then

dT;

hd—tl:’))(Ta—T])+C(T2—T])+M(Tq_Tl) (la)
ds
dr

Hd—tZZC(Tl—Tz)JrCI(Tz*—Tz) (I¢)
ds, .

H— = o1~ 52) +4(85 — $2) - (1d)

The surface heat exchange coefficient is y and 7, is an
apparent atmospheric temperature (including radiation
effects), the exchange coefficient with the surrounding
surface waters (which are at temperature 7; and salinity
Ss) is u, and with the surrounding deep waters (at 7 and
S3)is ¢. In Egs. (1a) and (1b), the surface and horizontal
forcing terms can be combined to make them analogous
to the deep layer equations (Egs. 1c and 1d):

dr
hd—;:c(Tszl)Jrr(Tl* —-T) (2a)
ds

= (82— S) +u(Si -8 (2b)
with
r=v-+u,

« VTt ul;

1 — V+M ) (3)
St =8 —Flu .

The convective exchange coefficient is ¢; this is taken
as either very large or zero, depending on whether
convection is active:

c>ru,q for Ap >0

c=0 forAp <0

Ap/py:=o(la —T1) = B(S2 = S1) ,
where Ap is the density difference between upper and
lower box, and o (unit 1/K) and f (unit 1/psu) are

thermal and haline expansion coefficients. Note that we
use a linear equation of state for simplicity. With a

(4)
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nonlinear equation of state, the model can show self-
sustained oscillations in a certain parameter regime
driven by surface cooling (Cai and Chu 1997). With a
linear equation of state, such oscillations are only pos-
sible for warm, salty water overlying cooler, fresher
water, 1.e., for tropical and not for high-latitude con-
vection.

The variables can be made nondimensional by mul-
tiplying temperatures with o and salinities with f§; we can
further subtract 7, and S, since only temperature and
salinity differences enter the equations; and finally we
can divide all nondimensional temperatures and sali-
nities by the negative nondimensional restoring salinity
for the surface layer (effectively using this as a density
unit). This leads to

Ty =o(Ti = T3)/B(S; = 5)),
I =Ty = T5)/B(S; = S7)

etc., so that in the absence of convection, the non-
dimensional bottom-layer salinity and temperature are
both restored to zero, the surface-layer salinity is re-
stored to —1 and the surface-layer temperature is re-
stored to 7*. Note that the intuitive sign of temperature
and salinity changes is preserved in this way (a more
negative nondimensional salinity corresponds to a lower
salinity), and that a unit increase in temperature cancels
a unit increase in salinity in its effect on density; 7 thus
measures the strength of the thermal buoyancy forcing
relative to the haline buoyancy forcing. We further in-
troduce the thickness ratio 4* = k/H, scale the time with
the annual period z, (which we will need later to in-
troduce a seasonal cycle) and convert the coupling
constants (which have the dimension m s~!) to time
scales (nondimensional, i.e., measured in years):
ol =h/rt, is the surface temperature-restoring time
scale, ©§ = h/ut, is the surface salinity-restoring time
scale, 7, = H/qt, is the deep-layer time scale and
1. = H/ct, is a convective mixing time. Omitting the
hats, the equations are then simply:

(5)
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and the condition for convection to occur is
hi-Si<h-5. (7)
The independent parameters of the problem are the

strength of the thermal surface forcing 7%, the thickness
ratio A*, and the time scales of the model.

3 Solutions for steady forcing and transitions

The steady solution for constant forcing parameters is,
in the absence of convection (1. — o©), simply

=T Si=-1; H=0; $=0. (8)

These values are approached exponentially at the
various time scales of upper and deep layer, respec-
tively.

We still need to confirm for which parameter values
this solution can exist, i.e., insert Eq. (8) in the convec-
tion condition (Eq. 7), leading to the necessary condi-
tion for static stability

T >-1. 9)

When 7™ is less than —1, no stably stratified steady so-
lution is possible, because surface cooling then more
than outweighs the effect of surface freshening, making
the upper layer denser than the lower layer.

The case with active convection (t. — 0) has the
solution

T=T,+(T—T)e "% S=8,+(S;—S.)e /% (10)

approaching equilibrium values 7, and S,:

T* 1 , 1+ h*)elS

Te: — Se: — with Tgszw
s RIS
(11)

T and S are temperature and salinity of the convectively
mixed water column (i.e., 7} = 7> = T). For the steady
state, the necessary condition for static instability is

T* n 1 -
ol + bt 1§+ 0k

0. (12)

The left-hand side can be interpreted as a buoyancy flux
through the system; depending on how the forcing
parameters are set, this can be positive or negative. Note
that this condition is not the inverse of condition (9) ex-
cept if the restoring times for temperature and salinity are
the same (z7 = 7). Depending on the specified forcing,
both conditions may be satisfied so that there are two
steady states (with and without convection), or neither
may be satisfied, leading to oscillatory convection. This
behavior is familiar from Welander’s box model.

In contrast to Welander’s model, however, the pre-
sent model displays a subtle property which has also
been found in circulation models: a breakdown of con-
vection can be triggered by a sudden change in forcing
conditions, even if the forcing after the change (as be-
fore) would still allow a stable convecting equilibrium.
The concept is easily understood in the absence of sali-
nity forcing, for convection driven purely by surface
cooling (7* < 0) and a temperature 7' between 7™ and 0.
If 7* is abruptly increased beyond 7, the buoyancy flux
may change sign (the water column being heated from
above) even if 7 remains less than zero; convection is
then interrupted. In the purely thermal case, convection
would eventually start again as the deeper layer warms
towards its nonconvecting equilibrium (7 = 0), but in
the presence of surface freshening, a sudden change in T*
can trigger a permanent transition from a convecting to
a nonconvecting equilibrium.



The conditions for such a shutdown of convection are
easily derived; here we include S* explicitly, rather than
setting it to —1, in order to represent also changes in
freshwater forcing in an explicit manner. From Eq. (6),
differential equations for (77 — 75) and (S} — S) can be
derived, which show that these terms relax to their
equilibrium values at the fast convective time scale 7.,
i.e., much faster than any changes in 7T, so that we can
assume them to be in equilibrium at any time. Their
equilibrium values are

nh -1 1+1 —T*—f—T 1 1
T, h*) 7l T

S — 5 1 S* 1 1
1 —_— = — S -
Te < + h*) ‘E‘lg + <T2 ‘L'f) ’

so that the static instability condition (Eq. 7) for any
instantaneous value of 7, S becomes:

T 1 1 S* 1 1
S (LI A L
ol + <‘52 T1T> ™ (Tz rf)

Equation 14 (together with Eq. 11) allows us to calcu-
late, e.g., the critical value up to which 7* can be in-
creased instantaneously without violating the condition
for convection, if we start from an equilibrium that
corresponds to some previous (or initial) forcing con-
ditions TS,

(13)

(14)

(AT
Pl + bt

‘132—‘1,'{~
T *
T + b

(15)

As a simple example, let us consider a case where
Ty = —1.5and §; = —1 and the time scales are 1 =042
(i.e., 5 months), t§ =8 and 1, =20, with h* = 1/36.
These parameters are as in the Labrador Sea example
(Kuhlbrodt et al. 2001), except that for illustration
the initial T, ; is chosen so low as to be in the monostable,
always convecting regime. According to conditions
(9) and (12), the bistable regime, where both
equilibria (with/without convection) are possible, is
—1 < T* < —0.11. Equation 15 shows that if 7% is sud-
denly increased from —1.5 to —0.89 or warmer, con-
vection will be interrupted.

Note that a slow increase of 7* is possible up to a
value of —0.11 without interrupting convection. We can
compute a critical linear rate of increase of 7 that must
not be exceeded to maintain convection; this is a con-
sideration relevant to the global warming problem.
Equation 6 can be solved to yield 7'(¢) if the constant 7*
is replaced by T* + at, i.e., increasing with time at rate a.
In this case,

crit

T:Tp—l—a%(t—rg—i—tge*’/i) , (16)
as illustrated in Fig. 2. When this is inserted in the sta-
bility condition (14) and solved for a(¢), we obtain the
critical rate of warming « that can be sustained for a
time ¢ until convection breaks down. This is easily done;
the resulting formula is lengthy and not very illuminat-
ing so is omitted here. However, the leading order effect
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Fig. 2 A “global warming” solution for the box model without
seasonal cycle. The diagram illustrates that at faster warming rates
convection already breaks down at lower temperature. At year 0, the
surface relaxation temperature T* starts a linear rise at a rate of 2 per
century. Convection breaks down at year 58 at a nondimensional
temperature of —0.34. Note the small cooling at the time of
convection breakdown. For a step-function increase in 7* above

T.» convection would also break down. For an infinitely slow rise of

T*, convection is maintained until the limit of the bistable regime at
T* =—0.11 is reached. In the range —1 < 7" < —0.11 both
convecting and nonconvecting solutions are stable; this is a
consequence of the salinity forcing, even though this is only weak

is simple for the case with weak salinity forcing
(77 >1]) and for 7,>>tl. When the exponential
adjustment term in (16) has decayed, the actual tem-
perature lags behind the equilibrium temperature for the
current forcing (i.e., the first term in the bracket) by the
time tZ. It is this lag which makes the buoyancy forcing
positive already before the stability threshold would
otherwise be reached (namely at 7 = —0.11). It is in-
teresting that 7/ (defined in Eq. 11) is the crucial time
scale for this problem; this is the response time scale of
the whole water column (boxes 1 and 2 combined) under
the influence of surface forcing and interior heat trans-
port. Convection breaks down already at a threshold
which is lower than the limit of the bistable regime,
namely by

T ‘L'zh*
e ‘E{

AT = —az (17)
Thus, the lowering of the temperature threshold is pro-
portional to the rate of warming a, and the reason is the
thermal inertia 7 of the convectively mixed water col-
umn. (For the parameter values in Fig. 2, AT = —0.23,
resulting in a convection breakdown in year 58 at
T =-0.34)

This is the theoretical underpinning of an important
fact suggested first by Rahmstorf et al. (1996) and con-
firmed subsequently in model experiments by Stocker
and Schmittner (1997), namely that more global warm-
ing can be sustained without interrupting convection if
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the warming proceeds at a slower rate. This analysis
(and the model of Stocker and Schmittner) does not
include the effect of stochastic variability, which would
lead to a probabilistic result (warming reducing the
probability of convection) rather than a deterministic
threshold for a shutdown (Kuhlbrodt et al. 2001).
Nevertheless, we expect the rate dependence to apply
also in this case. Greenhouse warming has a time scale
similar to the adjustment time scale of the deep-water
column in convection regions, and coupled global
warming scenario runs show greatly reduced winter
convection (Manabe and Stouffer 1994). In one general
circulation model (Wood et al. 1999), convection in the
Labrador Sea shuts down early in the 21st century as a
result of global warming. In all of these models, con-
vection is parameterized in a simple way similar to our
analytical model, albeit for more vertical levels. To what
extent the feedbacks leading to the rate dependence are
also important in the far more complex real ocean
requires further study.

4 Seasonal convection
4.1 General considerations

We now add a seasonal cycle to the thermal forcing of
the surface layer,

T*(t) =Ty +Asin2nt , (18)

where A is the nondimensional amplitude of the seasonal
forcing cycle (note that time is nondimensionalized with
the annual period). If the parameters are chosen ap-
propriately, the model will now go through a period of
winter convection, interrupted by a time of stratification.
A typical seasonal cycle is shown in Fig. 3; the analytical
solution describing this cycle is discussed in the follow-
ing.

First we consider the convective phase of the cycle,
again assuming vigorous convection (7. — 0), with
Ty = T, =: T. The temperature evolution equation is

ir (-1 W .
@ Asin2
T S T e i

with 7, := T; /(1 +tf /h*15) and 1! as in Eq. (11). The
solution is

(19)

T =T, +A.sin2n(t — ¢) + Ce /% . (20)

As expected, this describes a forced oscillation of
temperature, with an amplitude

A
VRl (U 1) (1P 4 (14 < fhe o)’

and a phase lag ¢, = arctan(2nt!)/2n. The amplitude is
reduced if the surface coupling is weak (large 7 ) or if
the damping through the deep layer is strong (small 1,);
the scaling factor #* enters only because time scales ra-
ther than dimensional coupling constants (as in Eq. 1)
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Fig. 3 A typical seasonal temperature cycle for realistic parameter
magnitudes in the absence of salinity forcing. The relaxation
temperature 7* is given by Eq. (18) (and arbitrarily sets the phase
of the annual cycle — the time axis does not relate to particular
calendar months). Surface temperature 7} follows Eq. (22) and deep
temperature 7> follows Eq. (24) except during the brief convective
phase, where both follow Eq. (20). Due to the much greater thickness
and thermal inertia of the deep layer (in this case, 36 times that of the
surface layer), the seasonal variation of 75 is very small. A zoom into
the winter months of this cycle is presented in Fig. 4

are used. In addition, there is an exponential term in (20)
describing the decay of an initial deviation from the
steady cycle; the constant C (like C; and C, below) is
determined by the initial condition.

In the nonconvective phase (1. — 0), the surface layer
is decoupled from the deep layer, and the solution is

Ty =T5 + Aysin2n(t — @) + Cre™/ , (22)
with amplitude
A
Ay =, (23)
1+ (27':1{)2

and a phase lag ¢, = arctan(2nt])/27. The minimum
temperature would be 7" = T — 4, if there was no
convection throughout the year, but if convection does
take place then 7M™ is never quite reached. The deep
layer simply approaches 0 during the decoupled phase
according to

T = Czeit/fz . (24)

Salinities, in both cases, approach their respective equi-
librium values (see previous section) following similar
exponential laws.

We can now match the solutions for the convective
and stratified periods to obtain a periodic seasonal so-
lution. The conditions for matching the curves are that
convection sets in when the boxes become unstably
stratified, and convection stops as soon as the (non-
convective) buoyancy gain of the upper box is faster
than that of the lower box. Heat and salt content of the



whole water column are continuous at the onset of
convection (at time ¢;), while temperature and salinity in
each box undergo a discontinuity there due to the in-
stantaneous convective mixing; the latter are, however,
continuous across the end of convection at time #.
Finding the start and end times # and #, of seasonal
convection analytically is not possible in general (lead-
ing, e.g., to conditions of the type sin#; = aexp(bf;) to
find 7). However, the exact form is hardly interesting,
given the idealized nature of the model. What is inter-
esting is only the physically meaningful, leading-order
parameter dependence of the convection times for a
short convection season. This can be derived by Taylor
series expansion of the functions involved. To avoid
burdening the reader with algebra, this will be carried
out here only for a simple, but realistic and instructive
case.

4.2 Convection duration for purely thermal convection

The case considered in the following is a purely thermal
model (without salinity) in the limit of short convection
duration (¢p — t; < 1). The first consequence of this is
that the seasonal cycle of the deep temperature 75 is
small compared to that of 7}; during a short convection
season not much heat can be released to the atmosphere,
and the deep heat reservoir is much larger than that of
the thin surface layer. This idea is supported by data
from Ocean Weather Station Bravo in the Labrador Sea
(Lazier 1980) and simplifies the algebraic conditions
considerably. There are three such conditions; Fig. 4
helps to illustrate them.

Condition 1: End of convection. Convection stops
during the warming phase, as soon as the surface warms
faster than the deep layer:
d7,  dbh

dr = E |(nonconvective)

where the nonconvective warming rate of 75 is —75/1;
(Eq. 6) and can be neglected (7> =~ const). Therefore, the
condition is met as soon as the relaxation temperature
T* exceeds T7 (which is equal to 75> during convection).
This leads to the condition

(25)

2
T*(t—to)—TJ—AJrzﬂzA(fo—j) =1, (26)

where the sinusoidal seasonal cycle (Eq. 16) has been
expanded quadratically around its minimum at ¢ = 3/4.
This condition is easily solved for #;:

t_3+ A—T; + T,
=3TN T 224

An even simpler approximate condition is obtained by
assuming that

(27)

3
tO:Z+ (" (28)
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Fig. 4 Closeup view of the convective phase of the seasonal cycle
shown in Fig. 3. Convection starts at point P; and ends at point P,
lasting for 19 days. The dashed line shows the analytical solution of the
seasonal cycle of 77 in the absence of convection from Eq. (22)
(equilibrated, i.e., without the exponential spinup term), reaching its
minimum (7{™) at point M. The actual 7} never reaches this
minimum, as convection sets in beforehand. After convection ends at
Py, T again follows Eq. (22), exponentially approaching the dashed
equilibrium solution. The time variation of 75 is too small (compared
to that of 7}) to be seen on the scale of the plot, but is a crucial part of
the heat budget; see condition (3) discussed in the text

i.e., that convection ends at the minimum of the non-
convective surface temperature cycle given by Eq. (20)
(point M in Fig. 4). Figure 4 shows that the convection
duration #, — ¢ is in the leading order determined by the
time that #; precedes point M, not by the time that ¢y lags
point M, because the surface temperature cycle has zero
time derivative at M.

Condition 2: Start of convection. Convection restarts
when the falling surface temperature 77 intersects 75 (see
Fig. 4). Ty is given by Eq. (22). Again expanding the
sinusoidal and neglecting the exponential term (¢ < 1),
we obtain the condition

. 3\ 2
leTlrnln+27T2An<tl—(pn—Z> :T2 . (29)
This condition can be solved for #:

3 T, — Tin

Using Eq. (28), the duration of winter convection then is

sziTmin
Atc:t()—tl - ﬁ .
n

It is thus proportional to the square root of the differ-
ence between the deep temperature 7, and the minimum
temperature of the nonconvective surface cycle. In order
to determine this temperature difference, we need a third
condition.

Condition 3: Annual heat budget. A balanced an-
nual heat budget requires that the heat accumulated by

(31)
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the deep layer throughout the year is equal to the heat
lost during the brief convection season; this heat
budget determines 7>. The heat accumulated in the
absence of convection in a year is to good approx-
imation

AT2|( :—Tz/’fz .

During convection, the deep box is relaxed towards T*
(Eq. 18) with a time constant t (1 + h*)/A* during time
interval Az.. The resulting temperature change is pro-
portional to the surface area between the line P P, and
the 7* curve in Fig. 4. We can approximate this by the
triangle shown in Fig. 4, which assumes that 7, = T{™"
and T* has a constant slope of 47?4¢, (namely its slope
at t = ¢@,, in quadratic approximation to Eq. 18):

27‘[214(/7 h* 2
" (At .

I (1 + h*) (Are)
Requiring that these two temperature changes are equal

but opposite, and using Eq. (29), finally leads to the
third condition:

(32)

nonconvective)

convective)

) Tmin

T — TP = — ! (34)
Tl e,/ 1+ (2%1{)2
(1 +h")

Given 17 < 1, ¢, ~ tI, and #* < 1, this simplifies to

. _ min
T, — Tmin _ 1 35

2 1 h*TQ +1 ? ( )

and gives (with Eq. 31) the convection duration to
leading order as

_Tlmin
At =\ =" .
¢ 2m2 A, (h*ty + 1)

Although it would have been difficult to guess this result
in advance, it is not difficult to interpret. For very short
deep restoring time scale (t; — 0) the deep temperature
is essentially fixed at 75> = 0 (this limit corresponds to
Welander’s original box model with prescribed deep
temperature). Equation (36) then just reflects the lead-
ing-order (i.e., quadratic) expansion of the sinusoidal
cycle around its minimum (point M in Fig. 4) — con-
vection simply lasts from the time where the surface
temperature dips below zero up until point M. What-
ever heat is extracted from the deep layer during con-
vection can be easily replenished due to the fast 7,
However, when A*t, becomes comparable to a year or
longer, the deep temperature starts to be lowered sig-
nificantly by the convective cooling — this shortens the
convection season. This is the realistic case, when the
need to balance the annual heat budget determines the
duration of convection and by how much the deep
temperature is lowered. For infinitely slow adjustment
(1, — o0), convection duration vanishes, as in this case
the deep box does not accumulate any heat during the
year, so none needs to be released to the surface by
winter convection.

(36)

The response time of the deep water column thus
controls not only the behavior of convection during
periods of climate change (as already discussed), but also
the seasonal behavior. The presence of seasonal con-
vection in fact implies a net heat flow through the system
with subsurface warming through advection or mixing
of heat throughout the year, as is the case in the North
Atlantic due to the thermohaline circulation. The heat
brought north by this circulation is then released during
the convection season; the larger the heat transport, the
longer the convection season will be. This is an im-
portant aspect of convection modeled in the box model
with variable deep temperature, which is distilled in
Eq. (36).

One might have expected that the surface layer re-
laxation time enters the equation, and that the shortness
of the convection season reflects the relation of the fast
heat loss during convection to the slow heat gain during
the rest of the year. This is not the case: for a faster
surface relaxation time, 7/™" becomes lower and thus
convection duration actually increases (Fig. 5).

4.3 Influence of salinity on the seasonal cycle

The influence of salinity is responsible for the rich and
interesting stability behavior of the box model (i.e., the
existence of multiple equilibria) because of the weaker
feedback of salinity on freshwater flux compared to
the feedback of temperature on heat flux (.e.,
because 17 > 17). Nevertheless, the salinity influence is
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Fig. 5 Convection duration as a function of minimum winter tem-
perature. Crosses show numerical results, solid lines the approximate
analytical solution given in Eq. (36). The upper curve is for 1, = 5, the
lower curve for 7, = 20. Other parameters correspond to the standard
set found for the Labrador Sea (see Kuhlbrodt et al. 2001), except for
the absence of salinity forcing. The analytical solution, valid for short
convection times, slightly underestimates convection duration, but the
error is small (e.g., 1 day for a convection duration of 20 days)
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Fig. 6 Example of a seasonal cycle with salinity. This example
corresponds to the optimal parameter set found for the Labrador Sea
(see Kuhlbrodt et al. 2001), but is shown here for non-dimensional
variables and without seasonal cycle in the salinity forcing. Note the
freshening of the surface layer throughout most of the year as given by
Eq. (37), leading to a salinity difference AS at the onset of convection.
For the nondimensional variables, one unit of temperature and
salinity correspond to one density unit. Lines as in Fig. 3

surprisingly easy to include in the seasonal cycle solution
discussed above. This is because 7} and 1, are typically
both much longer than 1 year. A typical seasonal cycle
in the presence of salinity is shown in Fig. 6. Salinity
decreases in the upper layer and increases in the lower
layer during the non-convective part of the year, for the
typical thermally driven convection in regions of net
surface freshwater input. Convection then simply mixes
the two to an average salinity S; given the long time
scales of salinity forcing we can assume that .S is con-
stant during the brief convection season. During the
nonconvective phase, surface and deep salinity drift ex-
ponentially away from this mixed-salinity value during 1
year (assuming short convection duration):

AS = (S+1)(e /1 — 1)

(37)
ASy = S(e”V/= — 1)

The salinity difference AS between the layers at the start
of convection, i.e., after 1 year, is the difference of the
individual changes (AS] — AS5). The value of the mixed
salinity S is simply determined by the requirement to
balance the freshwater inputs of upper and lower layer
over 1 year, h*AS| + AS, = 0, leading to
w(aml/t5 _
S=— e n = 1) . (38)
he(e=V/a — 1) +eV/m —1

For 1,, rf > 1, this salinity is the same as the solution
for steady forcing and permanent convection given in
Eq. (11).

The salinity cycle is thus independent of the
temperature cycle except for the crucial fact that
the temperature cycle forces convective mixing once per
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Fig. 7 Illustration of the salinity effect on the temperature cycle. The
graphs show the temperature evolution during the convective phase of
the seasonal cycle for a temperature-only case (solid lines) and with
added salinity forcing (dashed lines, other parameters remaining the
same). The lower panel shows a zoom into part of the upper panel.
Key changes to the temperature cycle due to the inclusion of salinity,
as discussed in the text, are: a overshooting of surface temperature
below the deep temperature; b delayed onset of convection; ¢ earlier
end of convection (while surface layer still cools); d deep layer cooling
at onset of convective mixing. The first-order impacts are thus a much
colder surface temperature in winter and a greatly reduced convection
duration, with only a small (warming) effect on the deep temperature.
The dotted line is the relaxation temperature as in Figs. 3 and 4

year. However, the presence of a salinity cycle does alter
the temperature cycle in the following three ways (illu-
strated in Fig. 7), which correspond to changes in the
three conditions for convection duration given in
Section 4.2.

1. Convection ends slightly earlier compared to the
no-salt case, due to the freshwater forcing promoting
stable stratification. This effect is easily computed, given
the mixed salinity of Eq. (38).

2. Convection will now start not when the layer
temperatures are equal but rather at a temperature
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difference AT = AS, i.e., when the surface is cold enough
to overcome the stable salinity stratification of the water
column. This shortens the convection season and leads
to an overshooting of surface temperature below the
deep temperature. This shortening of the convection
seasonis much larger than that due to effect (1), asit results
from the freshwater accumulated over a whole year.

3. The temperature change of the deep layer during the
convection season has now two terms: a cooling by #*AT
right at the onset of convection, due to mixing with the
colder upper layer, and the cooling during the convection
season as given in Eq. (33). For a realistic magnitude of
freshwater forcing and short convection season (e.g., the
parameter set applicable to the Labrador Sea derived in
Kuhlbrodt et al. 2001), the former effect strongly dom-
inates. Note that the total cooling of the deep layer still
equals the total surface heat loss starting from the time
where the surface temperature equals the deep tempera-
ture, just as in the no-salt case. The difference is that the
surface temperature becomes colder in the absence of
convective mixing, so that the heat loss through the re-
laxation term is less. For this reason, the deep tempera-
ture must be warmer than in the no-salt case.

Another simple property of salinity is that a seasonal
surface freshwater flux (with zero annual mean) can be
added (as is done in Kuhlbrodt et al. 2001) to produce
a realistic seasonal surface salinity cycle without affect-
ing other aspects of the solution. Only proviso is that
this added freshwater flux is not too strong at the end of
the convection season, so that effect (1) does not become
too large.

We thus have found an approximate analytical
solution for a complete seasonal cycle including salinity
forcing, that is valid for a wide range of realistic para-
meter choices. The full equations are not shown here as
they are not very instructive; the major balances at work
in determining the convection season and deep water
properties have already been demonstrated in the deri-
vation of the no-salt case, and the modifications due to
salinity are easily grasped intuitively. Adding salinity
effects (assuming this is a net surface freshening) leads to
a colder surface temperature in winter, a much shorter
convection season, a slightly warmer deep temperature,
and a correspondingly reduced annual heat flow through
the system.

5 Discussion

We have extended Welander’s seminal box model of
convection in two ways:

1. We made the deep box temperature and salinity
prognostic to study how they are affected by the
presence or absence of convection.

2. We introduced a seasonal cycle to investigate the
effect of winter (rather than permanent) convection.

An approximate analytical solution is presented for
the extended convection model. The key to finding this

solution is to determine the beginning and end of the
convection season; separate solutions for the time evo-
lution during convective and nonconvective parts of the
year are readily calculated.

Convection duration is determined by the require-
ment to balance the heat gain of the deep box
throughout the nonconvective bulk of the year with the
heat lost during the brief convection season. This bal-
ance is determined by the surface temperature cycle, i.e.,
for how long and how much surface temperature can
drop below the deep temperature, and by the time scale
at which the deep box takes up heat in the absence of
convection. The slower this time scale (i.e., the smaller
the interior heat transport into the convective region),
the shorter the convection season.

The effect of introducing salinity (i.e., surface fresh-
ening balanced by salt input in the interior) is to greatly
reduce the length of the convection season, with only a
comparatively small effect on the heat budget and deep
temperature. Surface temperature is affected in winter
because the onset of convection is delayed by the stable
salinity stratification, so that surface temperature drops
significantly below the deep temperature before con-
vection sets in.

The simple model highlights the role of the heat and
salt budgets of the deep layer and associated feedback
effects in determining the duration of convection events
and the deep water properties. Although the seasonal
cycle studied here is highly idealized, these are basic
constraints which also need to be satisfied in more
complex situations which cannot be treated analytically,
e.g., in the presence of stochastic climate variability.
This case is studied in Kuhlbrodt et al. 2001.

The basic stability behavior of Welander’s model,
i.e., the existence of two equilibria in a certain para-
meter regime, applies also to the extended model. If
convection is suppressed in one winter, the deep tem-
perature starts to drift to warmer conditions (which
would tend to make convection easier in subsequent
winters), but at the same time a stronger salinity stra-
tification develops with freshwater accumulating in the
surface layer. Thus, a brief perturbation can flip the
model to another stable state without winter convection.
To what extent such a state transition triggered by a
short pulse (rather than a lasting anomaly in the for-
cing) may explain the Great Salinity Anomaly of the
early 1970s in the Labrador Sea will also be examined in
Kuhlbrodt et al. 2001.

Introducing a “‘memory” in the deep water column,
which responds over a finite time scale to changes in
forcing, makes the model’s reaction to a gradual surface
warming dependent on the rate of this warming. This is
a simple candidate mechanism for explaining the rate
dependence of the response of the thermohaline circu-
lation and convection to global warming that has been
found in more complex models. This is an example of
how the simple model can be used as a ‘tutorial’ tool to
help in the interpretation of climate model results or
observations of the real climate system.



Acknowledgements I am grateful for the hospitality of and dis-
cussions with M. England and H. van den Budenmeyer during a
stay at the University of New South Wales in Sydney, where part of
this work was done.

References

Cai W, Chu PC (1997) A thermal oscillation under a restorative
forcing. Q J R Met Soc 124: 793-809

Kuhlbrodt T, Titz S, Feudel U, Rahmstorf S (2001) A simple
model of seasonal open ocean convection. Part II: Labrador
Sea stability and stochastic forcing. Ocean Dyn 52: 36-49

Lazier JRN (1980) Oceanographic conditions at Ocean Weather
Ship Bravo, 1964-74. Atmos Ocean 18: 227-238

Lenderink G, Haarsma RJ (1994) Variability and multiple equili-
bria of the thermohaline circulation, associated with deep water
formation. J Phys Oceanogr 24: 1480-1493

Manabe S, Stouffer RJ (1994) Multiple-century response of a
coupled ocean-atmosphere model to an increase of atmospheric
carbon dioxide. J Clim 7: 5-23

Marshall J, Schott F (1999) Open-ocean convection: observations,
theory, and models. Rev Geophys 37: 1-64

35

Rahmstorf S (1992) Modelling ocean temperatures and mixed-layer
depths in the Tasman Sea off the South Island, New Zealand.
New Zealand J Mar Freshwater Res 26: 37-51

Rahmstorf S (1995) Multiple convection patterns and thermohaline
flow in an idealised OGCM. J Clim 8: 3028-3039

Rahmstorf S, Marotzke J, Willebrand J (1996) Stability of the
thermohaline circulation. In: Krauss W (ed) The warm water
sphere of the North Atlantic ocean. Borntraeger, Stuttgart, pp
129-158

Roemmich DH, Wunsch C (1985) Two transatlantic sections:
meridional circulation and heat flux in the subtropical North
Atlantic Ocean. Deep-Sea Res 32: 619-664

Sandstrom JW (1908) Dynamische Versuche mit Meerwasser. Ann
Hydrogr Marit Meteorol 36: 6-23

Send U, Marshall J (1995) Integral effects of deep convection.
J Phys Oceanogr 25: 855-872

Stocker T, Schmittner A (1997) Influence of CO, emission rates on
the stability of the thermohaline circulation. Nature 388: 862865

Welander P (1982) A simple heat-salt oscillator. Dyn Atmos
Oceans 6: 233-242

Wood RA, Keen AB, Mitchell JFB, Gregory JM (1999) Changing
spatial structure of the thermohaline circulation in response to
atmospheric CO;, forcing in a climate model. Nature 399:
572-575



