

Weather Variability over Europe in the Context of Climate Change

by Peter Hoffmann

Hydro-Climatic Risk

Temperature Anomalies Weather in a Climatic Context

Potsdam-Institut für (limafolgenforschung

PI

Leibniz Gemeinschaf

Temperature Anomalies in Potsdam over the past 2 years

Local Weather in a larger Context

Transport of Air Masses

Every local Weather Phenomenon has a large-scale Context

Example: Heavy Rainfall

Greece: Heavy Rainfall

Example: Storm Water in Greece, September 2023

Hamburg: Hot Temperature

7

H

European Weather-Types

Expert Classification

Hess/Brezowsky: Großwetterlagen

8

Temporal Development of Weather Patterns

Sequences of Categorical Data

Großwetterlagen - Shapes of the Circulation

Hess/Brezowsky

Regional Weather Characteristics

Composite Patterns

Local Precipitation Characteristics

Dry and Wet Weather-Types in Potsdam 1

Weather-Type Sequences

Extreme Weather Events

22.05-02.06.2013: TRM, TRM, TRM, TRM, TRM, TF

January 2019: Heavy Snowfall in the north

01.-13.01.2019: NZ,NZ,NZ,HB,HB,HB,NWA,NWA

July 2021: Ahrtal Catastrophe

10.-18.07.2021: TRW,TRW,TRW,TM,TM,TM,NEZ

July 2022: 40°C in Hamburg

16.-25.07.2022: HM,HM,HM,SWA,SWA,SWA,SWA

TM: 2.0%

Attributes of the Weather-Types Variability

Frequency, Persistence, Transition

Long-Term Changes of Weather-Types?

OTSDAM-INSTITUT FÜR

ΡI

LIMAFOLGENFORSCHUNG

Leibniz Gemeinschaft

Weather-Type Persistence

Significant Increase in Apr, Jun, July 16

Day-to-Day Atmosphere Similarity

Potsdam-Institut für (limafolgenforschung Leibniz Gemeinschaft ΡI

Hoffmann et al. (2021) 17

Impacts of Weather Persistence

The longer Weather-Types persist, the stronger the Impacts

New dominant Weather-Types

Trough-like Weather Patterns: TRM, TRW, SWZ 19

New dominant Weather-Type Transitions

Network Graphs illustrate the Rhythmn of the Weather Variability 20

Criticality of Weather-Types

Which Weather-Types are associated with high Temperature or Heavy Rainfall in Berlin? 21

Attribution Study

Role of Dynamic Factors on Temperature rise

Decomposition into a Dynamical Component (June-August)

Temperature

Climate Change | Dashboard | Potsdam © P. Hoffmann (PIK)

Precipitation`

Hoffmann and Spekat (2020) 23

2020

2020

2010

2010

- total

dynamical

European Weather-Types

Objective Classification

Identification of Weather-Types

Workflow

Data Processing

Application to Weather-Type Prediction

GFS 00 Forecast | Weather Types | Europe

Re-Identification of Weather-Types in Climate Models

Training a Decision Tree between Atmospheric Fields and Weather-Types

Scheme

One Ensemble Member used for Training 27

Comparison of the Weather Variability using Network Graphs

in Reanalyses and Climate Models

Weather Variability in Climate Models - Assessment

Representive Example 29

Potsdam-Institut für Klimafolgenforschung

PII

Leibniz Gemeinschaft

Weather Variability in Climate Models - Assessment

CMIP6 Ensemble

Weather Variability in Climate Models - Sensitivity

Representive Example

31

Three Concluding Remarks

• Analyses of the Weather Variability over Europe are generally underrepresented in the Context of Climate Change

• Weather Variability in climate model simulations follow slightly other rules with possible effects on projected rainfall patterns

Thank you for listening!

meteoblue®

+ - <

Atmospheric Fields in Weather Forecasts 33

Shapes and Structures

rsdam-Institut für 😋

Weather Variability in ERA5 Reanalysis

Objective Classification