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Independent Component Analysis of Rock 
Magnetic Measurements

Norbert Marwan

March , 

Title

Today I will not talk about recurrence plots. Marco and Mamen will talk about them 

later. Moreover, for the analysis of rock magnetic data I could not successfully use 

them. However, I’ve got to know another method, which I could successfully apply, 

and I would like to talk about this method. It is the independent component analysis. 

I have startet with this method just in the last month, thus I’m not yet a really expert in 

that. First I will introduce the problem of rock magnetic measurement, then I will give 

an overview about the independent component analysis and finally I will show you 

the first results.

Motivation

The main aim of all the work with the Earth’ magnetic field is the understanding of the 

geodynamo, because the variations of the Earth’ magnetic field, for example the revers-

al of the magnetic poles in the most extreme case, are of major importance for the man-

kind.

Palaeo Intensity

One step on the way for this understanding is the study of the past variations of the 

Earth’ magnetic field. These past variations can be found in various geological ar-

chives. One possibility are lake sediments, in which the magnetic minerals can store in-

formation about the direction and the intensity of the Earth’ magnetic field. However, 

when we measure the magnetic properties of these sediments, these measurements 

will contain also a large climatic impact. For example, the concentration of the magnet-

ic minerals depends on the weathering processes, which on the other side depends on 

the climate. Or the kind of the magnetic minerals as well as their concentrations can de-

pend on the biological activity in the lake. Finally, we always measure a mixture of cli-
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mate and real Earth’ magnetic field signals when we measure rock magnetic 

parameters. Since we are interested only in the information about the Earth’ magnetic 

field, we need a method, which can separate these mixtures.

Basic Model

We will consider a linear model. Some independent source signals are linearly mixed 

and only these mixtures can be measured. I will denote the source signals by „s“, the 

observations by „x“ and the mixing matrix by „A“. One well known method for the 

separation of the source signals is the principal component analysis. This method sep-

arates the components by using the criterion, which says, that these components will 

be linearly uncorrelated. Another method, which is rather unknown, is the independ-

ent component analysis. The difference is, that this method will separate components, 

which are not only linearly uncorrelated, but also nonlinearly uncorrelated; with other 

words, which are independent.

Independence/Uncorrelatedness

Independent variables are always uncorrelated, but linearly uncorrelated variables are 

not independent in general. This can be seen on this example of two uniformly distrib-

uted random variables. When we mix these variables and uncorrelate them by the 

PCA, we will get the right joint distribution, those components are obviously not inde-

pendent. If we go to the maximal value of the one component, the other component 

will have some restricted values, which means that it depends on the first. Here we can 

see the task for the ICA: it has to rotate the distribution in that way, that the compo-

nents become independent.

Gaussian Distribution

The gaussian distribution is a special case, because uncorrelated random variables 

with such a distribution are always independent. This is clear when we consider the 

joint distribution: it can be rotated in any way, which corresponds with orthogonal 

transformations and the preservation of the uncorrelatedness, but we will not find any 

direction, where the variables will have any dependence. Therefore, the ICA will not 

obtain any other result than the PCA for gaussian distributed variables.
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Estimation Principles for ICA

For the estimation of the independent components, two basic concepts are used. The 

first uses algorithms, which determine components which are linearly and nonlinearly 

uncorrelated. The second concept uses an algorithm, which uses higher moments of 

the distributions in order to maximize the nongaussianity of linear combinations of the 

mixed signals. Here I will stop the explanation about the background, because I will 

not have enough time to explain. This alone would require an entire presentation.

Ambiguities

I have to mention that the ICA has some ambiguities which are, however, not really 

dramatic. The ICA cannot determine the number of the independent components. 

Some knowledge about the studied process is therefore useful. The variances and the 

signs of the independent components cannot be determined, but this is not of a great 

importance for us, because data will usually be normalized by their standard devia-

tions and absolut variances play a minor role.

Illustration

Now I will present you an illustrating example, which will show how the ICA works 

and what the differences to the PCA are. This example consists of three oscillating 

sources, where the first source was transformed to be uniformly distributed. I have 

chosen such a mixing, that only the first two components are mixtures. Furthermore, I 

have added uniformly noise to these components.

Data Source and Mixed Signals

Left are the original sources and right are the mixtures.

Data PCA and ICA Components

Now we apply the PCA and the ICA to these mixed signals. First I show you the ob-

tained components. As you can see, the first two components of the PCA do not match 

with the original source signals, whereas they match with ICA very well.
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PCA

The result of the PCA are three uncorrelated signals, which can be obtained by the sep-

aration matrix V. The inverse of the separation matrix should be the mixing matrix A. 

But if we compare this matrix with the original mixing matrix, we see a large differ-

ence, especially if we consider the ratios of the interesting mixing coefficients.

ICA

The ICA, however, decomposes the mixtures in three independent components. The 

obtained mixing matrix seems to be quite similar to the original, except, that the signs 

and the absolut values do not match. However, if we focus to the ratios of the interest-

ing mixing coefficients, they match rather well. I have not yet studied the statistically 

distribution or significance of the results. Therefore, I cannot say anything about the 

variance of these results.

Joint Distributions

When we look on the distributions of the source, mixing and separated signals, we can 

see what the PCA and the ICA have done with the data. The mixing has rotated and 

distorted the joint distribution; the PCA has rectified the joint distribution and the ICA 

has rectified and rotated the joint distribution. This joint distribution corresponds to 

the original.

Application to Rock Magnetic Data

Now let’s come back to the main problem: the palaeo intensity of the Earth’ magnetic 

field. Finally, I have some data sets from two Italian lakes, which contain various rock 

magnetic measurements and span a time range up to 100,000 years before present. The 

aim is to separate a signal which contains only the intensity of the Earth’ magnetic 

field. For this task I have chosen these three measurements: the natural remanent mag-

netization, the anhysteretic remanent magnetization and the susceptibility. The natu-

ral remanent magnetization is the magnetization of the sample as it comes directly 

from the drilling. Therefore it contains a signal of the intensity of the Earth’ magnetic 

field in the past. The other two measures are determined after demagnetization of the 

sample in the laboratory and, therefore, do not contain any information about the 

Earth’ magnetic field. Each of the three measures depend on the grain size and the con-
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centration of the magnetic minerals, but each depends on them in a different way. The 

anhysteretic remanent magnetization is impacted only by small magnetic minerals, 

whereas the susceptibility is impacted by only large magnetic minerals. Finally, the 

grain size and the concentration depend on the climate variation, therefore all three 

measures depend on the climate and correlate with some climate proxy data sets, as 

oxygene isotops or pollen data. 

Data Rock Magnetic Measurements

Here are the time series of these three measurements. The red line is some smoothing 

of the data.

Application to … (back) & Data ICs

I have used the ICA in order to separate three independent signals from these mix-

tures, where one of them should contain the information about the Earth’ magnetic 

field and the other information about the magnetic minerals and the climate, respec-

tively. The result is this mixing matrix and these independent components.

Results Rock Magnetic Data

However, have we got a suitable result? In order to get an answer to this question, I 

have computed correlations between the independent components and some climate 

proxies. As you can see, the first component does not correlate with the climate signals, 

whereas the other two correlate and, hence, contain a climate signal. On this place I 

have to mention that in the palaeo magnetic community the ratios of natural remanent 

magnetization and susceptibility and natural remanent magnetization and anhystere-

tic remanent magnetization are usually used as proxies for the intensity of the Earth’ 

magnetic field. These both ratios correlates well with the first component, however, 

each of them correlates also with one of the second and third component. This is a clear 

sign that these ratios still contain some rock properties, especially the grain size, and 

are, therefore, impacted by a climate signal. This can be seen in the second table, where 

I have computed the correlations for these measures with some climate proxies. Fur-

thermore, as you can see, the independent component contains much less climate im-

pact as the other both measures. Finally, I have compared this independent component 

and the other measures with a reference data set of the palaeo intensity of the Earth 

magnetic field. This reference data is stacked data from 33 records around the world 
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and covers the last 800,000 years. These correlation coefficients show also the improve-

ment by using the ICA. The independent component correlates better with the refer-

ence data than the other measures, especially the ratios.

Quercus pollen are a proxy for the local temperature and Pinus pollen for temperature 

and rainfall. The proxy for the global temperature was computed as a principal com-

ponent from the arctic and antarctic oxygene isotopic records of the Vostok ice core in 

Antarctica and the GISP2 ice core in Greenland.

Conclusion

Let’s come to the end and to the conclusions. The first conclusion is that the ICA is 

more general than the PCA, the second, that the ICA separates mixed signals. Further-

more, we can state that the application to rock magnetic measurements reveals an in-

tensity signal of the Earth’ magnetic field, which is a better representation of the palaeo 

intensity signal than the so far used ratios of rock magnetic measurements. This is a 

good starting point for the further work, where I will apply this method to two further 

data sets from italian lakes and compare their results.
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Motivation

Understanding the Earth’ geodynamo (variation of the
Earth’ magnetic field)



Palaeo Intensity

Rock magnetic measurements contain mixtures of lo-
cal and regional climatic as well as Earth’ magnetic
field intensity signals of the past.

ü

Climate

Sediments

magnetic properties
(e.g. remanent magnetization)

Earth
Magnetic Field

exogene processes
(e.g. weathering)

endogene processes
(e.g. bio-activity) magnetization

Can we extract the different source signals from these
mixtures?



Basic Model

n independent source signals si(t),
m observations xj(t) – linear mixings of si

~x(t) = A~s(t)

Problem:
Separation of the sources si from the observations, i. e. es-
timation of the mixing matrix A.

Methods:
1. Principle component analysis (PCA) – uncorrelated
components
2. Independent component analysis (ICA) – statisti-
cally independent components



independence ⇒ uncorrelatedness

cov(g(x), h(y)) = E {g(x) h(y)}

=
+∞∫
−∞

+∞∫
−∞

g(x) h(y) px,y(x, y) dx dy

=
+∞∫
−∞

g(x) px(x) dx
+∞∫
−∞

h(y) py(y) dy

= E {g(x)} E {h(y)} ,

uncorrelatedness 6⇒ independence

Joint distributions of independent random variables with uniform distribu-

tion (left) and their uncorrelated – but not independent – mixtures (right).



special case: uncorrelated variables with gaussian joint
distribution

px,y(x, y) =
1

2π
e−

x2+y2
2

=
1√
2π

e−
x2
2

1√
2π

e−
y2
2 = px(x) py(y)

Joint distribution of two independent Gaussian variables.



Estimation Principles for ICA

Nonlinear decorrelation:
Find such components yi which are uncorrelated and
whose transformed components fi(yi) are uncorrelated,
( fi are some suitable nonlinear functions).

Maximum nongaussianity:
Find local maxima of nongaussianity of linear com-
binations y = ∑ bi xi; each local maximum gives one
independent component.



Motivation for maximum nongaussianity

The sum of independent random variables tends closer
toward a Gaussian distribution than the original ran-
dom variables (central limit theorem).

~x = A~s, with observations ~x and source signals~s.

We consider the linear combination y = ∑i bixi (cor-
responding to y =~bTA~s). Such a vector~b, so that~bTA
has only one nonzero component, reveals actually one
of the independent components.

According to the central limit theorem,~b has to be es-
timated in that way that the linear combination y is
maximal nongaussian.

Measures for nongaussianity are e. g. kurtosis

kurt = E{x4} − 3[E{x2}]2
or negentropy

J(~x) = H(~xgauss) − H(~x).



Ambiguities

The ICA cannot determine

1. the number of the independent components;

2. the variances of the independent components;

3. the sign of the independent components.



Illustration

s1(t) = sin
(

2π

800
t
)

(IID transf.)

s2(t) =
∣∣∣∣ cos

(
2π

424
t
)∣∣∣∣

s3(t) = sin
(

2π

233
t
)

with its mixing signals

x1(t) = 0.1 s1(t) + 0.8 s2(t) + 0.01ξ1

x2(t) = 0.5 s1(t) + 0.4 s2(t) + 0.02ξ2

x3(t) = s3(t)

s1(t) is transformed to the uniform distribution; ξi is
uniformly distributed noise
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Original:

A =


 0.1 0.8 0.00

0.5 0.4 0.00
0.0 0.0 1.00




∣∣∣∣a11

a12

∣∣∣∣ = 0.125,
∣∣∣∣a21

a22

∣∣∣∣ = 1.25



PCA

The PCA decomposes the observations in three un-
correlated signals

~s = V~x

e. g. by eigenvalue decomposition of the covariance
matrix

C = EDET, V = ED−1/2ET

with

V =


 1.32 −1.32 0.04

0.54 0.54 −0.02
0.00 −0.04 −1.00




APCA = V−1 =


 0.38 0.93 0.00

−0.38 0.92 −0.04
0.01 −0.04 −1.00




∣∣∣∣a11

a12

∣∣∣∣ = 0.41,
∣∣∣∣a21

a22

∣∣∣∣ = 0.41



ICA

The ICA decomposes the observations in three inde-
pendent signals

~s = W~x

with

W =


 0.90 −1.42 0.02

1.11 −0.16 0.01
0.01 0.00 −1.00




AICA = W−1 =


 −0.11 0.99 −0.01

−0.78 0.63 0.01
0.00 −0.01 1.00




∣∣∣∣a11

a12

∣∣∣∣ = 0.11,
∣∣∣∣a21

a22

∣∣∣∣ = 1.24



s
1
 and s

2
 (original signals) x

1
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2
 (mixed signals)

s
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1
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Application to Rock Magnetic Data

Rock magnetic measurements (Lake Lago Grande di
Monticchio in Italy)

NRM = f1(F) + f2(c) + f3(s), c, s = f (C)
ARM = g1(c) + g2(ssmall)

κ = h1(c) + h2(slarge)

NRM – natural remanent magnetization; ARM – anhysteretic remanent mag-
netization; κ – susceptibility; F – Earth’ magnetic field; C – climate;
c – concentration and s – grain size of magnetic minerals

Separation of the factors F, c and s with the ICA. The
analysis reveals three ICs si (~x = A~s) with the mixing
matrix:

A =


 16 −4 −12

205 −897 −931
16 −36 −136




which contain a magnetic field signal (s1) and a cli-
mate signal (s2 and s3).
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Results Rock Magnetic Data

Correlation coefficients between these ICs and the un-
derlying signals as well as the proxy data for the cli-
mate, reveals a clear distinction of these signals.

NRM κ ARM NRM
κ

NRM
ARM Q CLIM

s1 0.80 0.16 0.11 0.51 0.49 −0.07 0.02
s2 −0.18 −0.69 −0.26 0.41 −0.03 0.19 0.15
s3 −0.58 −0.71 −0.96 0.08 0.16 0.21 0.19

Q – Quercus pollen; CLIM – proxy for global temperature

Furthermore, the first IC s1 contains much less climate
impact as the usually used ratios of NRM with ARM
and κ, respectively.

P Q CLIM
s1 −0.03 −0.07 0.02
NRM/κ −0.15 0.15 0.21
NRM/ARM −0.09 0.06 0.10

Q – Quercus, P – Pinus pollen; CLIM – proxy for global temperature

The comparison with the SINT800 reference data set
shows also an improved magnetic field component
obtained by the ICA.

SINT800
s1 0.21
NRM 0.19
NRM/κ 0.10
NRM/ARM 0.11



Conclusion

1. The ICA is more general than PCA.

2. The ICA separates mixed signals.

3. The application to rock magnetic measurements
reveals an intensity signal of the Earth’ magnetic
field.

4. The obtained component is a better representa-
tion of the Earth’ magnetic field than usually used
ratios of rock magnetic measurements.

To do

Application of the ICA to two further available data
sets from italian lakes and comparison of the results.
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