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Global projections of macroeconomic climate-change damages typically consider impacts 1 

from average annual and national temperatures over long-time horizons. Here, we utilize 2 

recent empirical findings from more than 1600 regions worldwide over the past 40 years 3 

to project sub-national damages from temperature and precipitation including daily 4 

variability and extremes. Using an empirical approach which provides a robust lower-5 

bound on the persistence of impacts on economic growth, we find that the world economy 6 

is committed to an income reduction of 19% within the next 26 years due to historical 7 

carbon emissions and socioeconomic inertia (relative to a baseline without climate 8 

impacts, likely range of 11-29% accounting for physical climate and empirical 9 

uncertainty). These damages already outweigh the mitigation costs required to limit 10 

global warming to two degrees by sixfold over this near-term timeframe, and thereafter 11 

diverge strongly dependent on emission choices. Committed damages arise 12 

predominantly through changes in average temperature, but accounting for further 13 

climatic components raises estimates by approximately fifty percent and leads to stronger 14 

regional heterogeneity. Committed losses are projected for all regions except those at very 15 

high latitudes, where reductions in temperature variability bring benefits. The largest 16 

losses are committed at lower latitudes in regions with lower cumulative historical 17 

emissions and lower present-day income.   18 



Projections of the macroeconomic damage caused by future climate change are crucial to 19 

informing public and policy debates regarding adaptation, mitigation and climate justice. On 20 

the one hand, adaptation against climate impacts must be justified and planned on the basis of 21 

an understanding of their future magnitude and spatial distribution1. This is also of importance 22 

in the context of climate justice2, as well as to key societal actors including governments, 23 

central banks and private businesses which increasingly require the inclusion of climate risks 24 

in their macroeconomic forecasts to aid adaptive decision making3,4. On the other hand, climate 25 

mitigation policy such as the Paris Climate Agreement is often evaluated by balancing the costs 26 

of its implementation against the benefits of avoiding projected physical damages. This 27 

evaluation occurs both formally via cost-benefit analyses5–8, as well as informally via public 28 

perception of mitigation and damage costs9.  29 

Projections of future damages meet challenges when informing these debates, in particular the 30 

human biases relating to uncertainty and remoteness which are raised by long-term 31 

perspectives10. Here we aim to overcome such challenges, by assessing the extent of economic 32 

damages from climate change to which the world is already committed by historical emissions 33 

and socioeconomic inertia (the range of future emission scenarios which are considered 34 

socioeconomically plausible11). Such a focus on the near-term limits the large uncertainties 35 

regarding diverging future emission trajectories, the resulting long-term climate response, and 36 

the validity of applying historically observed climate-economic relations over long timescales 37 

during which socio-technical conditions may change considerably. As such, this focus aims to 38 

simplify the communication and maximize the credibility of projected economic damages from 39 

future climate change.  40 

In projecting the future economic damages from climate change, we make use of recent 41 

advances in climate econometrics which provide evidence for impacts on sub-national 42 

economic growth from numerous components of the distribution of daily temperature and 43 



precipitation12–14. Using fixed effects panel regression models to control for potential 44 

confounders, these studies exploit within-region variation in local temperature and 45 

precipitation in a panel of more than 1600 regions worldwide, comprising climate and income 46 

data over the past 40 years to identify the plausibly causal effects of changes in several climate 47 

variables on economic productivity15,16. Specifically, macroeconomic impacts have been 48 

identified from changing daily temperature variability, total annual precipitation, the annual 49 

number of wet days and extreme daily rainfall which occur in addition to those already 50 

identified from changing average temperature12,17,18. Moreover, regional heterogeneity in these 51 

effects based on the prevailing local climatic conditions has been found using interactions 52 

terms. The selection of these climate variables follows micro-level evidence for mechanisms 53 

related to the impacts of average temperatures on labor and agricultural productivity17, of 54 

temperature variability on agricultural productivity and health13, as well as of precipitation on 55 

agricultural, labor outcomes, and flood damages14 (see Table S1 for an overview including 56 

more detailed references).  Refs. 13,14 contain a more detailed motivation for the use of these 57 

particular climate variables and provide extensive empirical tests regarding the robustness and 58 

nature of their effects on economic output which are summarized in our methods section. By 59 

accounting for these additional climatic variables at the sub-national level, we aim for a more 60 

comprehensive description of climate impacts with greater detail across both time and space.  61 

A robust lower bound on the persistence of climate impacts on growth 62 

A key determinant and source of discrepancy in estimates of the magnitude of future climate 63 

damages is the extent to which the impact of a climate variable on economic growth rates 64 

persists. The two extreme cases in which these impacts persist indefinitely or only 65 

instantaneously are commonly referred to as growth or level effects19,20 (see methods section 66 

“Empirical specification – fixed-effects distributed lag model” for definitions). Recent work 67 

shows that future damages from climate change depend strongly on whether growth or level 68 



effects are assumed20. Following refs. (17,18),  we provide constraints on this persistence by 69 

using distributed lag models to test the significance of delayed effects separately for each 70 

climate variable. Importantly and in contrast to refs (17,18), we use climate variables in their 71 

first-differenced form following ref. 12, implying a dependence of the growth rate on a change 72 

in climate variables. This choice means that a baseline specification without any lags 73 

constitutes a model prior of purely level effects, in which a permanent change in the climate 74 

has only an instantaneous effect on the growth rate12,19,21. By including lags, one can then test 75 

whether any effects may persist further. This is in contrast to the specification used by refs. 76 

17,18 in which climate variables are used without taking the first difference, implying a 77 

dependence of the growth rate on the level of climate variables. In this alternative case, the 78 

baseline specification without any lags constitutes a model prior of pure growth effects, in 79 

which a change in climate has an infinitely persistent effect on the growth rate. Consequently, 80 

including further lags in this alternative case tests whether the initial growth impact is 81 

recovered18,19,21. Both of these specifications suffer from the limiting possibility that if too few 82 

lags are included, one might falsely accept the model prior. The limitations of including a very 83 

large number of lags, including loss of data and increasing statistical uncertainty with an 84 

increasing number of parameters, means that such a possibility is likely. By choosing a 85 

specification in which the model prior is one of level effects, our approach is therefore 86 

conservative by design, avoiding assumptions of infinite persistence of climate impacts on 87 

growth and instead providing a lower-bound on this persistence based on what is observable 88 

empirically (see methods section “Empirical specification – fixed-effects distributed lag 89 

model” for further exposition of this framework). The conservative nature of such a choice is 90 

likely the reason that ref. 19 finds much greater consistency between the impacts projected by 91 

models which use the first difference of climate variables as opposed to their levels.  92 



We begin our empirical analysis of the persistence of climate impacts on growth using ten lags 93 

of the first-differenced climate variables in fixed-effects distributed lag models. We detect 94 

significant effects on economic growth at time lags of up to approximately eight to ten years 95 

for the temperature terms, and up to approximately four years for the precipitation terms 96 

(Extended Data Figure 1, Table S2). Furthermore, evaluation by means of Information Criteria 97 

indicates that the inclusion of all five climate variables and the use of these numbers of lags 98 

provide a preferable trade-off between best-fitting the data and including additional terms 99 

which could cause overfitting, in comparison to model specifications excluding climate 100 

variables or including more or fewer lags (Supplementary Methods Section S1, Fig. S1 and 101 

Table S3). We therefore remove insignificant terms at later lags (Figs. S2-4, Tables S4-6). 102 

Further tests using Monte-Carlo simulations demonstrate that the empirical models are robust 103 

to autocorrelation in the lagged climate variables (Supplementary Methods Section S2, Figs. 104 

S5& S6), that Information Criteria provide an effective indicator for lag selection 105 

(Supplementary Methods Section S2, Fig. S7), that the results are robust to concerns of 106 

imperfect multi-collinearity between climate variables and that including several climate 107 

variables is actually necessary to isolate their separate effects (Supplementary Methods Section 108 

S3, Fig. S8). We provide a further robustness check using a restricted distributed lag model to 109 

limit oscillations in the lagged parameter estimates which may result from autocorrelation, 110 

finding that it provides similar estimates of cumulative marginal effects to the un-restricted 111 

model (Supplementary Methods Section S4, Figs. S9 and S10). Finally, to explicitly account 112 

for any outstanding uncertainty arising from the precise choice of the number of lags, we 113 

include empirical models with marginally different numbers of lags in the error sampling 114 

procedure of our projection of future damages. Based on the lag selection procedure (the 115 

significance of lagged terms in Extended Data Figure 1 and Table S2, as well as Information 116 

Criteria in Fig. S1), we sample from models with eight to ten lags for temperature and four for 117 



precipitation (models shown in Figs. S2-S4 and Tables S3-S5). In summary, this empirical 118 

approach to constrain the persistence of climate impacts on economic growth rates is 119 

conservative by design in avoiding assumptions of infinite persistence, but nevertheless 120 

provides a lower bound on the extent of impact persistence which is robust to the numerous 121 

tests outlined above. 122 

Economic damages until mid-century are committed and diverge thereafter 123 

We combine these empirical economic response functions (Figs. S2-S4 and Tables S3-5) with 124 

an ensemble of twenty-one climate models (see Table S7) from the Coupled Model 125 

Intercomparison Project phase-6 (CMIP-6)22 to project the macroeconomic damages from 126 

these multiple components of physical climate change (see methods for further details). Bias-127 

adjusted climate models which provide a highly accurate reproduction of observed 128 

climatological patterns with limited uncertainty (Table S8) are used to avoid introducing biases 129 

in the projections. Following a well-developed literature12,17,19, these projections do not aim to 130 

provide a prediction of future economic growth. Instead, they are a projection of the exogenous 131 

impact of future climate conditions on the economy relative to the baselines specified by 132 

socioeconomic projections, based on the plausibly causal relationships inferred by the 133 

empirical models, and assuming ceteris paribus. Other exogenous factors relevant for the 134 

prediction of economic output are purposefully assumed constant.   135 

A Monte-Carlo procedure which samples from climate model projections, empirical models 136 

with different numbers of lags, and model parameter estimates (obtained by 1000 block-137 

bootstrap resamples of each of the regressions in Figs. S2-S4 and Tables S3-5) is used to 138 

estimate the combined uncertainty from these multiple sources. Given these uncertainty 139 

distributions, we find that projected global damages are statistically indistinguishable across 140 

the two most extreme emission scenarios until 2049 (at the 5% significance level, Fig. 1). As 141 

such, the climate damages occurring before this time constitute those to which the world is 142 



already committed due to the combination of past emissions and the range of future emission 143 

scenarios which are considered socioeconomically plausible11. These committed damages 144 

comprise a permanent income reduction of 19% on average globally (population weighted 145 

average) in comparison to a baseline without climate change impacts (with a likely range of 146 

11-29%, following the likelihood classification adopted by the Intergovernmental Panel on 147 

Climate Change (IPCC), see caption of Fig. 1). Even though levels of income per capita 148 

generally still increase relative to those today, this constitutes a permanent income reduction 149 

for the majority of regions, including North America and Europe (each with median income 150 

reductions of approximately 11%) and with South Asia and Africa being the most strongly 151 

affected (each with median income reductions of approximately 22%; Fig. 1). Under a middle-152 

of-the road scenario of future income development (SSP2), this corresponds to global annual 153 

damages in 2049 of 38 trillion in 2005 International Dollars (likely range of 19-59 trillion 2005 154 

International Dollars). Compared to empirical specifications which assume pure growth or pure 155 

level effects, our preferred specification which provides a robust lower-bound on the extent of 156 

climate impact persistence produces damages between these two extreme assumptions 157 

(Extended Data Fig. 2). 158 



 159 

Figure 1. The commitment and divergence of economic climate damages vs mitigation 160 

costs. Estimates of the projected reduction in income per capita from changes in all climate 161 

variables based on empirical models of climate impacts on economic output with a robust 162 

lower-bound on their persistence (Extended Data Fig. 1) under a low-emission scenario 163 

compatible with the 2C warming target and a high-emission scenario (SSP2-RCP2.6 and 164 

SSP5-RCP8.5 respectively) are shown in purple and orange respectively. Shading represents 165 



the 17% and 10% confidence intervals reflecting the likely and very likely ranges respectively 166 

(following the likelihood classification adopted by the Intergovernmental Panel on Climate 167 

Change), having estimated uncertainty from a Monte-Carlo procedure which samples the 168 

uncertainty from both the choice of physical climate models, empirical models with different 169 

numbers of lags, and bootstrapped estimates of the regression parameters shown in Figs. S2-170 

S4. Vertical dashed lines show the time at which the climate damages of the two emission 171 

scenarios diverge at the 5% and 1% significance level based on the distribution of differences 172 

between emission scenarios arising from the uncertainty sampling discussed above. Note that 173 

uncertainty in the difference of the two scenarios is smaller than the combined uncertainty of 174 

the two respective scenarios because samples of the uncertainty (climate model and empirical 175 

model choice as well as model parameter bootstrap) are consistent across the two emission 176 

scenarios; hence the divergence of damages occurs while the uncertainty bounds of the two 177 

separate damage scenarios still overlap. Estimates of global mitigation costs from the three 178 

Integrated Assessment Models which provide results for the SSP2 baseline and SSP2-RCP2.6 179 

scenario are shown in light green in the upper panel, with the median of these estimates 180 

shown in bold. 181 

  182 



Committed damages outweigh the mitigation costs required to limit warming to 2C 183 

before mid-century 184 

We compare the damages to which the world is committed over the next 26 years to estimates 185 

of the mitigation costs required to achieve the Paris Climate Agreement. Taking estimates of 186 

mitigation costs from the three Integrated Assessment Models (IAMs) in the IPCC AR6 187 

database23 which provide estimates under comparable scenarios (SSP2 baseline, and SSP2-188 

RCP2.6), we find that the median committed climate damages outweigh the median mitigation 189 

costs in 2050 (six trillion in 2005 International dollars) approximately sixfold (note estimates 190 

of mitigation costs are only provided every 10 years by the IAMs and so a comparison in 2049 191 

is not possible). These results emphasise that climate damages strongly outweigh mitigation 192 

costs already over the next 25 years, a perspective which may complement formal cost-benefit 193 

analyses which find that the net benefits of mitigation only emerge after 20507. While these 194 

near-term damages constitute those to which the world is already committed, we note that 195 

damage estimates diverge strongly across emission scenarios after 2049, conveying the clear 196 

benefits of mitigation from a purely economic point of view which have been emphasised in 197 

previous studies5,24. In addition to the uncertainties assessed in Fig. 1, these conclusions are 198 

robust to structural choices such as the timescale with which changes in the moderating 199 

variables of the empirical models are estimated (Figs. S11 & S12), as well as the order in which 200 

one accounts for the inter-temporal and inter-national components of currency comparison 201 

(Fig. S13, see methods for further detail). 202 

Accounting for additional climatic components raises net damages 203 

Committed damages primarily arise through changes in average temperature (Fig. 2). This 204 

reflects the fact that projected changes in average temperature are larger than those in other 205 

climate variables when expressed as a function of their historical interannual variability (Fig. 206 

S14). Since the historical variability is that on which the empirical models are estimated, larger 207 



projected changes in comparison to this variability are likely to lead to larger future impacts in 208 

a purely statistical sense. From a mechanistic perspective, one may plausibly interpret this 209 

result as implying that future changes in average temperature are the most unprecedented from 210 

the perspective of the historical fluctuations to which the economy is accustomed, and therefore 211 

will cause the most damage. This insight may prove useful in terms of guiding adaptation 212 

measures to the sources of greatest damage. 213 

Nevertheless, future damages based on empirical models which consider changes in annual 214 

average temperature only and exclude the other climate variables constitute income reductions 215 

of only 13% in 2049 (Fig. S16a, likely range 5-21%). This suggests that accounting for the 216 

other components of the distribution of temperature and precipitation raises net damages by 217 

nearly fifty percent. This increase arises through the additional damages which these climatic 218 

components cause, but also because their inclusion reveals a stronger negative economic 219 

response to average temperatures (Fig. S16b). The latter finding is consistent with our Monte-220 

Carlo simulations which suggest that the magnitude of the effect of average temperature on 221 

economic growth is underestimated unless accounting for the impacts of other correlated 222 

climate variables (Fig. S8).  223 

In terms of the relative contributions of the different climatic components to overall damages, 224 

we find that accounting for daily temperature variability causes the largest increase in overall 225 

damages relative to empirical frameworks which only consider changes in annual average 226 

temperature (4.9%-points, likely range 2.4-8.7%-points, equivalent to approximately 10 trillion 227 

International Dollars). Accounting for precipitation causes smaller increases in overall 228 

damages which are nevertheless equivalent to approximately 1.2 trillion International Dollars: 229 

0.01%-points (-0.37-0.33%-points), 0.34%-points (0.07-0.90%-points) and 0.36%-points 230 

(0.13-0.65%-points) from total annual precipitation, the number of wet days and extreme daily 231 

precipitation respectively. Moreover, climate models appear to underestimate future changes 232 



in temperature variability25 and extreme precipitation26,27 in response to anthropogenic forcing 233 

as compared to that observed historically, suggesting that the true impacts from these variables 234 

may be larger.   235 



 236 

Figure 2. The committed economic damages of climate change by sub-national region 237 

and climatic component. Estimates of the median projected reduction in sub-national 238 

income per capita across emission scenarios (SSP2-RCP2.6 and SSP2-RCP8.5) as well as 239 

climate model, empirical model and model parameter uncertainty in the year at which climate 240 

damages diverge at the 5% level (2049, as identified in Fig. 1). Panel (a) shows the impacts 241 

arising from all climate variables, while panels (b-f) show the impacts arising separately from 242 

changes in annual mean temperature, daily temperature variability, total annual precipitation, 243 

the annual number of wet days (>1mm) and extreme daily rainfall respectively (see methods 244 

for further definitions). 245 

  246 



Heterogeneity of committed economic climate damages 247 

The spatial distribution of committed damages (Fig. 2a) reflects a complex interplay between 248 

the patterns of future change in multiple climatic components and those of historical economic 249 

vulnerability to changes in those variables. Damages due to increasing annual mean 250 

temperature (Fig. 2b) are negative almost everywhere globally, and larger at lower latitudes in 251 

regions where temperatures are already higher and economic vulnerability to temperature 252 

increases is greatest (see the response heterogeneity to mean temperature embodied in 253 

Extended Data Fig. 1a). This occurs despite the amplified warming projected at higher 254 

latitudes28, suggesting that regional heterogeneity in economic vulnerability to temperature 255 

changes outweighs heterogeneity in the magnitude of future warming (Fig. S15a). Economic 256 

damages due to daily temperature variability (Fig. 2c) exhibit a strong latitudinal polarisation, 257 

primarily reflecting the physical response of daily variability to greenhouse forcing in which 258 

increases in variability across lower latitudes (and Europe) contrast decreases at high latitudes 259 

(Fig S15b) 25. These two temperature terms are the predominant determinants of the pattern of 260 

overall damages (Fig. 2a), which exhibits a strong polarity with damages across most of the 261 

globe except at the highest northern latitudes. Future changes in total annual precipitation 262 

mainly bring economic benefits except in regions of drying such as the Mediterranean and 263 

central South America (Fig. 2d, Fig. S15c), but these benefits are opposed by changes in the 264 

number of wet days, which produce damages with a similar pattern of opposite sign (Fig. 2e, 265 

Fig. S15d). By contrast, changes in extreme daily rainfall produce damages in all regions, 266 

reflecting the intensification of daily rainfall extremes over global land areas29,30 (Fig. 2f, Fig. 267 

S15e).  268 

The spatial distribution of committed damages implies considerable injustice along two 269 

dimensions: culpability for the historical emissions which have caused climate change, and 270 

pre-existing levels of socio-economic welfare. Spearman’s rank correlations indicate that 271 



committed damages are significantly larger in countries with smaller historical cumulative 272 

emissions, as well as in regions with lower current income per capita (Fig. 3). This implies that 273 

those countries which will suffer the most from the damages which are already committed are 274 

those which are least responsible for climate change, and which also have the least resources 275 

to adapt to it. 276 

To further quantify this heterogeneity, we assess the difference in committed damages between 277 

the upper and lower quartiles of regions when ranked by present income levels and historical 278 

cumulative emissions (using a population weighting to both define the quartiles and estimate 279 

the group averages). On average, the quartile of countries with lower income are committed to 280 

an income loss which is 8.9 percentage-points (or 61%) greater than the upper quartile (Fig. 281 

S17), with a likely range of 3.8-14.7 percentage-points across the uncertainty sampling of our 282 

damage projections (following the likelihood classification adopted by the IPCC). Similarly, 283 

the quartile of countries with lower historical cumulative emissions are committed to an income 284 

loss which is 6.9 percentage-points (or 40%) greater than the upper quartile, with a likely range 285 

of 0.27-12 percentage-points. These patterns re-emphasise the prevalence of injustice in 286 

climate impacts31–33 in the context of the damages to which the world is already committed by 287 

historical emissions and socio-economic inertia.   288 



 289 

Figure 3. The injustice of committed climate damages by cumulative historical 290 

emissions and income. Estimates of the median projected change in national income per 291 

capita across emission scenarios (RCP2.6 and RCP8.5) as well as climate model, empirical 292 

model and model parameter uncertainty in the year at which climate damages diverge at the 293 

5% level (2049, as identified in Fig. 1), are plotted against national cumulative emissions per 294 

capita in 2020 (from the Global Carbon Project) and coloured by national income per capita 295 

in 2020 (from the World Bank) in panel (a), and vice versa in panel (b). In each panel, the 296 

size of each scatter point is weighted by the national population in 2020 (from the World 297 

Bank). Inset figures indicate the Spearman’s rank correlation, , and p-values for a 298 

hypothesis test whose null hypothesis is of no correlation, as well as the Spearman’s rank 299 

correlation weighted by national population.  300 

  301 



Discussion 302 

The magnitude of projected economic damages exceeds previous literature estimates12,17, 303 

arising from a number of developments made upon previous approaches. Our estimates are 304 

larger than those of ref.17 (see first row of Extended Data Table 1) primarily due to the facts 305 

that sub-national estimates typically show a steeper temperature response (see also refs. 12,34) 306 

and that accounting for other climatic components raises damage estimates (Fig. S16). 307 

However, we note that our empirical approach using first-differenced climate variables is 308 

conservative compared to that of ref. 17 with regards to the persistence of climate impacts on 309 

growth (see introduction and methods section “Empirical specification – fixed-effects 310 

distributed lag model”), an important determinant of the magnitude of long-term damages19,21. 311 

Using a similar empirical specification to ref. 17 which assumes infinite persistence while 312 

maintaining the rest of our approach (sub-national data and additional climate variables), 313 

produces considerably larger damages (purple curve of Extended Data Fig. 2). Compared to 314 

studies which do take the first-difference of climate variables12,35, our estimates are also larger 315 

(see second and third rows of Extended Data Table 1). The inclusion of additional climate 316 

variables (Fig. S16) and a sufficient number lags to more adequately capture the extent of 317 

impact persistence (Extended Data Fig. 1) are major sources of this difference, as is the use of 318 

specifications which capture non-linearities in the temperature response when compared to ref. 319 

35. In summary, our estimates develop upon previous studies by incorporating the latest data 320 

and empirical insights13,14, as well as in providing a robust empirical lower-bound on the 321 

persistence of impacts on economic growth, which constitutes a middle ground between the 322 

extremes of the growth-vs-levels debate19,21 (Extended Data Fig. 2).  323 

 324 

Compared to the fraction of variance explained by the empirical models historically (<5%), the 325 

projection of reductions in income of 19% may appear large. This arises due to the fact that 326 



projected changes in climatic conditions are much larger than those which were experienced 327 

historically, particularly for changes in average temperature (Fig. S14). As such, any 328 

assessment of future climate change impacts necessarily requires an extrapolation outside of 329 

the range of the historical data on which the empirical impact models were evaluated. 330 

Nevertheless, these models constitute the most state-of-the-art methods for inference of 331 

plausibly causal climate impacts based on observed data. Moreover, we take explicit steps to 332 

limit out-of-sample extrapolation by capping the moderating variables of the interaction terms 333 

at the 95th percentile of the historical distribution (see methods). This avoids extrapolating the 334 

marginal effects outside of what was observed historically. Given the non-linear response of 335 

economic output to annual mean temperature (Extended Data. Fig.1, Table S2), this is a 336 

conservative choice which limits the magnitude of damages which we project. 337 

  338 

Despite assessing multiple climatic components from which economic impacts have recently 339 

been identified12–14, this assessment of aggregate climate damages should not be considered 340 

comprehensive. Important channels such as impacts from heatwaves31, sea-level rise36, tropical 341 

cyclones37 and tipping points38,39, as well as non-market damages such as those to ecosystems40 342 

and human health41 are not considered in these estimates. Sea-level rise is unlikely to be 343 

feasibly incorporated into empirical assessments such as this since historical sea level 344 

variability is mostly insignificant. Non-market damages are inherently intractable within our 345 

estimates of impacts on aggregate monetary output and estimates of these impacts could 346 

arguably be considered as additional to those identified here. Recent empirical work suggests 347 

that accounting for these channels would likely raise estimates of these committed damages 348 

with larger damages continuing to arise in the global south31,36–41. 349 

 350 



We find that the economic damages due to climate change until 2049 are those to which the 351 

world economy is already committed, and that these greatly outweigh the costs required to 352 

mitigate emissions in line with the 2C target of the Paris Climate Agreement (Fig. 1). For 353 

simplicity and due to the availability of data, we compare damages to mitigation costs at the 354 

global level. Regional estimates of mitigation costs may shed further light on the national 355 

incentives for mitigation to which our results already hint, of relevance for international climate 356 

policy. While these damages are committed from a mitigation perspective, adaptation may 357 

provide an opportunity to reduce them. Moreover, the strong divergence of damages after mid-358 

century reemphasises the clear benefits of mitigation from a purely economic perspective as 359 

emphasised in previous studies5,6,8,24.  360 
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Methods 446 

Historical climate data 447 

Historical daily 2-m temperature and precipitation totals (in mm) are obtained for the period 448 

1979-2019 from the W5E5 database. W5E5 stems from ERA-5, a state-of-the-art reanalysis of 449 

historical observations, but has been bias-adjusted by applying version 2.0 of the WATCH 450 

Forcing Data to ERA-5 reanalysis data, and precipitation data from version 2.3 of the Global 451 

Precipitation Climatology Project to better reflect ground-based measurements42–44. We obtain 452 

this data on a 0.5-by-0.5-degree grid from the Inter-Sectoral Impact Model Intercomparison 453 

Project (ISIMIP) database. Importantly, this historical data has been used to bias-adjust future 454 

climate projections from CMIP-6 (see the following section), ensuring consistency between 455 

the distribution of historical daily weather on which our empirical models were estimated, and 456 

the climate projections used to estimate future damages. These data are publicly available from 457 

the ISIMIP database. See refs. 13,14 for robustness tests of the empirical models to the choice of 458 

climate data reanalysis products. 459 

Future climate data 460 

Daily 2-m temperature and precipitation totals (in mm) are taken from 21 climate models 461 

participating 462 

in CMIP-6 under a high (RCP8.5) and a low (RCP2.6) greenhouse gas emission scenario 463 

from 2015-2100. The data have been bias-adjusted and statistically downscaled to a common 464 

half-degree grid to reflect the historical distribution of daily temperature and precipitation of 465 

the W5E5 dataset using the trend-preserving method developed by ISIMIP43,45. As such, the 466 

climate model data reproduces observed climatological patterns exceptionally well (Table 467 

S8). Gridded data are publicly available from the ISIMIP database. 468 

Historical economic data 469 



Historical economic data stem from the DOSE database of sub-national economic output46. We 470 

use a recent update to DOSE which provides data across 83 countries, 1660 sub-national 471 

regions with varying temporal coverage from 1960-2019. Sub-national units constitute the first 472 

administrative division below national, e.g., states for the USA and provinces for China. Data 473 

stem from measures of gross-regional product per capita (GRPpc) or income per-capita in local 474 

currencies, reflecting the values reported in national statistical agencies, yearbooks and, in 475 

some cases, academic literature. We follow previous literature 12–14,47 and assess real sub-476 

national output per capita by first converting values from local currencies to US dollars to 477 

account for diverging national inflationary tendencies, and then account for US inflation using 478 

a US deflator. Alternatively, one might first account for national inflation and then convert 479 

between currencies. Fig. S13 demonstrates that our conclusions are consistent when accounting 480 

for price changes in the reversed order, although the magnitude of estimated damages varies. 481 

See the documentation of DOSE for further discussion of these choices. Conversions between 482 

currencies are conducted using exchange rates from the FRED database of the Federal Reserve 483 

Bank of St Louis48 and the national deflators from the World Bank49.  484 

Future socioeconomic data 485 

Baseline gridded GDP and population data for the period 2015-2100 are taken from the middle-486 

of-the-road Shared Socioeconomic Pathway scenario SSP211. Population data have been 487 

downscaled to a half-degree grid by ISIMIP following the methodologies of refs. 50,51, which 488 

we then aggregate to the sub-national level of our economic data using the spatial aggregation 489 

procedure described below. Since current methodologies for downscaling GDP of the SSPs use 490 

downscaled population to do so, per capita estimates of GDP with a realistic distribution at the 491 

sub-national level are not readily available for the SSPs. We therefore use national-level GDP 492 

per capita projections for all sub-national regions of a given country, assuming homogeneity 493 

within countries in terms of baseline GDP per-capita. Here, we use projections which have 494 



been updated to account for the impact of the Covid-19 pandemic on the trajectory of future 495 

income, while remaining consistent with the long-term development of the SSPs52. The choice 496 

of baseline SSP alters the magnitude of projected climate damages in monetary terms, but when 497 

assessed in terms of percentage change from the baseline, the choice of socioeconomic scenario 498 

is inconsequential. Gridded SSP population data and national level GDP per capita data are 499 

publicly available from the ISIMIP database. Sub-national estimates as used in this study are 500 

available in the code and data replication files. 501 

Climate variables 502 

Following recent literature12–14 we calculate an array of climate variables for which significant 503 

impacts on macro-economic output have been identified empirically, supported by further 504 

evidence at the micro-level for plausible underlying mechanisms. Please see refs. 13,14 for an 505 

extensive motivation for the use of these particular climate variables and for detailed empirical 506 

tests regarding the nature and robustness of their effects on economic output. To summarize, 507 

these studies have found evidence for independent impacts on economic growth rates from 508 

annual average temperature, daily temperature variability, total annual precipitation, the annual 509 

number of wet days and extreme daily rainfall. Assessments of daily temperature variability 510 

were motivated by evidence of impacts on agricultural output and human health, as well as 511 

macroeconomic literature on the impacts of volatility on growth when manifest in different 512 

dimensions such as government spending, exchange rates and even output itself13. Assessments 513 

of precipitation impacts were motivated by evidence of impacts on agricultural productivity, 514 

metropolitan labor outcomes and conflict, as well as damages caused by flash flooding14. See 515 

Table S1 for detailed references to empirical studies of these physical mechanisms. Significant 516 

impacts of daily temperature variability, total annual precipitation, the number of wet days and 517 

extreme daily rainfall on macroeconomic output were identified robustly across different 518 

climate data-sets, spatial aggregation schemes, specifications of regional time-trends, and 519 



error-clustering approaches. They were also found to be robust to the consideration of 520 

temperature extremes13,14. Furthermore, these climate variables were identified as having 521 

independent effects on economic output13,14, which we further elucidate here using Monte-522 

Carlo simulations to demonstrate the robustness of the results to concerns of imperfect multi-523 

collinearity between climate variables (Supplementary Methods Section S2), as well as by 524 

using Information Criteria (Table S3) to demonstrate that including several lagged climate 525 

variables provides a preferable trade-off between optimally describing the data and limiting the 526 

possibility of overfitting.  527 

We calculate these variables from the distribution of daily, 𝑑, temperature, 𝑇𝑥,𝑑, and 528 

precipitation, 𝑃𝑥,𝑑, at the grid-cell, x, level for both the historical and future climate data. In 529 

addition to annual mean temperature, �̅�𝑥,𝑦, and annual total precipitation, 𝑃𝑥,𝑦, we calculate 530 

annual, y, measures of daily temperature variability, �̃�𝑥,𝑦:  531 

�̃�𝑥,𝑦 = 112 ∑ √ 1𝐷𝑚 ∑ (𝑇𝑥,𝑑,𝑚,𝑦 − �̅�𝑥,𝑚)2𝐷𝑚𝑑=112𝑚=1 ,       (1) 532 

the number of wet days, 𝑃𝑤𝑑𝑥,𝑦: 533 𝑃𝑤𝑑𝑥,𝑦 = ∑ 𝐻𝐷𝑦𝑑=1 (𝑃𝑥,𝑑 − 1𝑚𝑚),        (2) 534 

and extreme daily rainfall: 535 

 𝑃𝑒𝑥𝑡𝑥,𝑦 = ∑ 𝐻(𝑃𝑥,𝑑 − 𝑃99.9𝑥)𝐷𝑦𝑑=1 . 𝑃𝑥,𝑑,       (3) 536 

where 𝑇𝑥,𝑑,𝑚,𝑦 is the grid-cell specific daily temperature in month m and year y, �̅�𝑥,𝑚,𝑦 is the 537 

year and grid-cell specific monthly, m, mean temperature, H the Heaviside step function, 1mm 538 

the threshold used to define wet days, and P99.9x, the 99.9th percentile of historical (1979-539 

2019) daily precipitation at the grid-cell level. Units of the climate measures are degrees 540 

Celsius for annual mean temperature and daily temperature variability, millimeters for total 541 

annual precipitation and extreme daily precipitation, and simply the number of days for the 542 

annual number of wet days. 543 



We additionally calculated weighted standard deviations of monthly rainfall totals as also used 544 

in ref. 14, but do not include them in our projections as we find that when accounting for delayed 545 

effects their effect becomes statistically indistinct and is better captured by changes in total 546 

annual rainfall.  547 

Spatial aggregation 548 

We aggregate grid-cell level historical and future climate measures, as well as grid-cell level 549 

future GDPpc and population, to the level of the first administrative unit below national level 550 

of the GADM database using an area-weighting algorithm which estimates the portion of each 551 

grid-cell falling within an administrative boundary. We use this as our base-line specification 552 

following previous findings that the effect of area or population weighting at the sub-national 553 

level is negligible13,14.  554 

Empirical model specification – fixed-effects distributed lag models 555 

Following a wide-range of climate econometric literature15,53, we use panel regression models 556 

with a selection of fixed-effects and time-trends to isolate plausibly exogenous variation with 557 

which to maximise confidence in a causal interpretation of the effects of climate on economic 558 

growth rates. The use of region fixed effects, 𝜇𝑟 , accounts for unobserved time-invariant 559 

differences between regions such as prevailing climatic norms and growth rates due to 560 

historical and geo-political factors. The use of yearly fixed effects, 𝜂𝑦, accounts for regionally 561 

invariant annual shocks to the global climate or economy such as the El-Nino Southern 562 

Oscillation or global recessions. In our base-line specification we also include region-specific 563 

linear time trends, 𝑘𝑟𝑦, to exclude the possibility of spurious correlations due to common slow-564 

moving trends in climate and growth.  565 

The persistence of climate impacts on economic growth rates is a key determinant of the long-566 

term magnitude of damages. Methods for inferring the extent of persistence in impacts on 567 

growth rates have typically used lagged climate variables to evaluate the presence of delayed 568 



effects or catch up dynamics17,18. For example, consider starting from a model in which a 569 

climate condition, 𝐶𝑟,𝑦, (e.g. annual mean temperature) impacts the growth rate, ∆𝑙𝑔𝑟𝑝𝑟,𝑦 (the 570 

first difference of the logarithm of gross-regional product) of region 𝑟 in year y: 571 ∆𝑙𝑔𝑟𝑝𝑟,𝑦  =  𝜇𝑟  +  𝜂𝑦  +  𝑘𝑟𝑦 +  𝛼𝐶𝑟,𝑦  +  𝜀𝑟,𝑦,      (4) 572 

which we refer to as a “pure growth-effects” model in the main text. Typically, additional lags 573 

are included,  574 ∆𝑙𝑔𝑟𝑝𝑟,𝑦  =  𝜇𝑟  +  𝜂𝑦  +  𝑘𝑟𝑦 +  ∑ 𝛼𝐿𝑁𝐿𝐿=0 𝐶𝑟,𝑦−𝐿  + 𝜀𝑟,𝑦,     (5) 575 

and the cumulative effect of all lagged terms is evaluated to assess the extent to which climate 576 

impacts on growth rates persist. Following ref. 18, in the case that, 577 ∑ 𝛼𝐿𝑁𝐿𝐿=0 <  0 for 𝛼0 < 0;  or ∑ 𝛼𝐿𝑁𝐿𝐿=0 >  0 for  𝛼0 > 0       (6) 578 

the implication is that impacts on the growth rate persist up to NL years after the initial shock 579 

(possibly to a weaker or stronger extent), whereas if  580 ∑ 𝛼𝐿𝑁𝐿𝐿=0  =  0,           (7) 581 

then the initial impact on the growth rate is recovered after NL years and the effect is only one 582 

on the level of output. However, we note that such approaches are limited by the fact that when 583 

including an insufficient number of lags to detect a recovery of the growth rates, one may find 584 

equation (6) to be satisfied and incorrectly assume that a change in climatic conditions impacts 585 

the growth rate indefinitely. In practice, given a limited record of historical data, including too 586 

few lags to confidently conclude in an infinitely persistent impact on the growth rate is likely, 587 

particularly not over the long-timescales over which future climate damages are often 588 

projected17,24. To avoid this issue, we instead begin our analysis with a model in which the 589 

level of output, 𝑙𝑔𝑟𝑝𝑟,𝑦, depends on the level of a climate variable, 𝐶𝑟,𝑦: 590 𝑙𝑔𝑟𝑝𝑟,𝑦  =  𝜇𝑟  +  𝜂𝑦  +  𝑘𝑟𝑦 +  𝛼𝐶𝑟,𝑦  +  𝜀𝑟,𝑦.      (8) 591 

Given the non-stationarity of the level of output, we follow the literature19 and estimate such 592 

an equation in first-differenced form as, 593 



∆𝑙𝑔𝑟𝑝𝑟,𝑦  =  𝜇𝑟  +  𝜂𝑦  +  𝑘𝑟𝑦 +  𝛼∆𝐶𝑟,𝑦  +  𝜀𝑟,𝑦.      (8) 594 

which we refer to as a model of “pure level-effects” in the main manuscript. This model 595 

constitutes a baseline specification in which a permanent change in the climate variable 596 

produces an instantaneous impact on the growth rate, and a permanent effect only on the level 597 

of output. By including lagged variables in this specification,  598 ∆𝑙𝑔𝑟𝑝𝑟,𝑦  =  𝜇𝑟  +  𝜂𝑦  +  𝑘𝑟𝑦 +  ∑ 𝛼𝐿𝑁𝐿𝐿=0 ∆𝐶𝑟,𝑦−𝐿  +  𝜀𝑟,𝑦,     (9) 599 

we are able to test whether the impacts on the growth rate persist any further than 600 

instantaneously by evaluating whether 𝛼𝐿>0 are statistically significantly different from zero. 601 

Even though this framework is also limited by the possibility of including too few lags, the 602 

choice of a baseline model specification in which impacts on the growth rate do not persist 603 

means that in the case of including too few lags, the framework reverts to the baseline 604 

specification of level-effects. As such, this framework is conservative with respect to the 605 

persistence of impacts and the magnitude of future damages. It naturally avoids assumptions 606 

of infinite persistence and we are able to interpret any persistence which we do identify with 607 

equation (9) as a lower-bound on the extent of climate impact persistence on growth rates. See 608 

the main text for further discussion of this specification choice, in particular regarding its 609 

conservative nature compared to previous literature estimates such as refs. 17,18. 610 

We allow the response to climatic changes to vary across regions, using interactions of the 611 

climate variables with historical average (1979-2019) climatic conditions reflecting 612 

heterogenous effects identified in previous work 13,14. Following this previous work, the 613 

moderating variables of these interaction terms constitute the historical average of either the 614 

variable itself or of the seasonal temperature difference, �̂�𝑟, or annual mean temperature, �̅�𝑟, in 615 

the case of daily temperature variability 13 and extreme daily rainfall, respectively 14. 616 

The resulting regression equation with N and M lagged variables, respectively, reads: 617 



∆𝑙𝑔𝑟𝑝𝑟,𝑦  =  𝜇𝑟  + 𝜂𝑦  +  𝑘𝑟𝑦 +  ∑ (𝛼1,𝐿∆�̅�𝑟,𝑦−𝐿 + 𝛼2,𝐿∆�̅�𝑟,𝑦−𝐿 ⋅ �̅�𝑟)𝑁𝐿=0 +618 ∑ (𝛼3,𝐿∆�̃�𝑟,𝑦−𝐿 +𝑁𝐿=0 𝛼4,𝐿∆�̃�𝑟,𝑦−𝐿 ⋅ �̂�𝑟) + ∑ (𝛼5,𝐿∆𝑃𝑟,𝑦−𝐿 + 𝛼6,𝐿∆𝑃𝑟,𝑦−𝐿 ⋅ 𝑃𝑟)𝑀𝐿=0 +619 ∑ (𝛼7,𝐿∆𝑃𝑤𝑑𝑟,𝑦−𝐿 + 𝛼8,𝐿 ∆𝑃𝑤𝑑𝑟,𝑦−𝐿 ⋅ 𝑃𝑤𝑑𝑟) +𝑀𝐿=0620  ∑ (𝛼9,𝐿∆𝑃𝑒𝑥𝑡𝑟,𝑦−𝐿 +𝑀𝐿=0 𝛼10,𝐿∆𝑃𝑒𝑥𝑡𝑟,𝑦−𝐿 ⋅  �̅�𝑟)  +  𝜖𝑟,𝑦    (10) 621 

where ∆𝑙𝑔𝑟𝑝𝑟,𝑦 is the annual, regional GRPpc growth rate, measured as the first difference of 622 

the logarithm of real GRPpc, following previous work12–14,17–19. 623 

Estimates of the coefficients of interest 𝛼𝑖,𝐿 are shown in Extended Data Fig. 1 for N=M=10 624 

lags and for our preferred choice of the number of lags in Figs. S2-S4. In Extended Data Fig. 625 

1 errors are shown clustered at the regional level, but for the construction of damage projections 626 

we block-bootstrap the regressions by region 1000 times to provide a range of parameter 627 

estimates with which to sample the projection uncertainty (following refs. 17,31).  628 

Constructing projections of economic damage from future climate change 629 

We construct projections of future climate damages by applying the coefficients estimated in 630 

equation (10) and shown in Tables S3-5 (when including only lags with significant effects in 631 

specifications which limit overfitting, see Supplementary Methods Section S1) to projections 632 

of future climate change from the CMIP-6 models. Year-on-year changes in each primary 633 

climate variable of interest are calculated to reflect the year-to-year variations used in the 634 

empirical models. 30-year moving averages of the moderating variables of the interaction terms 635 

are calculated to reflect the long-term average of climatic conditions which were used for the 636 

moderating variables in the empirical models. By using moving averages in the projections, we 637 

account for the changing vulnerability to climate shocks based on the evolving long-term 638 

conditions (Figs. S11 & S12 show that the results are robust to the precise choice of the window 639 

of this moving average). While these climate variables are not differenced, the fact that the 640 

bias-adjusted climate models reproduce observed climatological patterns across regions for 641 

these moderating variables very accurately (Table S8) with limited spread across models (<3%) 642 



precludes the possibility that any considerable bias or uncertainty is introduced by this 643 

methodological choice. However, we impose caps on these moderating variables at the 95th 644 

percentile at which they were observed in the historical data, in order to prevent extrapolation 645 

of the marginal effects outside of the range in which the regressions were estimated. This is a 646 

conservative choice which limits the magnitude of our damage projections.  647 

Time-series of primary climate variables and moderating climate variables are then combined 648 

with estimates of the empirical model parameters to evaluate equation (10), producing a time 649 

series of annual GRPpc growth rate reductions for a given emission scenario, climate model 650 

and set of empirical model parameters. The resulting time series of growth rate impacts reflect 651 

those occurring due to future climate change. By contrast, a future scenario with no-climate 652 

change would be one in which climate variables do not change (other than with random year-653 

to-year fluctuations), and hence the time-averaged evaluation of equation (10) would be zero. 654 

Our approach therefore implicitly compares the future climate change scenario to this no-655 

climate change baseline scenario.  656 

The time-series of growth rate impacts due to future climate change in region r and year y, 𝛿𝑟,𝑦, 657 

are then added to the future baseline growth rates, 𝜋𝑟,𝑦, (in log-diff form) obtained from the 658 

SSP2 scenario to yield trajectories of damaged GRPpc growth rates, 𝜌𝑟,𝑦. These trajectories 659 

are aggregated across time to estimate the future trajectory of GRPpc with future climate 660 

impacts: 661 𝐺𝑅𝑃𝑝𝑐𝑟,𝑌 = 𝐺𝑅𝑃𝑝𝑐𝑟,2020 ∑ 𝜌𝑟,𝑦𝑌𝑦=2020 = 𝐺𝑅𝑃𝑝𝑐𝑟,2020 ∑ (1 +  𝜋𝑟,𝑦 +𝑌𝑦=2020 𝛿𝑟,𝑦)  662 

 (11) 663 

where 𝐺𝑅𝑃𝑝𝑐𝑟,𝑦=2020 is the initial log-level of GRPpc. We begin damage estimates in 2020 to 664 

reflect the damages occurring since the end of the period for which we estimate the empirical 665 

models (1979-2019) and to match the timing of mitigation cost estimates from most IAMs (see 666 

below). 667 



For each emission scenario, this procedure is repeated 1000 times while randomly sampling 668 

from the selection of climate models, the selection of empirical models with different numbers 669 

of lags (shown in Figs. S2-S4 and Table S4-S6), and bootstrapped estimates of the regression 670 

parameters. The result is an ensemble of future GRPpc trajectories which reflect uncertainty 671 

from both physical climate change and the structural and sampling uncertainty of the empirical 672 

models.  673 

Estimates of mitigation costs  674 

We obtain IPCC estimates of the aggregate costs of emission mitigation from the AR6 Scenario 675 

Explorer and Database hosted by IIASA23. Specifically, we search the AR6 Scenarios Database 676 

World v1.1 for Integrated Assessment Models (IAMs) which provided estimates of global GDP 677 

and population under both an SSP2 baseline and SSP2-RCP2.6 scenario in order to maintain 678 

consistency with the socio-economic and emission scenarios of the climate damage projections. 679 

We find five IAMs which provide data for these scenarios, namely MESSAGE-GLOBIOM 680 

1.0, REMIND-MAgPIE 1.5, AIM/GCE 2.0, GCAM 4.2, and WITCH-GLOBIOM 3.1. Of these 681 

five, we use results only from the first three which passed the IPCC vetting procedure for 682 

reproducing historical emission and climate trajectories. We then estimate global mitigation 683 

costs as the percentage difference in global per capita GDP between the SSP2 baseline and the 684 

SSP2-RCP2.6 emission scenario. In the case of one of these IAMs, estimates of mitigation 685 

costs begin in 2020 while in the case of two others mitigation costs begin in 2010. The 686 

mitigation cost estimates prior to 2020 in these two IAMs are mostly negligible, and our choice 687 

to begin comparison to damage estimates in 2020 is conservative with respect to the relative 688 

weight of climate damages compared to mitigation costs for these two IAMs.   689 
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Extended Data Figures 736 

 737 

Extended Data Figure 1. Constraining the persistence of historical climate impacts on 738 

economic growth rates. The results of a panel fixed effects distributed lag model for the 739 

effects of annual mean temperature (a), daily temperature variability (b), total annual 740 

precipitation (c), the number of wet days (d) and extreme daily precipitation (e) on sub-741 

national economic growth rates. Point estimates show the effects of a one degree Celsius or 742 

one standard deviation increase (for temperature and precipitation variables respectively) at 743 

the lower quartile, median and upper quartile of the relevant moderating variable (green, 744 

orange, purple, respectively) at different lagged periods after the initial shock (note that these 745 

are not cumulative effects). Climate variables are used in their first-differenced form (see 746 

main text for discussion), and the moderating climate variables are the annual mean 747 

temperature, seasonal temperature difference, total annual precipitation, number of wet days, 748 

and annual mean temperature respectively in panels (a-e) (see methods for further 749 

discussion). Error bars show the 95% confidence intervals having clustered standard errors by 750 

region. The within-region R-squared, Bayesian and Akaike Information criteria for the model 751 



are shown at the top of the figure. This figure shows results with ten lags for each variable to 752 

demonstrate the observed levels of persistence, but our preferred specifications remove later 753 

lags based on the significance of terms shown above and the Information Criteria shown in 754 

Fig. S5. The resulting models without later lags are shown in Figs. S8-S10. 755 

  756 



 757 

Extended Data Figure 2. Damages in our preferred specification which provides a 758 

robust lower-bound on the persistence of climate impacts on economic growth vs 759 

damages in specifications of pure growth or pure level effects. Estimates of future 760 

damages as shown in Fig. 1 of the main manuscript, but under the emission scenario RCP8.5 761 

for three separate empirical specifications: in orange our preferred specification which 762 

provides an empirical lower-bound on the persistence of climate impacts on economic growth 763 



rates while avoiding assumptions of infinite persistence (see main text for further discussion); 764 

in purple a specification of “pure growth effects” in which the first difference of climate 765 

variables is not taken and no lagged climate variables are included (the baseline specification 766 

of ref 17); and in pink a specification of “pure level effects” in which the first difference of 767 

climate variables is taken but no lagged terms are included. 768 

  769 



Study Empirical 

resolution 

Number of 

climate variables 

considered 

Baseline specification 

of growth or level 

effect  

Number of 

lags in primary 

specification 

Damages by 

2100 under 

RCP8.5 

Burke 

(2015)17 

National One Growth None ~25% 

Kahn 

(2019)35 

National One Level Four 7.2% 

Kalkuhl 

& Wenz 

(2020)12 

Sub-

national 

One Level One 14.2% 

This 

study 

Sub-

national 

Five Level Eight-ten/four 61.6% 

 770 

Extended Data Table 1. A comparison of the magnitude of estimated economic damage 771 

from future climate change across recent panel-based empirical studies. All studies use 772 

fixed effects panel regressions. The first four columns describe differences in the underlying 773 

data and empirical specification. The third column shows the nature of the baseline 774 

specification without lags with regards to growth or level effects (see main text for further 775 

discussion). The last column compares projections of future economic damage under RCP-776 

8.5 by 2100 as reported by the respective study.  777 
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