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ABSTRACT: Projections of precipitation extremes over land are crucial for socioeconomic risk assessments, yet model dis-
crepancies limit their application. Here we use a pattern-filtering technique to identify low-frequency changes in individual
members of a multimodel ensemble to assess discrepancies across models in the projected pattern and magnitude of change.
Specifically, we apply low-frequency component analysis (LFCA) to the intensity and frequency of daily precipitation extremes
over land in 21 CMIP-6 models. LFCA brings modest but statistically significant improvements in the agreement between
models in the spatial pattern of projected change, particularly in scenarios with weak greenhouse forcing. Moreover, we show
that LFCA facilitates a robust identification of the rates at which increasing precipitation extremes scale with global tempera-
ture change within individual ensemble members. While these rates approximately match expectations from the Clausius-
Clapeyron relation on average across models, individual models exhibit considerable and significant differences. Monte Carlo
simulations indicate that these differences contribute to uncertainty in the magnitude of projected change at least as much as
differences in the climate sensitivity. Last, we compare these scaling rates with those identified from observational products,
demonstrating that virtually all climate models significantly underestimate the rates at which increases in precipitation ex-
tremes have scaled with global temperatures historically. Constraining projections with observations therefore amplifies the
projected intensification of precipitation extremes as well as reducing the relative error of their distribution.

KEYWORDS: Atmosphere; Precipitation; Climate change; Empirical orthogonal functions; Pattern detection;
General circulation models

1. Introduction

An intensification of the hydrological cycle (Ziegler et al.
2003) is likely to play a major role in the socioeconomic impacts
of climate change. Key determinants of social welfare, such as
groundwater availability (Thomas and Famiglietti 2019), agricul-
tural productivity (Liang et al. 2017), and social stability (Hsiang
et al. 2013; von Uexkull et al. 2016), are closely linked to changes
in precipitation. In particular, the changing frequency and inten-
sity of heavy precipitation extremes constitutes an important chan-
nel, given their links to flooding, which can cause considerable
loss of life (Schumacher 2017) and financial losses (Davenport
et al. 2021; Frame et al. 2020), as well as impacts on overall macro-
economic productivity (Kotz et al. 2022). Understanding how
these characteristics of precipitation will change under anthropo-
genic influence is therefore crucial for informing risk assessments
and climate policy. Climate models such as those in the Coupled
Model Intercomparison Project (CMIP6; Eyring et al. 2016) play
a crucial role in this understanding, providing projections of pre-
cipitation extremes under different levels of greenhouse forcing at

the regional and temporal detail necessary for assessment of these
impacts (Warszawski et al. 2014). These projections can subse-
quently inform detailed assessments of the consequences of both
mitigation (Lange et al. 2020; Thiery et al. 2021) and adaptation
(Willner et al. 2018; Boulange et al. 2021).

Despite considerable progress, barriers to an effective use of
these projections remain due to uncertainty in projected precipi-
tation change (Knutti and Sedláček 2013; Shepherd 2014). The
simplest theory regarding precipitation extremes indicates that
the scaling of available moisture with atmospheric temperatures
based on the Clausius-Clapeyron relation (CC-relation) (Allen
and Ingram 2002; Santer et al. 2007; Fischer and Knutti 2016)
should lead to increases in precipitation extremes with global
warming at rates of 6%–7% K21. Indeed, intensification of pre-
cipitation extremes have been detected in almost all global land
areas (Min et al. 2011; Zhang et al. 2013; Fischer and Knutti
2016; Chen and Sun 2017; Kirchmeier-Young and Zhang 2020;
Madakumbura et al. 2021), and when aggregated spatially are
largely consistent with expectations from the CC-relation
(Fischer and Knutti 2016). However, a number of other factors
determine changes in precipitation extremes including the verti-
cal structure of upward atmospheric velocities and their change
(O’Gorman and Schneider 2009), as well as shifts in atmospheric
circulation (Pfahl et al. 2017). These factors contribute signifi-
cantly to regional differences in the intensification of precipita-
tion extremes (O’Gorman and Schneider 2009) and are also the
dominant source of uncertainty across climate model projections
(Pfahl et al. 2017).
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In addition to these uncertainties in the response of precipita-
tion extremes to human forcing, further uncertainty in future
projections exists due to the role of chaotic internal variability
(Shepherd 2014; Fischer et al. 2014). This is particularly relevant
when internal variability is large in comparison with the strength
of the anthropogenically forced signal, such as when considering
changes over short time scales, in scenarios of weak greenhouse
forcing or in variables with a weaker response to anthropogenic
influence (Blanusa et al. 2023). The latter is certainly true for
changes in precipitation in comparison with temperature (King
et al. 2015), emphasizing the possibility that internal variability
may mask or bias assessments of how precipitation extremes
change in response to human influence. An effective method to
quantify and separate the contributions of human forcing and in-
ternal variability to projected precipitation change is the use of
large ensembles of climate models initialized from different start-
ing conditions (Aalbers et al. 2018; Wood and Ludwig 2020).
However, such single-model initial-condition large ensembles
(SMILEs) (Kay et al. 2015) do not enable the investigation of dis-
crepancies that may exist between different climate models in the
simulated response of precipitation extremes to human forcing.

Here we aim to assess uncertainties in projected changes in
daily precipitation extremes that arise from the different re-
sponses to anthropogenic forcing embodied in the different mem-
bers of the multimodel ensemble CMIP6. Our interest in the
differences between climate models constrains us to identify
changes in each ensemble member individually. To limit the in-
fluence of chaotic internal variability, we therefore use a pattern-
filtering methodology that has been designed to separate the
forced response of the climate system from internal variability
within individual ensemble members. This method, known as
low-frequency component analysis (LFCA), extends an empirical
orthogonal function (EOF) decomposition to search for linear re-
combinations of the orthogonal basis functions with a maximal
ratio of low-frequency to total variance (Wills et al. 2018). Given
the lower frequency at which anthropogenically forced signals
evolve in comparison with chaotic internal variability, this ap-
proach can help to discriminate between them while drawing on
the structure of the spatiotemporal covariance matrix to do so.
When tested in the context of large ensembles, this method
shows particular promise in separating the anthropogenic compo-
nent of projected temperature change from individual ensemble
members with greater accuracy than large ensembles with up to
20 members (Wills et al. 2020). Although not yet tested against
large ensembles in the context of precipitation, this method nev-
ertheless presents an opportunity to limit the role of internal vari-
ability when assessing discrepancies in the projected changes of
extreme precipitation in individual members of the multimodel
CMIP6 ensemble.

We assess changes in both the intensity and frequency of daily
precipitation extremes, focusing on changes over land because
of their relevance for impacts (Davenport et al. 2021; Kotz et al.
2022) and for better comparison with observations as is made in
the final section. In the following section (section 2) we provide
an overview of the data and methods. Section 3a presents the
low-frequency changes in extreme precipitation detected by
LFCA in the individual members of the CMIP6 ensemble. In
section 3b, we assess discrepancies across models in the spatial

patterns of projected change and the extent to which LFCA lim-
its this uncertainty. Section 3c addresses how differences in the
magnitude of projected precipitation change are constrained by
scaling relations with global temperatures between climate mod-
els, but also within individual models. In section 3d, we assess
the contribution of differences in temperature–precipitation scal-
ing rates to uncertainty in the magnitude of projected change, as
well as how these rates compare to those observed historically.

2. Data and methods

a. Climate data

We use daily surface precipitation rates and daily 2-m temper-
ature from 21 climate models participating in CMIP6 (Eyring
et al. 2016). We choose models that provide output under both
the historical (1850–2014) and the future (2015–2100) green-
house forcing scenarios specified by SSP126 and SSP585. Since
our approach is primarily interested in differences between
climate models, and since many models provide only a single en-
semble member, we use only the first ensemble member avail-
able for each model. A full list of models is displayed in Fig. 5
and in Figs. S1–S4 in the online supplemental material. Addi-
tionally, we use daily 2-m temperature and daily precipitation
totals from ERA5 (Hersbach et al. 2020), as well as daily precip-
itation totals from the Global Precipitation Climatology Centre
(Schneider et al. 2008).

b. Extreme precipitation metrics

We assess changes in both the intensity and frequency of
daily precipitation extremes, following work indicating that
both are relevant for impacts (Kotz et al. 2022). We assess the
intensity of daily extremes by taking the annual maximum,
RX1, of daily precipitation Px,d:

RX1x,y 5 max(Px,d : d 5 1,…, Ny): (1)

The annual frequency of daily extremes is assessed by count-
ing the number of days in each year that exceed the 99th per-
centile of the historical distribution:

R. 99%x,y 5 ∑
Ny

d51
H(Px,d . 99%), (2)

where Ny is the number of days in a given year,H is the Heav-
iside step function, and x and d respectively denote grid cell
and day. The historical period used to estimate percentiles is
either the preindustrial period (1850–1950) or the historical
period over which observational data are available (1985–2015),
depending on the use. These annual measures are estimated on
the native CMIP grids before being linearly interpolated to a
common 18 by 18 grid for further analysis.

c. Low-frequency component analysis

We use LFCA to estimate low-frequency changes in extreme
precipitation. LFCA uses an EOF decomposition and subsequent
linear-recombination under a frequency-dependent variance
maximization constraint to optimally filter low-frequency changes
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from higher-frequency modes. As such, it has been designed
(Wills et al. 2018) and demonstrated (Wills et al. 2020) to separate
forced climate changes from chaotic internal variability. We use
LFCA over other methods, such as signal-to-noise maximizing
pattern-filtering, because of our interest in identifying changes in
individual members of the multimodel CMIP6 ensemble, in which
context LFCA provides a superior performance (Wills et al.
2020). Here we provide a conceptual summary of LFCA and of
its application to identifying the climatic response to anthropo-
genic forcing; please see Wills et al. (2018) for a more detailed in-
troduction to and description of the method.

Linear recombinations of the leading EOFs are found that
maximize the ratio of low-frequency to total variance they
can explain. We retain a sufficient number of EOFs to ac-
count for a minimum of 70% of the original spatiotemporal
variance and define low-frequency variance as that resulting
from applying a 20-yr low-pass Butterworth filter with reflect-
ing boundary conditions to gridcell-level departures from lin-
ear trends. We use a lower cutoff frequency than Wills et al.
(2018, 2020) because of the lower signal-to-noise ratio of the
climate change signal in precipitation than in temperature
(Deser et al. 2014) but recover consistent results under alterna-
tive filtering specifications. The resulting linear recombinations
are independent and ordered in terms of increasing frequency.
They constitute both a “low-frequency component” (LFC) and
“low-frequency pattern” (LFP); the LFC is a time series that de-
scribes the temporal evolution of the specific spatial pattern en-
compassed by the LFP. The lowest-frequency component(s) of
LFCA have been found to accurately characterize the forced re-
sponse of the climate system to anthropogenic forcing in the con-
text of temperature (Wills et al. 2020) and temperature variability
(Kotz et al. 2021). However, given that tests of such methods in
large ensembles have not yet been conducted for precipitation ex-
tremes, we here interpret the lowest-frequency component identi-
fied by LFCA as the lowest-frequency change projected by each
ensemble member rather than the forced change.

We apply LFCA to annual time series of the intensity
(Rx1) and frequency (R . 99%) of daily precipitation ex-
tremes over land areas and to annual mean temperature (over
the globe) from 1950 to 2100 under the anthropogenic forcing
of the historical period and both the SSP126 and SSP585 fu-
ture scenarios, having first linearly interpolated each index to
a common 18 by 18 grid. Low-frequency changes between two
given time periods (usually between two decades) are then
calculated as the product of the lowest-frequency LFP and
the difference between temporal (usually decadal) averages
of the corresponding LFC. In some cases, we also estimate
the forced changes in each precipitation metric using tempo-
ral averages of the data without the use of LFCA to first iden-
tify low-frequency changes. In these cases, we use 10-, 20-, or
30-yr periods to estimate the change.

d. Assessing similarity in the patterns of change

We use two metrics to assess similarities in the patterns of
change detected by LFCA. The first is simply the number of
ensemble members that agree on the projected sign of change
in a given region. This metric is aggregated in Fig. 2 over

global land areas to indicate the fraction of land area on
which a certain percentage of models are in agreement. The
second metric is a centered pattern correlation as defined in
Santer et al. (1995). This metric reflects differences in the rela-
tive magnitude of change as well as the sign of change. Pattern
correlations are estimated between each unique pair of cli-
mate models (210 pairs) and distributions of these pattern
correlations are shown and used to estimate the significance
of improvements in intermodel agreement.

e. Scaling between precipitation extremes and global
temperature change

Spatially averaged changes in precipitation extremes are com-
pared with changes in global temperature change. Changes in
global temperature are calculated by taking area-weighted aver-
ages of changes in global 2-m surface air temperature (SAT) es-
timated from the lowest-frequency component identified with
LFCA. Changes in precipitation extremes are expressed as local
percentages before taking an area-weighted average, to make a
comparison with the theoretical expectations of the CC relation.
We explore the sensitivity of our results to arid regions with low
baseline values in latter parts of the paper. Changes are esti-
mated either over the whole simulation period (from 1950–60 to
2090–2100, as in Fig. 3), or between pairs of nonoverlapping dec-
ades separated by 30 years within each individual model (Fig. 4
onward). In the first case, percentages are expressed in relation
to the preindustrial baseline (1850–1950), land-area-averages are
taken, and scaling relations are then estimated in a logarithmic
form, log[(dP/P) 1 1] to reflect the exponential scaling antici-
pated from the CC relation. In the second case, percentages are
estimated with respect to the baseline periods from which each
change is estimated. Here, since the baseline period for estimat-
ing percentage changes is updated with each differencing period,
only a linear scaling is estimated, after taking land-area averages
of local percentage changes.

Temperature–precipitation scaling relations are estimated us-
ing least squares linear regressions. In each case, the intercept of
these regressions is set to zero to reflect the physical constraint
that without changes in global SAT there should be no change
in precipitation extremes. Methodological uncertainty in the esti-
mates of these scaling rates is obtained via a bootstrapping ap-
proach. In Fig. 3, the climate models are resampled 1000 times
with replacement, whereas in Fig. 4 the different time periods
are resampled equivalently. As such, these estimates reflect the
methodological uncertainty arising from the availability of cli-
mate models (in Fig. 3) and the temporal evolution of low-
frequency changes in projected precipitation change (in Fig. 4).
When estimating the significance of differences between model
scaling rates, we estimate a distribution of differences between
scaling rates from the estimates obtained from the 1000 resam-
ples of the time series and assess whether the 95% confidence
intervals of this distribution of differences encompass zero.

f. Monte Carlo simulations to propagate uncertainties
and assess relative contributions

We use a Monte Carlo simulation procedure to assess how dif-
ferent sources contribute to uncertainty in the overall magnitude
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of projected extreme precipitation change. Specifically, we assess
two contributions, from 1) differences in the projected change in
global mean temperatures for a given forcing scenario (loosely
equivalent to the transient climate sensitivity), and 2) differences
in the rates at which precipitation extremes scale with global
temperature change. We sample 10000 times from the distribu-
tion of these two parameters and combine them to provide esti-
mates of the distribution of projected change under uncertainty
from both sources. This approach is justified by the fact that
temperature–precipitation scaling rates appear independent of
global temperature change across models. The distribution of
projected global temperature change is obtained from the 21 dif-
ferent climate models of the ensemble, while the distribution of
temperature-precipitation scaling rates comes from both the dif-
ferent climate models and the bootstrapped assessments of un-
certainty in their individual scaling rates (as described above).
Last, we estimate a simple observational constraint by replacing
the distribution of temperature–precipitation scaling rates with
the estimates obtained from the two observational data products.

3. Results

a. Low-frequency changes in projected
precipitation extremes

We identify low-frequency changes in the intensity and fre-
quency of daily precipitation extremes under historical and
future (SSP585) anthropogenic forcing using LFCA. Results
shown in Fig. 1 are for a selection of 10 of the 21 CMIP-6 mod-
els, taking every other model when ordered in terms of SAT
change (see Figs. S1–S4 in the online supplemental material for
results from all members of the multimodel ensemble under
both SSP585 and SSP126 future forcing). For each precipitation
metric and for each model, the lowest-frequency component
(LFC-1) exhibits a near-monotonic trend that closely follows the
increasing concentrations of greenhouse gases in the historical
and SSP585 scenario. However, both the intensity and pattern
of low-frequency change (from 1950–60 to 2090–2100) show
clear differences between models. While most land areas exhibit
increases in both the intensity and frequency of extremes, stron-
ger increases are typically found across tropical regions. De-
creases are projected in certain models, in particular in regions
where net precipitation is projected to decline such as the Medi-
terranean Sea basin, parts of Australia, South Africa, and central
South America (IPCC 2021). These regions also correspond to
those identified by Pfahl et al. (2017) as having larger contribu-
tions from changes in atmospheric circulation.

In comparing the projected low-frequency changes in extreme
precipitation with the magnitude of historical variability (stan-
dard deviation of annual time series from 1850 to 1900), we find
that changes by the end of the century are not always significant
with respect to the magnitude of internal variability (see stippled
regions in Fig. 1). Changes are most often of a significant magni-
tude across the tropics and high latitudes, showing the least sig-
nificance across midlatitudes and in regions where precipitation
extremes are projected to decrease. Moreover, models with
larger SAT change typically show significant changes over larger
portions of the global land area (see Figs. A1a–d in the

appendix). This reflects the fact that SAT change is a strong de-
terminant of the magnitude of changes in precipitation extremes
(explored further in section 3c), and therefore of the signal-
to-noise ratio of forced change to internal variability. This can
be further seen in the fact that models with larger SAT change
contain a larger portion of the overall spatiotemporal variance
within the lowest-frequency component detected by LFCA
(appendix Figs. A1e–h). These results are robust to methodolog-
ical choices regarding the LFCA, such as the specific percentage
of spatiotemporal variance that is retained following the EOF
decomposition as well as the time scale of the filter used to de-
fine low-frequency variance.

b. Discrepancies in the spatial pattern of projected
low-frequency change

Having identified low-frequency changes within each mem-
ber of the multimodel ensemble, we assess discrepancies in the
spatial pattern of projected change between models (Fig. 2). In
the ensemble mean, projected low-frequency changes reflect a
near-global intensification of the intensity and frequency of
daily precipitation extremes (Figs. 2a,b), with some weak de-
creases in regions where reductions in net precipitation are par-
ticularly strong (IPCC 2021) and where changes in atmospheric
circulation contribute more considerably (Pfahl et al. 2017).
Agreement between models is fairly high, with 90% of models
agreeing on the sign of change on approximately 80% and 70%
of the global land area for changes in the intensity and fre-
quency of extremes respectively in the high forcing scenario
(Figs. 2d,f). Discrepancies are concentrated across the Mediter-
ranean basin, Australia, South Africa, and central South
America (Figs. 2a,b). These regions are those where decreases in
precipitation extremes are projected, where projected changes
are less significant with respect to internal variability, and where
atmospheric circulation has been identified as a dominant source
of uncertainty (Pfahl et al. 2017).

Agreement across climate models on the spatial pattern of
change is smaller under the scenario with weaker greenhouse
forcing (SSP126). This is clear both in terms of the fraction of
land area on which models project the same sign of change
(Figs. 2c–f) and also in terms of the distribution of pairwise cen-
tered pattern correlations between climate models (Figs. 2g–j).
This likely reflects the smaller signal-to-noise ratio of anthropo-
genically forced precipitation change relative to chaotic internal
variability in the weaker forcing scenario. This can be seen in
the smaller magnitude of projected precipitation change and the
smaller percentage of spatiotemporal variance explained by the
lowest-frequency component in the weaker forcing scenario
(Figs. A1a–h in the appendix).When internal variability is relatively
larger, it will mask the anthropogenically forced signal identified by
LFCA to a greater extent. This will lead to greater disagreement
between models resulting from both discrepancies in the forced
response, and the larger differences due to internal variability.

Furthermore, the extent of agreement between models is
higher when using LFCA to identify low-frequency changes in
precipitation extremes rather than temporal averages over 10-,
20-, and 30-yr periods. These benefits manifest both in terms of
the fraction of land-area in agreement (Figs. 2c–f) and the
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centered pattern correlations (Figs. 2g–j). Improvements are
strongest in the weaker forcing scenario and when compared
with taking averages over shorter periods. Under SSP126 forc-
ing, improvements in centered pattern correlations are found in
99% and 93% of model pairs when compared even with using
30-yr averages, and differences between the distributions of cor-
relations obtained using the two methods are significant at the
0.1% level. Improvements in the stronger forcing scenario for
the intensity of precipitation extremes are still significant at the
5% level, with 88% of model pairs showing improved agreement
(Table 1). Assuming that multimodel agreement is an indicator
of the extent to which the anthropogenic signal has been sepa-
rated from chaotic internal variability, as outlined above, these

improvements suggest that LFCA may improve the detection of
the response of precipitation extremes to anthropogenic forcing.
This conclusion would require further verification in the context
of SMILEs, which is beyond the scope of this paper. Neverthe-
less, these results demonstrate that LFCA significantly improves
agreement in the pattern of projected change between members
of a multimodel ensemble, particularly in the context of weak
anthropogenic forcing.

c. The scaling of precipitation extremes with global
temperatures

In addition to uncertainty in the pattern of projected low-
frequency change, the magnitude of extreme precipitation

FIG. 1. Low-frequency changes in extreme daily precipitation under historical (1950–2014) and future (SSP585; 2015–2100) anthropo-
genic forcing, detected in individual CMIP6 climate models with low-frequency component analysis. (a)–(j) The spatial pattern of low-
frequency change in the intensity of daily precipitation extremes (annual maximum; Rx1) from 1950–60 to 2090–2100 (the product of the
lowest-frequency pattern and the difference between decadal averages of its corresponding component) for 10 of the 21 CMIP6 ensemble
members. Regions are cross hatched where the projected change is smaller than the historical variability, estimated as the standard devia-
tion of annual values over the period 1850–1900. (k) The temporal evolution of the corresponding lowest-frequency components (LFC-1),
shown in gray with a 20-yr Butterworth filtered time series in black. Time series for each model are overlain because of their similarity.
The concentrations of greenhouse gases in the historical period and SSP585 are rescaled and shown in red for comparison. (l)–(v) Corre-
sponding results for changes in the frequency of daily precipitation extremes (the number of days with rainfall greater than the 99th per-
centile over the historical period 1850–1950). The model name is indicated at the bottom of each panel, along with the percentage of total
spatiotemporal variance accounted for by the lowest-frequency component. We here show models chosen evenly from across the distribu-
tion of modeled global mean surface air temperature (SAT) change (ordered by increasing SAT change). Results for all ensemble members
for each precipitation metric under SSP585 and SSP126 forcing scenarios are shown in Figs. S1–S4 in the online supplemental material.
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changes also exhibits large differences across models (Fig. 1).
Changes in global SAT explain a large proportion of these
differences when averaged over global land areas (r2 of
0.73 and 0.74 for the intensity and frequency of extremes,

respectively; Fig. 3). Moreover, changes in the intensity of ex-
tremes scale with global SAT at a rate of 6.5% K21, closely
following the expectations of the CC relation within the un-
certainty of the scaling relation we estimate from the climate

FIG. 2. An assessment of discrepancies in the spatial pattern of low-frequency change in extreme precipitation: The CMIP-6 ensemble-
mean low-frequency change in the (a) intensity and (b) frequency of daily precipitation extremes. Changes are estimated from the lowest-
frequency component detected with LFCA (see Fig. 1) over the period 1950–2100 under historical and SSP585 future anthropogenic
forcing. Regions are stippled where less than 90% of models agree on the sign of projected change. The fraction of land area on which a
certain percentage of CMIP-6 models agree on the sign of low-frequency change for the (c),(d) intensity and (e),(f) frequency of daily
precipitation extremes under the low-greenhouse [SSP126; in (c) and (e)] and high-greenhouse [SSP585; in (d) and (f)] forcing scenarios.
Results are shown when using either LFCA (red) or averages over 10, 20, and 30 years (blue) to detect low-frequency changes. (g)–(j) Dis-
tributions of centered pattern correlations between the low-frequency change projected by unique pairs of models for the two extreme
precipitation metrics under the two forcing scenarios, when using the different methods to detect low-frequency changes. Violin plots
from the Seaborn Python package indicate the interquartile range and upper and lower limits, as well as a kernel-density distribution.

TABLE 1. An assessment of the significance of improvements in multimodel agreement on the spatial pattern of low-frequency
change in extreme precipitation metrics, showing the percentage of unique model pairs with improved centered pattern correlations
in low-frequency precipitation change when detected using LFCA in comparison with averages over 10-, 20-, and 30-yr periods. The
significance of the difference between the distributions of pattern correlations between models under the two different methods is
assessed using the nonparametric Mann–Whitney test, with significance at the 5%, 1%, and 0.1% levels indicated by one, two, and
three asterisks, respectively.

Metric: SSP LFCA . 10-yr avg LFCA . 20-yr avg LFCA . 30-yr avg

Rx1: SSP126 100*** 100*** 99***

Rx1: SSP585 100*** 100*** 88*

R . 99%: SSP126 100*** 95*** 93***

R . 99%: SSP585 97*** 82** 58
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models. For the frequency of extremes, we assess a theoreti-
cal expectation from the CC relation by scaling up every day of
the historical distribution of precipitation by 7% K21 and re-
estimating the exceedance of the original percentile-based thresh-
olds [following the methods of Fischer and Knutti (2016)]. This
theoretical CC relation predicts a scaling rate of 16.7% K21,
and we find that the frequency of daily extremes does in-
deed increase at a higher rate of 11.7% K21, but one that
falls considerably below this theoretical expectation. These
results replicate many recent findings that changes in precip-
itation extremes scale with global SAT change across cli-
mate models, emphasizing the importance of limiting global
warming to limit future impacts as well as the importance of
the climate sensitivity as a dominant contributor to their un-
certainty. Furthermore, results are robust to excluding re-
gions with very low initial precipitation values, which could
potentially bias our assessment using land-area averages
of local percentage changes (see Fig. S5 in the online
supplemental material).

While the results of Fig. 3 demonstrate that the intensifica-
tion of precipitation extremes is largely determined by SAT
changes, it is of further interest whether such temperature–
precipitation scaling relations can be identified within individual
models, and if so, how their rates may differ. We address this
question by using the intertemporal changes in precipitation
extremes and global SAT within a given ensemble member,
taking the changes occurring between nonoverlapping decades

separated by 30-yr periods within each of the two forcing sce-
narios for each climate model. This approach reveals robust
temperature–precipitation scaling relations that explain a
large proportion of the intertemporal changes in precipitation
within each individual ensemble member (Fig. 4). The aver-
age R2 of these relations is 0.82 and 0.78 for the intensity and
frequency of precipitation extremes, respectively, demon-
strating more robust scalings than those identified across cli-
mate models. This suggests that the physical processes that
constrain the intensification of precipitation extremes to scale
with SAT across climate models also hold within individual
models across time.

When compared with using temporal averages over 10-, 20-,
and 30-yr periods, we find that first applying LFCA to identify
the lowest-frequency changes considerably improves the robust-
ness of the identified scaling relations. Figures S6 and S7 in the
online supplemental material show the scaling relations identi-
fied with LFCA for all ensemble members as compared with
those in supplemental Figs. S8 and S9 without LFCA. When us-
ing temporal averages over longer periods (20 or 30 years) fewer
observations are available to construct the scaling relations and
the R2 typically increases both with and without LFCA (results
using 30-yr periods are shown in Figs. S10–S13 in the online
supplemental material). Table 2 documents the improvements
of using LFCA, showing that, even compared with 30-yr aver-
ages, LFCA improves the R2 of the identified relations by 0.11
and 0.22 for the intensity and frequency of precipitation extremes

FIG. 3. The scaling of precipitation extremes over land with global mean surface air temperature (SAT) across
CMIP6 models and scenarios. Low-frequency changes between 1950–60 and 2090–2100 are calculated from the
lowest-frequency component of each precipitation metric (as in Fig. 1) and of annual mean temperature. Red and
blue colors denote the SSP585 and SSP126 scenarios of future greenhouse forcing. The results of least squares linear
regressions are shown in dashed red with the 5th and 95th confidence intervals shaded based on bootstrapped esti-
mates of the regression (1000 climate model resamples with replacement). Changes in extreme metrics are calculated
as a percentage of the historical baseline (1850–1950) for comparison with the theoretical expectations of the
Clausius-Clapeyron (CC) relation, shown as dashed black lines. For the frequency of daily extremes (P . 99%), a
theoretical CC relation is estimated by scaling up each day of the historical precipitation distribution (1850–50) by the
given level of SAT change and recalculating each index, following Fischer and Knutti (2016). Individual estimates
from this method are shown in gray, with the black dashed line showing the result of an exponential regression to
these estimates. The resulting theoretical scaling rate of this regression is displayed in the figure legend.
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respectively. To assess the significance of these improvements in
comparison with the uncertainty of the scaling relations, we re-
estimate the scaling relations in each ensemble member under
1000 bootstrapped replacements of the different time periods
used to estimate the changes. Given this methodological un-
certainty, we find that 28% and 38% of climate models exhibit
significant improvements in the R2 of their scaling relation at
the 10% level.

d. Discrepancies and constraints on temperature–
precipitation scaling rates

Importantly, robustly identifying temperature–precipitation
scaling relations within individual ensemble members facilitates
a comparison of their rates across climate models (Fig. 5). On
average, we find that the rates at which precipitation extremes
scale with SAT within individual models is consistent with
that identified between models (cf. Fig. 5 with Fig. 3), but

FIG. 4. The scaling of precipitation extremes over land with global mean SAT within individual CMIP6 climate models: (a)–(j) Land-
averaged percentage changes in the lowest-frequency component of extreme intensity (Rx1) between pairs of nonoverlapping decades
separated by 30 years under a low-greenhouse (SSP126; blue) and high-greenhouse (SSP585; red) forcing scenario. Note that percentage
changes are here estimated with respect to the first of the two decades between which changes are estimated, in contrast to Fig. 3 in
which they are estimated with respect to the baseline period 1850–1950. The results of a least squares regression are shown in black.
(k)–(t) Equivalent results for changes in extreme frequency. Ten of the 21 CMIP-6 models are shown, ordered from lowest to highest
SAT change, whereas the full ensemble is shown in Figs. S6 and S7 in the online supplemental material.
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considerable heterogeneity across models is clear. The coeffi-
cient of variation of these rates is 23% and 30% for the intensity
and frequency of extremes respectively. Moreover, the intermo-
del differences in scaling rates are statistically significant at the
5% level for 59% and 65% of model pairs, when assessing un-
certainty in the estimation of scaling rates as outlined above.
These results demonstrate large biases between models, thus di-
agnosing a source of uncertainty in projections of future precipi-
tation extremes.

To quantify the extent to which these biases contribute to un-
certainty in the magnitude of projected precipitation change, we
use a simple Monte Carlo simulation procedure that samples
from and combines the different changes in global temperatures
and different scaling rates projected by different members of the
multimodel ensemble. By assessing the distribution of projected
changes when uncertainty is propagated from both sources of
errors, or when only one source of error is considered while the
other is held fixed at its mean value, we can consider the relative

extents to which these two sources contribute to overall uncer-
tainty. Results indicate that under a high-greenhouse forcing
scenario, biases in the scaling rates of the intensity of extremes
contribute equally to uncertainty in projected change as does
uncertainty in the projected level of warming (Fig. 6). For the
frequency of extremes, biases in scaling rates contribute a con-
siderably larger share to the overall uncertainty. For both met-
rics, biases in the scaling rates lead to larger right-tailed risks of
large increases in precipitation extremes. These results indicate
that addressing biases in scaling rates is at least equally important
as constraining the climate sensitivity in reducing uncertainties in
projections of future precipitation extremes.

While focused model development and physical theory are cru-
cial avenues to limit these biases, comparison with observations
may provide a helpful way to evaluate and select climate models
that accurately reproduce observed scaling rates. We therefore
compare the scaling rates identified within individual members of
the CMIP6 ensemble with estimates from observations. Global

TABLE 2. An assessment of improvements in the identification of precipitation-temperature scalings when using LFCA rather than
averages over 10-, 20-, and 30-yr periods, showing the multimodel average increase in the R2 of the temperature–precipitation scaling
relation when using LFCA rather than temporal averages, as well as the percentage of models with a significant (at the 10% level)
increase in R2 based on bootstrapped estimates of the scaling-relation uncertainties.

LFCA vs 10-yr av. LFCA vs 20-yr av. LFCA vs 30-yr av.

Rx1 R2 improvement 0.30 0.14 0.11
Percent of models with significant improvement 76 42 28
R . 99% R2 improvement 0.38 0.23 0.22
Percent of models with significant improvement 76 57 38

FIG. 5. A comparison of scaling rates between precipitation extremes and global temperatures across models and with estimates from
observations: (a) Scaling rates between low-frequency changes in the intensity of daily precipitation extremes estimated for each individual
climate model using LFCA, as shown in Fig. 4. The 90% confidence intervals on these scaling rates are obtained via bootstrapped replace-
ments of the intertemporal changes used to estimate the scaling relations and are shown as horizontal bars. The multimodel mean of the
precipitation–temperature scaling rates is shown by the vertical black line, with the mean, standard deviation, and coefficient of variation
across models indicated in the upper left. Estimates of precipitation–temperature scaling rates from two observational products (ERA5
and GPCC) are made by taking the difference between averages over the first and final 20-yr period of the observational data period and
are shown in blue. (b) Equivalent data for the frequency of daily precipitation extremes. In this case, precipitation percentiles are esti-
mated over the whole historical period for the observational data and for a similar period (1985–2015) for the climate models (the scaling
rates obtained are largely robust to the period used to estimate percentiles; see Fig. S15 in the online supplemental material).
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historical records of daily precipitation are challenging due to
large spatial variability and limited ground-based networks, partic-
ularly across parts of the developing world, and we therefore use
two observational products. We use data from the ERA5 reanaly-
sis and Global Precipitation Climatology Centre (GPCC), which
both focus on daily characteristics. While ERA5 uses land-station
data and satellite observations combined with assimilation techni-
ques from weather forecasting models (Hersbach et al. 2020),
GPCC relies predominantly on land-station data and interpola-
tion (Schneider et al. 2008). These characteristics enable an assess-
ment of the robustness of observational estimates reflecting
uncertainties from both data sources and methodological limita-
tions. Given the relatively shorter time periods available in these

observational products (approximately 40 years in each case), we
use a simpler methodology to estimate the observed scaling of
precipitation extremes with global SAT by taking the difference
between averages in precipitation and SAT over the first and final
20 years of available data (note that SAT changes are in both
cases derived from ERA5 but adjusted to reflect the time periods
of the two precipitation datasets).

This comparison with observations indicates that the historical
rates at which the intensification of precipitation extremes have
scaled with global SAT exceed those of virtually all the ensemble
members in CMIP-6 (observations shown in blue in Fig. 5). The
two observational datasets agree closely on the observed scaling
rates for the intensity of extremes (approximately 8%–9%), in

FIG. 6. Quantifying contributions to uncertainty in projected extreme precipitation change and constraining them
with observations. Results show the distribution of projected changes in precipitation extremes when conducting a
Monte Carlo simulation procedure that samples from the range of global SAT change and temperature–precipitation
scaling rates projected by each member of the CMIP6 ensemble. “Full error” indicates simulations in which the uncer-
tainty from both sources is propagated, whereas “GMT error” and “Scaling error” indicate cases in which uncertainty
from only one source was combined with the mean-average of the other component. The “observationally con-
strained” case combines uncertainty from projected SAT change across climate models with the two observational esti-
mates of the temperature–precipitation scaling relations shown in Fig. 5. Results are shown (a),(b) for the intensity of
precipitation extremes (RX1) and (c),(d) for the frequency of extremes (R . 99%) for both the weaker [SSP126; in
(a) and (c)] and stronger [SSP585; in (b) and (d)] greenhouse forcing scenarios. Inset numbers indicate the mean and
standard deviation of the distributions.
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which case only 2 of 21 models exhibit scaling rates with uncer-
tainty that falls within this range, and only one outlier that actu-
ally exceeds this range (EC-Earth3). Regarding the frequency of
precipitation extremes, the two observational datasets exhibit a
large range of scaling rates with ERA-5 producing estimates of
17% as compared with 32% in GPCC. These discrepancies indi-
cate considerable challenges in the representation of the fre-
quency of precipitation extremes even in historical observational
data, a detailed analysis of which is beyond the scope of the pre-
sent work. However, despite these uncertainties it is still clear
that observed rates exceed those identified in CMIP6. Again,
only two models exhibit scaling rates with uncertainties within
this range while most models exhibit rates significantly below it.
In addition to the assessments of methodological uncertainty al-
ready discussed, these results are robust to the exclusion of arid
regions with very low initial precipitation values (Fig. S14 in the
online supplemental material) as well as the use of different base
periods to estimate percentiles in the CMIP6 ensemble (Fig. S15
in the online supplemental material).

Combining these observational estimates of temperature–
precipitation scaling rates with projected changes in global
temperatures from the CMIP6 ensemble produces an observa-
tionally constrained estimate of the distribution of projected
precipitation extremes (Fig. 6). These estimates indicate an up-
ward revision of projected changes in precipitation extremes,
by a factor of approximately 1=3 for the intensity of extremes
and a doubling for the frequency of extremes. The consistent
estimates of scaling rates for the intensity of extremes across
the two observational products leads to reductions in the rela-
tive error (standard deviation divided by the mean) of the pro-
jections, from approximately 1=3 to 1=4 in the high forcing
scenario. In the case of the frequency of extremes, larger dis-
crepancies between the two observational products mean that
relative error in the projections declines by a smaller margin,
from 43% to 38%. While a simplified methodology with
drawbacks discussed further in the following section, this ap-
proach indicates the potential for larger risk from intensifying
precipitation extremes than that projected by the CMIP6
ensemble.

4. Discussion and conclusions

This paper uses a pattern-filtering methodology to assess low-
frequency changes in the intensity and frequency of daily precipi-
tation extremes in the multimodel ensemble CMIP6. We find that
using LFCA improves agreement on the spatial patterns of pro-
jected change. Improvements on using 30-yr averages are mar-
ginal in the context of strong greenhouse forcing, but under weak
greenhouse forcing significant improvements in agreement are
found between nearly all model pairs. While this may indicate
that LFCA improves the separation of the response of precipita-
tion to human forcing from internal variability, the interpretation
of the lowest-frequency change as an anthropogenically forced
signal should be explored further. In particular, SMILEs (Kay
et al. 2015) may provide a fruitful testing ground to evaluate the
efficacy of LFCA in this task and could follow similar studies that
demonstrate its strength at detecting forced responses within indi-
vidual ensemble members from changes in surface temperature

(Wills et al. 2020). Such tests could encourage the use of LFCA
to detect forced changes in historical observations of precipitation
where methods capable of detecting responses from single realiza-
tions are necessary.

Our work also sheds light on uncertainties in the magnitude
of projected changes in precipitation extremes, in particular
with regard to how these changes scale with global surface
temperatures. Our finding that changes in precipitation ex-
tremes scale with global temperatures across members of mul-
timodel ensembles such as CMIP-6 follows a number of other
works (Kharin et al. 2013; Li et al. 2021). However, by using
LFCA to robustly identify scaling relations between precipita-
tion extremes and global surface temperature within individual
ensemble members, we offer some new insights. First, the fact
that such scaling relations are identifiable within individual en-
semble members across time and scenarios emphasizes the ro-
bustness of such relations. The fact that on average, they follow
the Clausius-Clapeyron relation (for the intensity of extremes)
emphasizes the fact that thermodynamic drivers of precipitation
extremes are dominant determinants of their global change.

Second, our approach reveals strong heterogeneity between
different climate models in the rates at which precipitation
extremes scale with global temperatures. This diagnoses a
source of the uncertainty in projections of future precipita-
tion extremes that we estimate to be equally large as contri-
butions from uncertainty in the climate sensitivity. Our
analysis using Monte Carlo simulations to combine global sur-
face temperature changes and global precipitation scaling rates
is naturally simplified and does not explicitly consider the driv-
ing physical processes. Nevertheless, it is justified by the fact
that temperature–precipitation scaling rates appear largely
independent of SAT change (Fig. A2 in the appendix), and its
findings demonstrate that constraining these scaling rates is
equally important as constraining climate sensitivity for limit-
ing uncertainties in future projections. Large efforts have been
placed in reducing uncertainties in climate sensitivity (Sherwood
et al. 2020). Given the importance of precipitation extremes
for impacts, our results may encourage investing similar efforts
using a combination of physical theory, observations, and po-
tentially even paleo-climatic evidence (Schmidt et al. 2013;
Carmichael et al. 2018) to constrain the sensitivity of secondary
climatic characteristics like precipitation extremes to global SAT
change.

Third, we find that the rates at which precipitation extremes
are projected to scale with global temperatures underestimate
those observed historically in nearly all climate models. This is a
concerning finding, indicating that there is risk of larger increases
in precipitation extremes than those currently projected by mod-
els, particularly in terms of their frequency. These results are
qualitatively consistent with earlier findings that the observed in-
tensification of precipitation extremes was underestimated by
older generations of climate models (Liu et al. 2009; Shiu et al.
2012), although different methods for measuring extremes make
our findings difficult to compare quantitatively. While the short
observational record may contribute to errors in the quantifica-
tion of historical scaling rates, the fact that climate models indicate
a robust scaling of changes across time and scenarios may add
confidence to this assessment. Our combination of observed
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scaling rates of precipitation extremes with projected changes in
SAT allows an observationally constrained estimate of future
changes in extremes, which reduces the uncertainty and increases
the magnitude of projected change. Constraining projections with
observations is a rapidly growing field, showing recent promise
with precipitation (O’Gorman 2012; Zhang and Soden 2019; Shio-
gama et al. 2022; Chen et al. 2022; Zhang et al. 2022; Thackeray
et al. 2022; Schewe and Levermann 2022). In particular, our meth-
odology using temperature–precipitation scaling rates sheds com-
plementary light on a recent method that uses observed historical
changes to constrain future projections (Thackeray et al. 2022).
While the method of Thackeray et al. (2022) reduces uncertainty
in projected precipitation extremes, it does not find observed
changes to be larger than those projected by models, and the ob-
servational constraint therefore does not increase the projected
magnitude of change. This discrepancy to the results of our analy-
sis and previous studies (Liu et al. 2009; Shiu et al. 2012) indicates
that separating the different sources of uncertainty in projected
precipitation change, namely uncertainty in projected warming as
well as the rates at which precipitation extremes scale with global
temperatures, is important not only for our qualitative under-
standing but also for the quantitative results of constraining pro-
jections with observations. Nevertheless, our analysis constraining
projections with observations is primarily for conceptual purposes,
and we recognize that combining our results with a constraint on
the climate sensitivity would be necessary to arrive at a fully con-
strained projection of precipitation extremes as that provided by
Thackeray et al. (2022). Indeed, discrepancies between observed

and projected historical warming likely underlie the differences in
projected precipitation when using these two methods to con-
strain them. Further analysis in this regard is an interesting ave-
nue for future research but is beyond the scope of this paper.
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APPENDIX

Additional Figures

Scatterplots and correlations across the full ensemble between
global surface air temperature change and metrics of the magni-
tude of forced change in extreme precipitation (Fig. A1), as
well as global temperatures and the scaling rate of precipitation
extremes (Fig. A2), are shown here.

FIG. A1. Scatterplots and Pearson correlation values R for (top) the fraction of land area with significant changes and (bottom) the per-
centage of spatiotemporal variance explained by the lowest-frequency component against changes in global surface air temperatures.
Results are shown for the (a),(b),(e),(f) intensity (Rx1) and (c),(d),(g),(h) frequency (R . 99%) of daily precipitation extremes for the
low-greenhouse [SSP126; in (a), (c), (e), and (g)] and high-greenhouse [SSP585; in (b), (d), (f), and (h)] forcing scenarios.
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