{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import netCDF4 as nc\n",
    "import matplotlib.pylab as plt\n",
    "import imp\n",
    "import csv\n",
    "import pandas as pd\n",
    "from io import StringIO"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# AISM_VUB\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_AISM_VUB_RCP45.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_AISM_VUB_R0_RCP45 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_AISM_VUB_R1_RCP45 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_AISM_VUB_R2_RCP45 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_AISM_VUB_R3_RCP45 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_AISM_VUB_R4_RCP45 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_AISM_VUB_R5_RCP45 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_AISM_VUB_SU_RCP45 = SL_wTd_nos_base_AISM_VUB_R1_RCP45+SL_wTd_nos_base_AISM_VUB_R2_RCP45+SL_wTd_nos_base_AISM_VUB_R3_RCP45+SL_wTd_nos_base_AISM_VUB_R4_RCP45+SL_wTd_nos_base_AISM_VUB_R5_RCP45\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# BISI_LBL\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_BISI_LBL_RCP45.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_BISI_LBL_R0_RCP45 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_BISI_LBL_R1_RCP45 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_BISI_LBL_R2_RCP45 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_BISI_LBL_R3_RCP45 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_BISI_LBL_R4_RCP45 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_BISI_LBL_R5_RCP45 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_BISI_LBL_SU_RCP45 = SL_wTd_nos_base_BISI_LBL_R1_RCP45+SL_wTd_nos_base_BISI_LBL_R2_RCP45+SL_wTd_nos_base_BISI_LBL_R3_RCP45+SL_wTd_nos_base_BISI_LBL_R4_RCP45+SL_wTd_nos_base_BISI_LBL_R5_RCP45\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# CISM_NCA\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_CISM_NCA_RCP45.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_CISM_NCA_R0_RCP45 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_CISM_NCA_R1_RCP45 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_CISM_NCA_R2_RCP45 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_CISM_NCA_R3_RCP45 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_CISM_NCA_R4_RCP45 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_CISM_NCA_R5_RCP45 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_CISM_NCA_SU_RCP45 = SL_wTd_nos_base_CISM_NCA_R1_RCP45+SL_wTd_nos_base_CISM_NCA_R2_RCP45+SL_wTd_nos_base_CISM_NCA_R3_RCP45+SL_wTd_nos_base_CISM_NCA_R4_RCP45+SL_wTd_nos_base_CISM_NCA_R5_RCP45\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# FETI_VUB\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_FETI_VUB_RCP45.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_FETI_VUB_R0_RCP45 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_FETI_VUB_R1_RCP45 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_FETI_VUB_R2_RCP45 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_FETI_VUB_R3_RCP45 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_FETI_VUB_R4_RCP45 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_FETI_VUB_R5_RCP45 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_FETI_VUB_SU_RCP45 = SL_wTd_nos_base_FETI_VUB_R1_RCP45+SL_wTd_nos_base_FETI_VUB_R2_RCP45+SL_wTd_nos_base_FETI_VUB_R3_RCP45+SL_wTd_nos_base_FETI_VUB_R4_RCP45+SL_wTd_nos_base_FETI_VUB_R5_RCP45\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# GRIS_LSC\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_GRIS_LSC_RCP45.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_GRIS_LSC_R0_RCP45 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_GRIS_LSC_R1_RCP45 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_GRIS_LSC_R2_RCP45 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_GRIS_LSC_R3_RCP45 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_GRIS_LSC_R4_RCP45 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_GRIS_LSC_R5_RCP45 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_GRIS_LSC_SU_RCP45 = SL_wTd_nos_base_GRIS_LSC_R1_RCP45+SL_wTd_nos_base_GRIS_LSC_R2_RCP45+SL_wTd_nos_base_GRIS_LSC_R3_RCP45+SL_wTd_nos_base_GRIS_LSC_R4_RCP45+SL_wTd_nos_base_GRIS_LSC_R5_RCP45\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# IMAU_VUB\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_IMAU_VUB_RCP45.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_IMAU_VUB_R0_RCP45 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_IMAU_VUB_R1_RCP45 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_IMAU_VUB_R2_RCP45 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_IMAU_VUB_R3_RCP45 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_IMAU_VUB_R4_RCP45 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_IMAU_VUB_R5_RCP45 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_IMAU_VUB_SU_RCP45 = SL_wTd_nos_base_IMAU_VUB_R1_RCP45+SL_wTd_nos_base_IMAU_VUB_R2_RCP45+SL_wTd_nos_base_IMAU_VUB_R3_RCP45+SL_wTd_nos_base_IMAU_VUB_R4_RCP45+SL_wTd_nos_base_IMAU_VUB_R5_RCP45\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# ISSM_JPL\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_ISSM_JPL_RCP45.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_ISSM_JPL_R0_RCP45 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_ISSM_JPL_R1_RCP45 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_ISSM_JPL_R2_RCP45 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_ISSM_JPL_R3_RCP45 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_ISSM_JPL_R4_RCP45 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_ISSM_JPL_R5_RCP45 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_ISSM_JPL_SU_RCP45 = SL_wTd_nos_base_ISSM_JPL_R1_RCP45+SL_wTd_nos_base_ISSM_JPL_R2_RCP45+SL_wTd_nos_base_ISSM_JPL_R3_RCP45+SL_wTd_nos_base_ISSM_JPL_R4_RCP45+SL_wTd_nos_base_ISSM_JPL_R5_RCP45\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# ISSM_UCI\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_ISSM_UCI_RCP45.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_ISSM_UCI_R0_RCP45 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_ISSM_UCI_R1_RCP45 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_ISSM_UCI_R2_RCP45 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_ISSM_UCI_R3_RCP45 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_ISSM_UCI_R4_RCP45 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_ISSM_UCI_R5_RCP45 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_ISSM_UCI_SU_RCP45 = SL_wTd_nos_base_ISSM_UCI_R1_RCP45+SL_wTd_nos_base_ISSM_UCI_R2_RCP45+SL_wTd_nos_base_ISSM_UCI_R3_RCP45+SL_wTd_nos_base_ISSM_UCI_R4_RCP45+SL_wTd_nos_base_ISSM_UCI_R5_RCP45\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# MALI_LAN\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_MALI_LAN_RCP45.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_MALI_LAN_R0_RCP45 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_MALI_LAN_R1_RCP45 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_MALI_LAN_R2_RCP45 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_MALI_LAN_R3_RCP45 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_MALI_LAN_R4_RCP45 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_MALI_LAN_R5_RCP45 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_MALI_LAN_SU_RCP45 = SL_wTd_nos_base_MALI_LAN_R1_RCP45+SL_wTd_nos_base_MALI_LAN_R2_RCP45+SL_wTd_nos_base_MALI_LAN_R3_RCP45+SL_wTd_nos_base_MALI_LAN_R4_RCP45+SL_wTd_nos_base_MALI_LAN_R5_RCP45\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# PISM_AWI\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_PISM_AWI_RCP45.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_PISM_AWI_R0_RCP45 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_PISM_AWI_R1_RCP45 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_PISM_AWI_R2_RCP45 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_PISM_AWI_R3_RCP45 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_PISM_AWI_R4_RCP45 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_PISM_AWI_R5_RCP45 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_PISM_AWI_SU_RCP45 = SL_wTd_nos_base_PISM_AWI_R1_RCP45+SL_wTd_nos_base_PISM_AWI_R2_RCP45+SL_wTd_nos_base_PISM_AWI_R3_RCP45+SL_wTd_nos_base_PISM_AWI_R4_RCP45+SL_wTd_nos_base_PISM_AWI_R5_RCP45\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# PISM_DMI\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_PISM_DMI_RCP45.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_PISM_DMI_R0_RCP45 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_PISM_DMI_R1_RCP45 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_PISM_DMI_R2_RCP45 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_PISM_DMI_R3_RCP45 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_PISM_DMI_R4_RCP45 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_PISM_DMI_R5_RCP45 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_PISM_DMI_SU_RCP45 = SL_wTd_nos_base_PISM_DMI_R1_RCP45+SL_wTd_nos_base_PISM_DMI_R2_RCP45+SL_wTd_nos_base_PISM_DMI_R3_RCP45+SL_wTd_nos_base_PISM_DMI_R4_RCP45+SL_wTd_nos_base_PISM_DMI_R5_RCP45\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# PISM_PIK\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_PISM_PIK_RCP45.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_PISM_PIK_R0_RCP45 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_PISM_PIK_R1_RCP45 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_PISM_PIK_R2_RCP45 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_PISM_PIK_R3_RCP45 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_PISM_PIK_R4_RCP45 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_PISM_PIK_R5_RCP45 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_PISM_PIK_SU_RCP45 = SL_wTd_nos_base_PISM_PIK_R1_RCP45+SL_wTd_nos_base_PISM_PIK_R2_RCP45+SL_wTd_nos_base_PISM_PIK_R3_RCP45+SL_wTd_nos_base_PISM_PIK_R4_RCP45+SL_wTd_nos_base_PISM_PIK_R5_RCP45\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# PISM_VUW\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_PISM_VUW_RCP45.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_PISM_VUW_R0_RCP45 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_PISM_VUW_R1_RCP45 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_PISM_VUW_R2_RCP45 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_PISM_VUW_R3_RCP45 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_PISM_VUW_R4_RCP45 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_PISM_VUW_R5_RCP45 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_PISM_VUW_SU_RCP45 = SL_wTd_nos_base_PISM_VUW_R1_RCP45+SL_wTd_nos_base_PISM_VUW_R2_RCP45+SL_wTd_nos_base_PISM_VUW_R3_RCP45+SL_wTd_nos_base_PISM_VUW_R4_RCP45+SL_wTd_nos_base_PISM_VUW_R5_RCP45\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# PS3D_PSU\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_PS3D_PSU_RCP45.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_PS3D_PSU_R0_RCP45 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_PS3D_PSU_R1_RCP45 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_PS3D_PSU_R2_RCP45 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_PS3D_PSU_R3_RCP45 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_PS3D_PSU_R4_RCP45 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_PS3D_PSU_R5_RCP45 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_PS3D_PSU_SU_RCP45 = SL_wTd_nos_base_PS3D_PSU_R1_RCP45+SL_wTd_nos_base_PS3D_PSU_R2_RCP45+SL_wTd_nos_base_PS3D_PSU_R3_RCP45+SL_wTd_nos_base_PS3D_PSU_R4_RCP45+SL_wTd_nos_base_PS3D_PSU_R5_RCP45\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# SICO_UHO\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_SICO_UHO_RCP45.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_SICO_UHO_R0_RCP45 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_SICO_UHO_R1_RCP45 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_SICO_UHO_R2_RCP45 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_SICO_UHO_R3_RCP45 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_SICO_UHO_R4_RCP45 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_SICO_UHO_R5_RCP45 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_SICO_UHO_SU_RCP45 = SL_wTd_nos_base_SICO_UHO_R1_RCP45+SL_wTd_nos_base_SICO_UHO_R2_RCP45+SL_wTd_nos_base_SICO_UHO_R3_RCP45+SL_wTd_nos_base_SICO_UHO_R4_RCP45+SL_wTd_nos_base_SICO_UHO_R5_RCP45\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# UA_UNN\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_UA_UNN_RCP45.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_UA_UNN_R0_RCP45 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_UA_UNN_R1_RCP45 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_UA_UNN_R2_RCP45 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_UA_UNN_R3_RCP45 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_UA_UNN_R4_RCP45 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_UA_UNN_R5_RCP45 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_UA_UNN_SU_RCP45 = SL_wTd_nos_base_UA_UNN_R1_RCP45+SL_wTd_nos_base_UA_UNN_R2_RCP45+SL_wTd_nos_base_UA_UNN_R3_RCP45+SL_wTd_nos_base_UA_UNN_R4_RCP45+SL_wTd_nos_base_UA_UNN_R5_RCP45\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "SL_wTd_nos_base_RCP45 =np.vstack([SL_wTd_nos_base_AISM_VUB_SU_RCP45,SL_wTd_nos_base_BISI_LBL_SU_RCP45,SL_wTd_nos_base_CISM_NCA_SU_RCP45,SL_wTd_nos_base_FETI_VUB_SU_RCP45,SL_wTd_nos_base_GRIS_LSC_SU_RCP45,SL_wTd_nos_base_IMAU_VUB_SU_RCP45,SL_wTd_nos_base_ISSM_JPL_SU_RCP45,SL_wTd_nos_base_ISSM_UCI_SU_RCP45,SL_wTd_nos_base_MALI_LAN_SU_RCP45,SL_wTd_nos_base_PISM_AWI_SU_RCP45,SL_wTd_nos_base_PISM_DMI_SU_RCP45,SL_wTd_nos_base_PISM_PIK_SU_RCP45,SL_wTd_nos_base_PISM_VUW_SU_RCP45,SL_wTd_nos_base_PS3D_PSU_SU_RCP45,SL_wTd_nos_base_SICO_UHO_SU_RCP45,SL_wTd_nos_base_UA_UNN_SU_RCP45])\n",
    "\n",
    "SL_wTd_nos_base_R1_RCP45 =np.vstack([SL_wTd_nos_base_AISM_VUB_R1_RCP45,SL_wTd_nos_base_BISI_LBL_R1_RCP45,SL_wTd_nos_base_CISM_NCA_R1_RCP45,SL_wTd_nos_base_FETI_VUB_R1_RCP45,SL_wTd_nos_base_GRIS_LSC_R1_RCP45,SL_wTd_nos_base_IMAU_VUB_R1_RCP45,SL_wTd_nos_base_ISSM_JPL_R1_RCP45,SL_wTd_nos_base_ISSM_UCI_R1_RCP45,SL_wTd_nos_base_MALI_LAN_R1_RCP45,SL_wTd_nos_base_PISM_AWI_R1_RCP45,SL_wTd_nos_base_PISM_DMI_R1_RCP45,SL_wTd_nos_base_PISM_PIK_R1_RCP45,SL_wTd_nos_base_PISM_VUW_R1_RCP45,SL_wTd_nos_base_PS3D_PSU_R1_RCP45,SL_wTd_nos_base_SICO_UHO_R1_RCP45,SL_wTd_nos_base_UA_UNN_R1_RCP45])\n",
    "\n",
    "SL_wTd_nos_base_R2_RCP45 =np.vstack([SL_wTd_nos_base_AISM_VUB_R2_RCP45,SL_wTd_nos_base_BISI_LBL_R2_RCP45,SL_wTd_nos_base_CISM_NCA_R2_RCP45,SL_wTd_nos_base_FETI_VUB_R2_RCP45,SL_wTd_nos_base_GRIS_LSC_R2_RCP45,SL_wTd_nos_base_IMAU_VUB_R2_RCP45,SL_wTd_nos_base_ISSM_JPL_R2_RCP45,SL_wTd_nos_base_ISSM_UCI_R2_RCP45,SL_wTd_nos_base_MALI_LAN_R2_RCP45,SL_wTd_nos_base_PISM_AWI_R2_RCP45,SL_wTd_nos_base_PISM_DMI_R2_RCP45,SL_wTd_nos_base_PISM_PIK_R2_RCP45,SL_wTd_nos_base_PISM_VUW_R2_RCP45,SL_wTd_nos_base_PS3D_PSU_R2_RCP45,SL_wTd_nos_base_SICO_UHO_R2_RCP45,SL_wTd_nos_base_UA_UNN_R2_RCP45])\n",
    "\n",
    "SL_wTd_nos_base_R3_RCP45 =np.vstack([SL_wTd_nos_base_AISM_VUB_R3_RCP45,SL_wTd_nos_base_BISI_LBL_R3_RCP45,SL_wTd_nos_base_CISM_NCA_R3_RCP45,SL_wTd_nos_base_FETI_VUB_R3_RCP45,SL_wTd_nos_base_GRIS_LSC_R3_RCP45,SL_wTd_nos_base_IMAU_VUB_R3_RCP45,SL_wTd_nos_base_ISSM_JPL_R3_RCP45,SL_wTd_nos_base_ISSM_UCI_R3_RCP45,SL_wTd_nos_base_MALI_LAN_R3_RCP45,SL_wTd_nos_base_PISM_AWI_R3_RCP45,SL_wTd_nos_base_PISM_DMI_R3_RCP45,SL_wTd_nos_base_PISM_PIK_R3_RCP45,SL_wTd_nos_base_PISM_VUW_R3_RCP45,SL_wTd_nos_base_PS3D_PSU_R3_RCP45,SL_wTd_nos_base_SICO_UHO_R3_RCP45,SL_wTd_nos_base_UA_UNN_R3_RCP45])\n",
    "\n",
    "SL_wTd_nos_base_R4_RCP45 =np.vstack([SL_wTd_nos_base_AISM_VUB_R4_RCP45,SL_wTd_nos_base_BISI_LBL_R4_RCP45,SL_wTd_nos_base_CISM_NCA_R4_RCP45,SL_wTd_nos_base_FETI_VUB_R4_RCP45,SL_wTd_nos_base_GRIS_LSC_R4_RCP45,SL_wTd_nos_base_IMAU_VUB_R4_RCP45,SL_wTd_nos_base_ISSM_JPL_R4_RCP45,SL_wTd_nos_base_ISSM_UCI_R4_RCP45,SL_wTd_nos_base_MALI_LAN_R4_RCP45,SL_wTd_nos_base_PISM_AWI_R4_RCP45,SL_wTd_nos_base_PISM_DMI_R4_RCP45,SL_wTd_nos_base_PISM_PIK_R4_RCP45,SL_wTd_nos_base_PISM_VUW_R4_RCP45,SL_wTd_nos_base_PS3D_PSU_R4_RCP45,SL_wTd_nos_base_SICO_UHO_R4_RCP45,SL_wTd_nos_base_UA_UNN_R4_RCP45])\n",
    "\n",
    "SL_wTd_nos_base_R5_RCP45 =np.vstack([SL_wTd_nos_base_AISM_VUB_R5_RCP45,SL_wTd_nos_base_BISI_LBL_R5_RCP45,SL_wTd_nos_base_CISM_NCA_R5_RCP45,SL_wTd_nos_base_FETI_VUB_R5_RCP45,SL_wTd_nos_base_GRIS_LSC_R5_RCP45,SL_wTd_nos_base_IMAU_VUB_R5_RCP45,SL_wTd_nos_base_ISSM_JPL_R5_RCP45,SL_wTd_nos_base_ISSM_UCI_R5_RCP45,SL_wTd_nos_base_MALI_LAN_R5_RCP45,SL_wTd_nos_base_PISM_AWI_R5_RCP45,SL_wTd_nos_base_PISM_DMI_R5_RCP45,SL_wTd_nos_base_PISM_PIK_R5_RCP45,SL_wTd_nos_base_PISM_VUW_R5_RCP45,SL_wTd_nos_base_PS3D_PSU_R5_RCP45,SL_wTd_nos_base_SICO_UHO_R5_RCP45,SL_wTd_nos_base_UA_UNN_R5_RCP45])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "320\n",
      "R0:  0\n",
      "R0:  1\n",
      "R0:  2\n",
      "R0:  3\n",
      "R0:  4\n",
      "R0:  5\n",
      "R0:  6\n",
      "R0:  7\n",
      "R0:  8\n",
      "R0:  9\n",
      "R0:  10\n",
      "R0:  11\n",
      "R0:  12\n",
      "R0:  13\n",
      "R0:  14\n",
      "R0:  15\n",
      "R0:  16\n",
      "R0:  17\n",
      "R0:  18\n",
      "R0:  19\n",
      "R0:  20\n",
      "R0:  21\n",
      "R0:  22\n",
      "R0:  23\n",
      "R0:  24\n",
      "R0:  25\n",
      "R0:  26\n",
      "R0:  27\n",
      "R0:  28\n",
      "R0:  29\n",
      "R0:  30\n",
      "R0:  31\n",
      "R0:  32\n",
      "R0:  33\n",
      "R0:  34\n",
      "R0:  35\n",
      "R0:  36\n",
      "R0:  37\n",
      "R0:  38\n",
      "R0:  39\n",
      "R0:  40\n",
      "R0:  41\n",
      "R0:  42\n",
      "R0:  43\n",
      "R0:  44\n",
      "R0:  45\n",
      "R0:  46\n",
      "R0:  47\n",
      "R0:  48\n",
      "R0:  49\n",
      "R0:  50\n",
      "R0:  51\n",
      "R0:  52\n",
      "R0:  53\n",
      "R0:  54\n",
      "R0:  55\n",
      "R0:  56\n",
      "R0:  57\n",
      "R0:  58\n",
      "R0:  59\n",
      "R0:  60\n",
      "R0:  61\n",
      "R0:  62\n",
      "R0:  63\n",
      "R0:  64\n",
      "R0:  65\n",
      "R0:  66\n",
      "R0:  67\n",
      "R0:  68\n",
      "R0:  69\n",
      "R0:  70\n",
      "R0:  71\n",
      "R0:  72\n",
      "R0:  73\n",
      "R0:  74\n",
      "R0:  75\n",
      "R0:  76\n",
      "R0:  77\n",
      "R0:  78\n",
      "R0:  79\n",
      "R0:  80\n",
      "R0:  81\n",
      "R0:  82\n",
      "R0:  83\n",
      "R0:  84\n",
      "R0:  85\n",
      "R0:  86\n",
      "R0:  87\n",
      "R0:  88\n",
      "R0:  89\n",
      "R0:  90\n",
      "R0:  91\n",
      "R0:  92\n",
      "R0:  93\n",
      "R0:  94\n",
      "R0:  95\n",
      "R0:  96\n",
      "R0:  97\n",
      "R0:  98\n",
      "R0:  99\n",
      "R0:  100\n",
      "R0:  101\n",
      "R0:  102\n",
      "R0:  103\n",
      "R0:  104\n",
      "R0:  105\n",
      "R0:  106\n",
      "R0:  107\n",
      "R0:  108\n",
      "R0:  109\n",
      "R0:  110\n",
      "R0:  111\n",
      "R0:  112\n",
      "R0:  113\n",
      "R0:  114\n",
      "R0:  115\n",
      "R0:  116\n",
      "R0:  117\n",
      "R0:  118\n",
      "R0:  119\n",
      "R0:  120\n",
      "R0:  121\n",
      "R0:  122\n",
      "R0:  123\n",
      "R0:  124\n",
      "R0:  125\n",
      "R0:  126\n",
      "R0:  127\n",
      "R0:  128\n",
      "R0:  129\n",
      "R0:  130\n",
      "R0:  131\n",
      "R0:  132\n",
      "R0:  133\n",
      "R0:  134\n",
      "R0:  135\n",
      "R0:  136\n",
      "R0:  137\n",
      "R0:  138\n",
      "R0:  139\n",
      "R0:  140\n",
      "R0:  141\n",
      "R0:  142\n",
      "R0:  143\n",
      "R0:  144\n",
      "R0:  145\n",
      "R0:  146\n",
      "R0:  147\n",
      "R0:  148\n",
      "R0:  149\n",
      "R0:  150\n",
      "R0:  151\n",
      "R0:  152\n",
      "R0:  153\n",
      "R0:  154\n",
      "R0:  155\n",
      "R0:  156\n",
      "R0:  157\n",
      "R0:  158\n",
      "R0:  159\n",
      "R0:  160\n",
      "R0:  161\n",
      "R0:  162\n",
      "R0:  163\n",
      "R0:  164\n",
      "R0:  165\n",
      "R0:  166\n",
      "R0:  167\n",
      "R0:  168\n",
      "R0:  169\n",
      "R0:  170\n",
      "R0:  171\n",
      "R0:  172\n",
      "R0:  173\n",
      "R0:  174\n",
      "R0:  175\n",
      "R0:  176\n",
      "R0:  177\n",
      "R0:  178\n",
      "R0:  179\n",
      "R0:  180\n",
      "R0:  181\n",
      "R0:  182\n",
      "R0:  183\n",
      "R0:  184\n",
      "R0:  185\n",
      "R0:  186\n",
      "R0:  187\n",
      "R0:  188\n",
      "R0:  189\n",
      "R0:  190\n",
      "R0:  191\n",
      "R0:  192\n",
      "R0:  193\n",
      "R0:  194\n",
      "R0:  195\n",
      "R0:  196\n",
      "R0:  197\n",
      "R0:  198\n",
      "R0:  199\n",
      "R1:  0\n",
      "R1:  1\n",
      "R1:  2\n",
      "R1:  3\n",
      "R1:  4\n",
      "R1:  5\n",
      "R1:  6\n",
      "R1:  7\n",
      "R1:  8\n",
      "R1:  9\n",
      "R1:  10\n",
      "R1:  11\n",
      "R1:  12\n",
      "R1:  13\n",
      "R1:  14\n",
      "R1:  15\n",
      "R1:  16\n",
      "R1:  17\n",
      "R1:  18\n",
      "R1:  19\n",
      "R1:  20\n",
      "R1:  21\n",
      "R1:  22\n",
      "R1:  23\n",
      "R1:  24\n",
      "R1:  25\n",
      "R1:  26\n",
      "R1:  27\n",
      "R1:  28\n",
      "R1:  29\n",
      "R1:  30\n",
      "R1:  31\n",
      "R1:  32\n",
      "R1:  33\n",
      "R1:  34\n",
      "R1:  35\n",
      "R1:  36\n",
      "R1:  37\n",
      "R1:  38\n",
      "R1:  39\n",
      "R1:  40\n",
      "R1:  41\n",
      "R1:  42\n",
      "R1:  43\n",
      "R1:  44\n",
      "R1:  45\n",
      "R1:  46\n",
      "R1:  47\n",
      "R1:  48\n",
      "R1:  49\n",
      "R1:  50\n",
      "R1:  51\n",
      "R1:  52\n",
      "R1:  53\n",
      "R1:  54\n",
      "R1:  55\n",
      "R1:  56\n",
      "R1:  57\n",
      "R1:  58\n",
      "R1:  59\n",
      "R1:  60\n",
      "R1:  61\n",
      "R1:  62\n",
      "R1:  63\n",
      "R1:  64\n",
      "R1:  65\n",
      "R1:  66\n",
      "R1:  67\n",
      "R1:  68\n",
      "R1:  69\n",
      "R1:  70\n",
      "R1:  71\n",
      "R1:  72\n",
      "R1:  73\n",
      "R1:  74\n",
      "R1:  75\n",
      "R1:  76\n",
      "R1:  77\n",
      "R1:  78\n",
      "R1:  79\n",
      "R1:  80\n",
      "R1:  81\n",
      "R1:  82\n",
      "R1:  83\n",
      "R1:  84\n",
      "R1:  85\n",
      "R1:  86\n",
      "R1:  87\n",
      "R1:  88\n",
      "R1:  89\n",
      "R1:  90\n",
      "R1:  91\n",
      "R1:  92\n",
      "R1:  93\n",
      "R1:  94\n",
      "R1:  95\n",
      "R1:  96\n",
      "R1:  97\n",
      "R1:  98\n",
      "R1:  99\n",
      "R1:  100\n",
      "R1:  101\n",
      "R1:  102\n",
      "R1:  103\n",
      "R1:  104\n",
      "R1:  105\n",
      "R1:  106\n",
      "R1:  107\n",
      "R1:  108\n",
      "R1:  109\n",
      "R1:  110\n",
      "R1:  111\n",
      "R1:  112\n",
      "R1:  113\n",
      "R1:  114\n",
      "R1:  115\n",
      "R1:  116\n",
      "R1:  117\n",
      "R1:  118\n",
      "R1:  119\n",
      "R1:  120\n",
      "R1:  121\n",
      "R1:  122\n",
      "R1:  123\n",
      "R1:  124\n",
      "R1:  125\n",
      "R1:  126\n",
      "R1:  127\n",
      "R1:  128\n",
      "R1:  129\n",
      "R1:  130\n",
      "R1:  131\n",
      "R1:  132\n",
      "R1:  133\n",
      "R1:  134\n",
      "R1:  135\n",
      "R1:  136\n",
      "R1:  137\n",
      "R1:  138\n",
      "R1:  139\n",
      "R1:  140\n",
      "R1:  141\n",
      "R1:  142\n",
      "R1:  143\n",
      "R1:  144\n",
      "R1:  145\n",
      "R1:  146\n",
      "R1:  147\n",
      "R1:  148\n",
      "R1:  149\n",
      "R1:  150\n",
      "R1:  151\n",
      "R1:  152\n",
      "R1:  153\n",
      "R1:  154\n",
      "R1:  155\n",
      "R1:  156\n",
      "R1:  157\n",
      "R1:  158\n",
      "R1:  159\n",
      "R1:  160\n",
      "R1:  161\n",
      "R1:  162\n",
      "R1:  163\n",
      "R1:  164\n",
      "R1:  165\n",
      "R1:  166\n",
      "R1:  167\n",
      "R1:  168\n",
      "R1:  169\n",
      "R1:  170\n",
      "R1:  171\n",
      "R1:  172\n",
      "R1:  173\n",
      "R1:  174\n",
      "R1:  175\n",
      "R1:  176\n",
      "R1:  177\n",
      "R1:  178\n",
      "R1:  179\n",
      "R1:  180\n",
      "R1:  181\n",
      "R1:  182\n",
      "R1:  183\n",
      "R1:  184\n",
      "R1:  185\n",
      "R1:  186\n",
      "R1:  187\n",
      "R1:  188\n",
      "R1:  189\n",
      "R1:  190\n",
      "R1:  191\n",
      "R1:  192\n",
      "R1:  193\n",
      "R1:  194\n",
      "R1:  195\n",
      "R1:  196\n",
      "R1:  197\n",
      "R1:  198\n",
      "R1:  199\n",
      "R2:  0\n",
      "R2:  1\n",
      "R2:  2\n",
      "R2:  3\n",
      "R2:  4\n",
      "R2:  5\n",
      "R2:  6\n",
      "R2:  7\n",
      "R2:  8\n",
      "R2:  9\n",
      "R2:  10\n",
      "R2:  11\n",
      "R2:  12\n",
      "R2:  13\n",
      "R2:  14\n",
      "R2:  15\n",
      "R2:  16\n",
      "R2:  17\n",
      "R2:  18\n",
      "R2:  19\n",
      "R2:  20\n",
      "R2:  21\n",
      "R2:  22\n",
      "R2:  23\n",
      "R2:  24\n",
      "R2:  25\n",
      "R2:  26\n",
      "R2:  27\n",
      "R2:  28\n",
      "R2:  29\n",
      "R2:  30\n",
      "R2:  31\n",
      "R2:  32\n",
      "R2:  33\n",
      "R2:  34\n",
      "R2:  35\n",
      "R2:  36\n",
      "R2:  37\n",
      "R2:  38\n",
      "R2:  39\n",
      "R2:  40\n",
      "R2:  41\n",
      "R2:  42\n",
      "R2:  43\n",
      "R2:  44\n",
      "R2:  45\n",
      "R2:  46\n",
      "R2:  47\n",
      "R2:  48\n",
      "R2:  49\n",
      "R2:  50\n",
      "R2:  51\n",
      "R2:  52\n",
      "R2:  53\n",
      "R2:  54\n",
      "R2:  55\n",
      "R2:  56\n",
      "R2:  57\n",
      "R2:  58\n",
      "R2:  59\n",
      "R2:  60\n",
      "R2:  61\n",
      "R2:  62\n",
      "R2:  63\n",
      "R2:  64\n",
      "R2:  65\n",
      "R2:  66\n",
      "R2:  67\n",
      "R2:  68\n",
      "R2:  69\n",
      "R2:  70\n",
      "R2:  71\n",
      "R2:  72\n",
      "R2:  73\n",
      "R2:  74\n",
      "R2:  75\n",
      "R2:  76\n",
      "R2:  77\n",
      "R2:  78\n",
      "R2:  79\n",
      "R2:  80\n",
      "R2:  81\n",
      "R2:  82\n",
      "R2:  83\n",
      "R2:  84\n",
      "R2:  85\n",
      "R2:  86\n",
      "R2:  87\n",
      "R2:  88\n",
      "R2:  89\n",
      "R2:  90\n",
      "R2:  91\n",
      "R2:  92\n",
      "R2:  93\n",
      "R2:  94\n",
      "R2:  95\n",
      "R2:  96\n",
      "R2:  97\n",
      "R2:  98\n",
      "R2:  99\n",
      "R2:  100\n",
      "R2:  101\n",
      "R2:  102\n",
      "R2:  103\n",
      "R2:  104\n",
      "R2:  105\n",
      "R2:  106\n",
      "R2:  107\n",
      "R2:  108\n",
      "R2:  109\n",
      "R2:  110\n",
      "R2:  111\n",
      "R2:  112\n",
      "R2:  113\n",
      "R2:  114\n",
      "R2:  115\n",
      "R2:  116\n",
      "R2:  117\n",
      "R2:  118\n",
      "R2:  119\n",
      "R2:  120\n",
      "R2:  121\n",
      "R2:  122\n",
      "R2:  123\n",
      "R2:  124\n",
      "R2:  125\n",
      "R2:  126\n",
      "R2:  127\n",
      "R2:  128\n",
      "R2:  129\n",
      "R2:  130\n",
      "R2:  131\n",
      "R2:  132\n",
      "R2:  133\n",
      "R2:  134\n",
      "R2:  135\n",
      "R2:  136\n",
      "R2:  137\n",
      "R2:  138\n",
      "R2:  139\n",
      "R2:  140\n",
      "R2:  141\n",
      "R2:  142\n",
      "R2:  143\n",
      "R2:  144\n",
      "R2:  145\n",
      "R2:  146\n",
      "R2:  147\n",
      "R2:  148\n",
      "R2:  149\n",
      "R2:  150\n",
      "R2:  151\n",
      "R2:  152\n",
      "R2:  153\n",
      "R2:  154\n",
      "R2:  155\n",
      "R2:  156\n",
      "R2:  157\n",
      "R2:  158\n",
      "R2:  159\n",
      "R2:  160\n",
      "R2:  161\n",
      "R2:  162\n",
      "R2:  163\n",
      "R2:  164\n",
      "R2:  165\n",
      "R2:  166\n",
      "R2:  167\n",
      "R2:  168\n",
      "R2:  169\n",
      "R2:  170\n",
      "R2:  171\n",
      "R2:  172\n",
      "R2:  173\n",
      "R2:  174\n",
      "R2:  175\n",
      "R2:  176\n",
      "R2:  177\n",
      "R2:  178\n",
      "R2:  179\n",
      "R2:  180\n",
      "R2:  181\n",
      "R2:  182\n",
      "R2:  183\n",
      "R2:  184\n",
      "R2:  185\n",
      "R2:  186\n",
      "R2:  187\n",
      "R2:  188\n",
      "R2:  189\n",
      "R2:  190\n",
      "R2:  191\n",
      "R2:  192\n",
      "R2:  193\n",
      "R2:  194\n",
      "R2:  195\n",
      "R2:  196\n",
      "R2:  197\n",
      "R2:  198\n",
      "R2:  199\n",
      "R3:  0\n",
      "R3:  1\n",
      "R3:  2\n",
      "R3:  3\n",
      "R3:  4\n",
      "R3:  5\n",
      "R3:  6\n",
      "R3:  7\n",
      "R3:  8\n",
      "R3:  9\n",
      "R3:  10\n",
      "R3:  11\n",
      "R3:  12\n",
      "R3:  13\n",
      "R3:  14\n",
      "R3:  15\n",
      "R3:  16\n",
      "R3:  17\n",
      "R3:  18\n",
      "R3:  19\n",
      "R3:  20\n",
      "R3:  21\n",
      "R3:  22\n",
      "R3:  23\n",
      "R3:  24\n",
      "R3:  25\n",
      "R3:  26\n",
      "R3:  27\n",
      "R3:  28\n",
      "R3:  29\n",
      "R3:  30\n",
      "R3:  31\n",
      "R3:  32\n",
      "R3:  33\n",
      "R3:  34\n",
      "R3:  35\n",
      "R3:  36\n",
      "R3:  37\n",
      "R3:  38\n",
      "R3:  39\n",
      "R3:  40\n",
      "R3:  41\n",
      "R3:  42\n",
      "R3:  43\n",
      "R3:  44\n",
      "R3:  45\n",
      "R3:  46\n",
      "R3:  47\n",
      "R3:  48\n",
      "R3:  49\n",
      "R3:  50\n",
      "R3:  51\n",
      "R3:  52\n",
      "R3:  53\n",
      "R3:  54\n",
      "R3:  55\n",
      "R3:  56\n",
      "R3:  57\n",
      "R3:  58\n",
      "R3:  59\n",
      "R3:  60\n",
      "R3:  61\n",
      "R3:  62\n",
      "R3:  63\n",
      "R3:  64\n",
      "R3:  65\n",
      "R3:  66\n",
      "R3:  67\n",
      "R3:  68\n",
      "R3:  69\n",
      "R3:  70\n",
      "R3:  71\n",
      "R3:  72\n",
      "R3:  73\n",
      "R3:  74\n",
      "R3:  75\n",
      "R3:  76\n",
      "R3:  77\n",
      "R3:  78\n",
      "R3:  79\n",
      "R3:  80\n",
      "R3:  81\n",
      "R3:  82\n",
      "R3:  83\n",
      "R3:  84\n",
      "R3:  85\n",
      "R3:  86\n",
      "R3:  87\n",
      "R3:  88\n",
      "R3:  89\n",
      "R3:  90\n",
      "R3:  91\n",
      "R3:  92\n",
      "R3:  93\n",
      "R3:  94\n",
      "R3:  95\n",
      "R3:  96\n",
      "R3:  97\n",
      "R3:  98\n",
      "R3:  99\n",
      "R3:  100\n",
      "R3:  101\n",
      "R3:  102\n",
      "R3:  103\n",
      "R3:  104\n",
      "R3:  105\n",
      "R3:  106\n",
      "R3:  107\n",
      "R3:  108\n",
      "R3:  109\n",
      "R3:  110\n",
      "R3:  111\n",
      "R3:  112\n",
      "R3:  113\n",
      "R3:  114\n",
      "R3:  115\n",
      "R3:  116\n",
      "R3:  117\n",
      "R3:  118\n",
      "R3:  119\n",
      "R3:  120\n",
      "R3:  121\n",
      "R3:  122\n",
      "R3:  123\n",
      "R3:  124\n",
      "R3:  125\n",
      "R3:  126\n",
      "R3:  127\n",
      "R3:  128\n",
      "R3:  129\n",
      "R3:  130\n",
      "R3:  131\n",
      "R3:  132\n",
      "R3:  133\n",
      "R3:  134\n",
      "R3:  135\n",
      "R3:  136\n",
      "R3:  137\n",
      "R3:  138\n",
      "R3:  139\n",
      "R3:  140\n",
      "R3:  141\n",
      "R3:  142\n",
      "R3:  143\n",
      "R3:  144\n",
      "R3:  145\n",
      "R3:  146\n",
      "R3:  147\n",
      "R3:  148\n",
      "R3:  149\n",
      "R3:  150\n",
      "R3:  151\n",
      "R3:  152\n",
      "R3:  153\n",
      "R3:  154\n",
      "R3:  155\n",
      "R3:  156\n",
      "R3:  157\n",
      "R3:  158\n",
      "R3:  159\n",
      "R3:  160\n",
      "R3:  161\n",
      "R3:  162\n",
      "R3:  163\n",
      "R3:  164\n",
      "R3:  165\n",
      "R3:  166\n",
      "R3:  167\n",
      "R3:  168\n",
      "R3:  169\n",
      "R3:  170\n",
      "R3:  171\n",
      "R3:  172\n",
      "R3:  173\n",
      "R3:  174\n",
      "R3:  175\n",
      "R3:  176\n",
      "R3:  177\n",
      "R3:  178\n",
      "R3:  179\n",
      "R3:  180\n",
      "R3:  181\n",
      "R3:  182\n",
      "R3:  183\n",
      "R3:  184\n",
      "R3:  185\n",
      "R3:  186\n",
      "R3:  187\n",
      "R3:  188\n",
      "R3:  189\n",
      "R3:  190\n",
      "R3:  191\n",
      "R3:  192\n",
      "R3:  193\n",
      "R3:  194\n",
      "R3:  195\n",
      "R3:  196\n",
      "R3:  197\n",
      "R3:  198\n",
      "R3:  199\n",
      "R4:  0\n",
      "R4:  1\n",
      "R4:  2\n",
      "R4:  3\n",
      "R4:  4\n",
      "R4:  5\n",
      "R4:  6\n",
      "R4:  7\n",
      "R4:  8\n",
      "R4:  9\n",
      "R4:  10\n",
      "R4:  11\n",
      "R4:  12\n",
      "R4:  13\n",
      "R4:  14\n",
      "R4:  15\n",
      "R4:  16\n",
      "R4:  17\n",
      "R4:  18\n",
      "R4:  19\n",
      "R4:  20\n",
      "R4:  21\n",
      "R4:  22\n",
      "R4:  23\n",
      "R4:  24\n",
      "R4:  25\n",
      "R4:  26\n",
      "R4:  27\n",
      "R4:  28\n",
      "R4:  29\n",
      "R4:  30\n",
      "R4:  31\n",
      "R4:  32\n",
      "R4:  33\n",
      "R4:  34\n",
      "R4:  35\n",
      "R4:  36\n",
      "R4:  37\n",
      "R4:  38\n",
      "R4:  39\n",
      "R4:  40\n",
      "R4:  41\n",
      "R4:  42\n",
      "R4:  43\n",
      "R4:  44\n",
      "R4:  45\n",
      "R4:  46\n",
      "R4:  47\n",
      "R4:  48\n",
      "R4:  49\n",
      "R4:  50\n",
      "R4:  51\n",
      "R4:  52\n",
      "R4:  53\n",
      "R4:  54\n",
      "R4:  55\n",
      "R4:  56\n",
      "R4:  57\n",
      "R4:  58\n",
      "R4:  59\n",
      "R4:  60\n",
      "R4:  61\n",
      "R4:  62\n",
      "R4:  63\n",
      "R4:  64\n",
      "R4:  65\n",
      "R4:  66\n",
      "R4:  67\n",
      "R4:  68\n",
      "R4:  69\n",
      "R4:  70\n",
      "R4:  71\n",
      "R4:  72\n",
      "R4:  73\n",
      "R4:  74\n",
      "R4:  75\n",
      "R4:  76\n",
      "R4:  77\n",
      "R4:  78\n",
      "R4:  79\n",
      "R4:  80\n",
      "R4:  81\n",
      "R4:  82\n",
      "R4:  83\n",
      "R4:  84\n",
      "R4:  85\n",
      "R4:  86\n",
      "R4:  87\n",
      "R4:  88\n",
      "R4:  89\n",
      "R4:  90\n",
      "R4:  91\n",
      "R4:  92\n",
      "R4:  93\n",
      "R4:  94\n",
      "R4:  95\n",
      "R4:  96\n",
      "R4:  97\n",
      "R4:  98\n",
      "R4:  99\n",
      "R4:  100\n",
      "R4:  101\n",
      "R4:  102\n",
      "R4:  103\n",
      "R4:  104\n",
      "R4:  105\n",
      "R4:  106\n",
      "R4:  107\n",
      "R4:  108\n",
      "R4:  109\n",
      "R4:  110\n",
      "R4:  111\n",
      "R4:  112\n",
      "R4:  113\n",
      "R4:  114\n",
      "R4:  115\n",
      "R4:  116\n",
      "R4:  117\n",
      "R4:  118\n",
      "R4:  119\n",
      "R4:  120\n",
      "R4:  121\n",
      "R4:  122\n",
      "R4:  123\n",
      "R4:  124\n",
      "R4:  125\n",
      "R4:  126\n",
      "R4:  127\n",
      "R4:  128\n",
      "R4:  129\n",
      "R4:  130\n",
      "R4:  131\n",
      "R4:  132\n",
      "R4:  133\n",
      "R4:  134\n",
      "R4:  135\n",
      "R4:  136\n",
      "R4:  137\n",
      "R4:  138\n",
      "R4:  139\n",
      "R4:  140\n",
      "R4:  141\n",
      "R4:  142\n",
      "R4:  143\n",
      "R4:  144\n",
      "R4:  145\n",
      "R4:  146\n",
      "R4:  147\n",
      "R4:  148\n",
      "R4:  149\n",
      "R4:  150\n",
      "R4:  151\n",
      "R4:  152\n",
      "R4:  153\n",
      "R4:  154\n",
      "R4:  155\n",
      "R4:  156\n",
      "R4:  157\n",
      "R4:  158\n",
      "R4:  159\n",
      "R4:  160\n",
      "R4:  161\n",
      "R4:  162\n",
      "R4:  163\n",
      "R4:  164\n",
      "R4:  165\n",
      "R4:  166\n",
      "R4:  167\n",
      "R4:  168\n",
      "R4:  169\n",
      "R4:  170\n",
      "R4:  171\n",
      "R4:  172\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "R4:  173\n",
      "R4:  174\n",
      "R4:  175\n",
      "R4:  176\n",
      "R4:  177\n",
      "R4:  178\n",
      "R4:  179\n",
      "R4:  180\n",
      "R4:  181\n",
      "R4:  182\n",
      "R4:  183\n",
      "R4:  184\n",
      "R4:  185\n",
      "R4:  186\n",
      "R4:  187\n",
      "R4:  188\n",
      "R4:  189\n",
      "R4:  190\n",
      "R4:  191\n",
      "R4:  192\n",
      "R4:  193\n",
      "R4:  194\n",
      "R4:  195\n",
      "R4:  196\n",
      "R4:  197\n",
      "R4:  198\n",
      "R4:  199\n",
      "R5:  0\n",
      "R5:  1\n",
      "R5:  2\n",
      "R5:  3\n",
      "R5:  4\n",
      "R5:  5\n",
      "R5:  6\n",
      "R5:  7\n",
      "R5:  8\n",
      "R5:  9\n",
      "R5:  10\n",
      "R5:  11\n",
      "R5:  12\n",
      "R5:  13\n",
      "R5:  14\n",
      "R5:  15\n",
      "R5:  16\n",
      "R5:  17\n",
      "R5:  18\n",
      "R5:  19\n",
      "R5:  20\n",
      "R5:  21\n",
      "R5:  22\n",
      "R5:  23\n",
      "R5:  24\n",
      "R5:  25\n",
      "R5:  26\n",
      "R5:  27\n",
      "R5:  28\n",
      "R5:  29\n",
      "R5:  30\n",
      "R5:  31\n",
      "R5:  32\n",
      "R5:  33\n",
      "R5:  34\n",
      "R5:  35\n",
      "R5:  36\n",
      "R5:  37\n",
      "R5:  38\n",
      "R5:  39\n",
      "R5:  40\n",
      "R5:  41\n",
      "R5:  42\n",
      "R5:  43\n",
      "R5:  44\n",
      "R5:  45\n",
      "R5:  46\n",
      "R5:  47\n",
      "R5:  48\n",
      "R5:  49\n",
      "R5:  50\n",
      "R5:  51\n",
      "R5:  52\n",
      "R5:  53\n",
      "R5:  54\n",
      "R5:  55\n",
      "R5:  56\n",
      "R5:  57\n",
      "R5:  58\n",
      "R5:  59\n",
      "R5:  60\n",
      "R5:  61\n",
      "R5:  62\n",
      "R5:  63\n",
      "R5:  64\n",
      "R5:  65\n",
      "R5:  66\n",
      "R5:  67\n",
      "R5:  68\n",
      "R5:  69\n",
      "R5:  70\n",
      "R5:  71\n",
      "R5:  72\n",
      "R5:  73\n",
      "R5:  74\n",
      "R5:  75\n",
      "R5:  76\n",
      "R5:  77\n",
      "R5:  78\n",
      "R5:  79\n",
      "R5:  80\n",
      "R5:  81\n",
      "R5:  82\n",
      "R5:  83\n",
      "R5:  84\n",
      "R5:  85\n",
      "R5:  86\n",
      "R5:  87\n",
      "R5:  88\n",
      "R5:  89\n",
      "R5:  90\n",
      "R5:  91\n",
      "R5:  92\n",
      "R5:  93\n",
      "R5:  94\n",
      "R5:  95\n",
      "R5:  96\n",
      "R5:  97\n",
      "R5:  98\n",
      "R5:  99\n",
      "R5:  100\n",
      "R5:  101\n",
      "R5:  102\n",
      "R5:  103\n",
      "R5:  104\n",
      "R5:  105\n",
      "R5:  106\n",
      "R5:  107\n",
      "R5:  108\n",
      "R5:  109\n",
      "R5:  110\n",
      "R5:  111\n",
      "R5:  112\n",
      "R5:  113\n",
      "R5:  114\n",
      "R5:  115\n",
      "R5:  116\n",
      "R5:  117\n",
      "R5:  118\n",
      "R5:  119\n",
      "R5:  120\n",
      "R5:  121\n",
      "R5:  122\n",
      "R5:  123\n",
      "R5:  124\n",
      "R5:  125\n",
      "R5:  126\n",
      "R5:  127\n",
      "R5:  128\n",
      "R5:  129\n",
      "R5:  130\n",
      "R5:  131\n",
      "R5:  132\n",
      "R5:  133\n",
      "R5:  134\n",
      "R5:  135\n",
      "R5:  136\n",
      "R5:  137\n",
      "R5:  138\n",
      "R5:  139\n",
      "R5:  140\n",
      "R5:  141\n",
      "R5:  142\n",
      "R5:  143\n",
      "R5:  144\n",
      "R5:  145\n",
      "R5:  146\n",
      "R5:  147\n",
      "R5:  148\n",
      "R5:  149\n",
      "R5:  150\n",
      "R5:  151\n",
      "R5:  152\n",
      "R5:  153\n",
      "R5:  154\n",
      "R5:  155\n",
      "R5:  156\n",
      "R5:  157\n",
      "R5:  158\n",
      "R5:  159\n",
      "R5:  160\n",
      "R5:  161\n",
      "R5:  162\n",
      "R5:  163\n",
      "R5:  164\n",
      "R5:  165\n",
      "R5:  166\n",
      "R5:  167\n",
      "R5:  168\n",
      "R5:  169\n",
      "R5:  170\n",
      "R5:  171\n",
      "R5:  172\n",
      "R5:  173\n",
      "R5:  174\n",
      "R5:  175\n",
      "R5:  176\n",
      "R5:  177\n",
      "R5:  178\n",
      "R5:  179\n",
      "R5:  180\n",
      "R5:  181\n",
      "R5:  182\n",
      "R5:  183\n",
      "R5:  184\n",
      "R5:  185\n",
      "R5:  186\n",
      "R5:  187\n",
      "R5:  188\n",
      "R5:  189\n",
      "R5:  190\n",
      "R5:  191\n",
      "R5:  192\n",
      "R5:  193\n",
      "R5:  194\n",
      "R5:  195\n",
      "R5:  196\n",
      "R5:  197\n",
      "R5:  198\n",
      "R5:  199\n"
     ]
    }
   ],
   "source": [
    "# compute cumulative probability distributions\n",
    "cdfnum = 1000\n",
    "cdfstep = int(len(SL_wTd_nos_base_RCP45[:,0])/cdfnum)\n",
    "print(cdfstep)\n",
    "\n",
    "SL_wTd_nos_base_R0_RCP45_cdf = [0] * (cdfnum+1)\n",
    "for t in range(len(SL_wTd_nos_base_RCP45[1,:])):\n",
    "    print(\"R0: \",t)\n",
    "    sortind = np.argsort(SL_wTd_nos_base_RCP45[:,t])\n",
    "\n",
    "    slcdf = []\n",
    "    slcdf.append(0)\n",
    "    for i in range(1,cdfnum+1):\n",
    "        cdfval = float(i/cdfnum)\n",
    "        slval = SL_wTd_nos_base_RCP45[sortind[i*cdfstep],t]\n",
    "        slcdf.append(slval)\n",
    "    SL_wTd_nos_base_R0_RCP45_cdf=np.vstack([SL_wTd_nos_base_R0_RCP45_cdf, slcdf])\n",
    "\n",
    "\n",
    "SL_wTd_nos_base_R1_RCP45_cdf = [0] * (cdfnum+1)\n",
    "for t in range(len(SL_wTd_nos_base_R1_RCP45[1,:])):\n",
    "    print(\"R1: \",t)\n",
    "    sortind = np.argsort(SL_wTd_nos_base_R1_RCP45[:,t])\n",
    "\n",
    "    slcdf = []\n",
    "    slcdf.append(0)\n",
    "    for i in range(1,cdfnum+1):\n",
    "        cdfval = float(i/cdfnum)\n",
    "        slval = SL_wTd_nos_base_R1_RCP45[sortind[i*cdfstep],t]\n",
    "        slcdf.append(slval)\n",
    "    SL_wTd_nos_base_R1_RCP45_cdf=np.vstack([SL_wTd_nos_base_R1_RCP45_cdf, slcdf])\n",
    "\n",
    "SL_wTd_nos_base_R2_RCP45_cdf = [0] * (cdfnum+1)\n",
    "for t in range(len(SL_wTd_nos_base_R2_RCP45[1,:])):\n",
    "    print(\"R2: \",t)\n",
    "    sortind = np.argsort(SL_wTd_nos_base_R2_RCP45[:,t])\n",
    "\n",
    "    slcdf = []\n",
    "    slcdf.append(0)\n",
    "    for i in range(1,cdfnum+1):\n",
    "        cdfval = float(i/cdfnum)\n",
    "        slval = SL_wTd_nos_base_R2_RCP45[sortind[i*cdfstep],t]\n",
    "        slcdf.append(slval)\n",
    "    SL_wTd_nos_base_R2_RCP45_cdf=np.vstack([SL_wTd_nos_base_R2_RCP45_cdf, slcdf])\n",
    "\n",
    "SL_wTd_nos_base_R3_RCP45_cdf = [0] * (cdfnum+1)\n",
    "for t in range(len(SL_wTd_nos_base_R3_RCP45[1,:])):\n",
    "    print(\"R3: \",t)\n",
    "    sortind = np.argsort(SL_wTd_nos_base_R3_RCP45[:,t])\n",
    "\n",
    "    slcdf = []\n",
    "    slcdf.append(0)\n",
    "    for i in range(1,cdfnum+1):\n",
    "        cdfval = float(i/cdfnum)\n",
    "        slval = SL_wTd_nos_base_R3_RCP45[sortind[i*cdfstep],t]\n",
    "        slcdf.append(slval)\n",
    "    SL_wTd_nos_base_R3_RCP45_cdf=np.vstack([SL_wTd_nos_base_R3_RCP45_cdf, slcdf])\n",
    "\n",
    "SL_wTd_nos_base_R4_RCP45_cdf = [0] * (cdfnum+1)\n",
    "for t in range(len(SL_wTd_nos_base_R4_RCP45[1,:])):\n",
    "    print(\"R4: \",t)\n",
    "    sortind = np.argsort(SL_wTd_nos_base_R4_RCP45[:,t])\n",
    "\n",
    "    slcdf = []\n",
    "    slcdf.append(0)\n",
    "    for i in range(1,cdfnum+1):\n",
    "        cdfval = float(i/cdfnum)\n",
    "        slval = SL_wTd_nos_base_R4_RCP45[sortind[i*cdfstep],t]\n",
    "        slcdf.append(slval)\n",
    "    SL_wTd_nos_base_R4_RCP45_cdf=np.vstack([SL_wTd_nos_base_R4_RCP45_cdf, slcdf])\n",
    "\n",
    "SL_wTd_nos_base_R5_RCP45_cdf = [0] * (cdfnum+1)\n",
    "for t in range(len(SL_wTd_nos_base_R5_RCP45[1,:])):\n",
    "    print(\"R5: \",t)\n",
    "    sortind = np.argsort(SL_wTd_nos_base_R5_RCP45[:,t])\n",
    "\n",
    "    slcdf = []\n",
    "    slcdf.append(0)\n",
    "    for i in range(1,cdfnum+1):\n",
    "        cdfval = float(i/cdfnum)\n",
    "        slval = SL_wTd_nos_base_R5_RCP45[sortind[i*cdfstep],t]\n",
    "        slcdf.append(slval)\n",
    "    SL_wTd_nos_base_R5_RCP45_cdf=np.vstack([SL_wTd_nos_base_R5_RCP45_cdf, slcdf])\n",
    "\n",
    "\n",
    "Percentile = np.arange(0,float((cdfnum+1)/cdfnum),float(1/cdfnum))\n",
    "\n",
    "# write cdfs\n",
    "ncfile = nc.Dataset('Cdfs/SL_wTd_nos_base_RCP45_cdf.nc','w', format='NETCDF4')\n",
    "ncfile.createDimension('Time', None)\n",
    "ncfile.createDimension('Percentile', None)\n",
    "\n",
    "SL_wTd_weighted_base_R0 = ncfile.createVariable('Antarctica', 'f4', ('Time','Percentile'))\n",
    "SL_wTd_weighted_base_R1 = ncfile.createVariable('EAIS', 'f4', ('Time','Percentile'))\n",
    "SL_wTd_weighted_base_R2 = ncfile.createVariable('Ross', 'f4', ('Time','Percentile'))\n",
    "SL_wTd_weighted_base_R3 = ncfile.createVariable('Amundsen', 'f4', ('Time','Percentile'))\n",
    "SL_wTd_weighted_base_R4 = ncfile.createVariable('Weddell', 'f4', ('Time','Percentile'))\n",
    "SL_wTd_weighted_base_R5 = ncfile.createVariable('Peninsula', 'f4', ('Time','Percentile'))\n",
    "p = ncfile.createVariable('Percentile', 'f4', 'Percentile')\n",
    "t = ncfile.createVariable('Time', 'f4', 'Time')\n",
    "\n",
    "t[:] = Time\n",
    "t.units = 'years'\n",
    "SL_wTd_weighted_base_R0[:,:] = SL_wTd_nos_base_R0_RCP45_cdf\n",
    "SL_wTd_weighted_base_R1[:,:] = SL_wTd_nos_base_R1_RCP45_cdf\n",
    "SL_wTd_weighted_base_R2[:,:] = SL_wTd_nos_base_R2_RCP45_cdf\n",
    "SL_wTd_weighted_base_R3[:,:] = SL_wTd_nos_base_R3_RCP45_cdf\n",
    "SL_wTd_weighted_base_R4[:,:] = SL_wTd_nos_base_R4_RCP45_cdf\n",
    "SL_wTd_weighted_base_R5[:,:] = SL_wTd_nos_base_R5_RCP45_cdf\n",
    "p[:] = Percentile\n",
    "\n",
    "SL_wTd_weighted_base_R0.units = 'meter'\n",
    "SL_wTd_weighted_base_R1.units = 'meter'\n",
    "SL_wTd_weighted_base_R2.units = 'meter'\n",
    "SL_wTd_weighted_base_R3.units = 'meter'\n",
    "SL_wTd_weighted_base_R4.units = 'meter'\n",
    "SL_wTd_weighted_base_R5.units = 'meter'\n",
    "\n",
    "p.units = 'percent'\n",
    "\n",
    "ncfile.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "200\n",
      "200\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x1d80228bda0>]"
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl8VNd9///XubNqNu0CJJDYBBiMMTbGCyZescE2Jl7iJUudxonbNEmTpkmbNGl+qfNts7VJm2/SJv7GztosThwn2MaxHa94B4JtdhCrFrSPNPt27/n9MQMIIUCAZkYSn6cf47vMnbkfXYm3js7ce67SWiOEEGJ8MYpdgBBCiJEn4S6EEOOQhLsQQoxDEu5CCDEOSbgLIcQ4JOEuhBDjkIS7EEKMQxLuQggxDkm4CyHEOGQv1o6rqqr01KlTi7V7IYQYkzZs2NCtta4+2XZFC/epU6eyfv36Yu1eCCHGJKXU/uFsJ90yQggxDkm4CyHEOCThLoQQ45CEuxBCjEMS7kIIMQ5JuAshxDgk4S6EEOOQhLsQQhSI1pq+J/aQOhjN+74k3IUQokCSO4NE1raSPhjJ+76GFe5KqeVKqR1KqSal1OeGeL5eKfW8UmqjUuodpdQNI1+qEEKMbeG1rRgBJ57zTjp6wBk7abgrpWzA94AVwFzgbqXU3EGbfRF4WGu9ELgL+O+RLlQIIcayVFuEZFMfvstqUfb8d5oMZw+LgSat9R6tdQr4FbBq0DYaCOTmS4G2kStRCCHGvsjaVpTTwLd4YkH2N5yBw+qA5gHLLcDFg7b5MvC0UuoTgBe4dkSqE0KIccDsTxJ7uwvfJZMwPI6C7HM4LXc1xDo9aPlu4Mda68nADcDPlFLHvLdS6j6l1Hql1Pqurq5Tr1YIIcagyKttoDW+y+sKts/hhHsLMGXA8mSO7Xa5F3gYQGv9GuAGqga/kdb6Aa31Iq31ourq/H+gIIQQxWYlTSJvtFNybhX2CnfB9juccF8HNCqlpimlnGQ/MF09aJsDwDUASqlzyIa7NM2FEGe96Pp2dCKDb2nhWu0wjHDXWmeAjwNPAdvInhWzRSl1v1Lq5txmfw98RCn1NvBL4INa68FdN0IIcVbRpibyShvOhgCu+sDJXzCChnUnJq31GmDNoHVfGjC/FVgysqUJIcTYFt/SjdmboOyGaQXft1yhKoQQeaC1JrK2FVulG/fcyoLvX8JdCCHyILU/RKo5jP/yOpQx1EmH+SXhLoQQeRBe24oqseO5cEJR9i/hLoQQIyzTHSextSd70ZLTVpQaJNyFEGKEhV9pBUPhu7S2aDVIuAshxAgyo2li6zvwnF+DLeAsWh0S7kIIMYKibxxEpy38Bb5oaTAJdyGEGCE6bRJ5tQ3XrHIcE71FrUXCXQghRkh0QydWJI3/isnFLkXCXQghRoI2NeGXWnBO8eOaXlrsciTchRBiJMQ3dWH2JvBfORmlCn/R0mAS7kIIcYa01oRfaMFeXYL7nMIPNTAUCXchhDhDiZ1B0u1R/FdMKcpQA0ORcBdCiDMUfqEZW6kTz/mj5yZEEu5CCHEGkvtDpPaG8C2djLKPnkgdPZUIIcQYFH6hGcNjx3vRxGKXchQJdyGEOE3pjiiJbb34LqvFcBVngLDjkXAXQojTFH6hBeUw8BZxgLDjkXAXQojTkAkmiL3diXfxRGxeR7HLOYaEuxBCnIbI2lZA4Vta/KEGhiLhLoQQp8iMpIiua8ezsAZ7mavY5QxJwl0IIU5R5NW27LC+o2CAsOORcBdCiFNgJTNEXjuIe24ljhpPscs5Lgl3IYQ4BdHX29HxDP4rR2+rHSTchRBi2KyUSfilFlyNZbjqA8Uu54Qk3IUQYpiirx/EiqYJXFNf7FJOSsJdCCGGwUqZhF/MtdqnFv9mHCcj4S6EEMMwllrtIOEuhBAnNdZa7SDhLoQQJzXWWu0g4S6EECc0FlvtIOEuhBAnNBZb7SDhLoQQxzVWW+0g4S6EEMc1VlvtIOEuhBBDOupq1DHWagcJdyGEGFL09YNYkbHZagcJdyGEOMbhVvvMsdlqBwl3IYQ4xuFW+7Vjs9UOEu5CCHGU8dBqh2GGu1JquVJqh1KqSSn1ueNsc4dSaqtSaotS6hcjW6YQQhTGeGi1A9hPtoFSygZ8D1gGtADrlFKrtdZbB2zTCHweWKK1DiqlavJVsBBC5Mt4abXD8Frui4EmrfUerXUK+BWwatA2HwG+p7UOAmitO0e2TCGEyL/x0mqH4YV7HdA8YLklt26gWcAspdQrSqnXlVLLR6pAIYQoBCueIfxC85g9r32wk3bLAGqIdXqI92kErgQmA2uVUudqrfuOeiOl7gPuA6ivH/u/GYUQ40f4hWaseIbSFdOKXcqIGE7LvQWYMmB5MtA2xDZ/0FqntdZ7gR1kw/4oWusHtNaLtNaLqqurT7dmIYQYUZn+JOFX2vCcX4Oz1lfsckbEcMJ9HdColJqmlHICdwGrB23ze+AqAKVUFdlumj0jWagQQuRL6Jn9oDWBZQ3FLmXEnDTctdYZ4OPAU8A24GGt9Ral1P1KqZtzmz0F9CiltgLPA5/VWvfkq2ghhBgp6Y4osQ0d+C6txV7hLnY5I2Y4fe5ordcAawat+9KAeQ18OvcQQogxo/+P+1BOG/6rppx84zFErlAVQpy1knv7SWzrxX/lFGxeR7HLGVES7kKIs5LWmv4n92ILOPEtqS12OSNOwl0IcVaKb+4hdSBMYFkDhtNW7HJGnIS7EOKso02L0FP7sNd48Fwwodjl5IWEuxDirBNd10GmO07p8qko21DXaY59Eu5CiLOKlTQJ/Wk/zqkB3OdUFLucvJFwF0KcVSJrW7AiaUpXTEOp8dlqBwl3IcRZxIykCL/UinteJa6GQLHLySsJdyHEWSP07AF0xqR0+dRil5J3Eu5CiLNCpjtO9I12vBdNxFHtKXY5eSfhLoQ4K/Q/vQ9lUwSuGT+Dg52IhLsQYtxLNYeJv9ONb2kdtoCz2OUUhIS7EGJcOzTMgOG143/X5GKXUzAS7kKIcS2xM0hyTz+Bq+sx3MMaCHdckHAXQoxb2tKEntyLrcKN9+JJxS6noCTchRDjVmxjJ+n2GKXXN6DsZ1fcnV1frRDirKHTFqFn9uOo81Ey/+y7Z7OEuxBiXIq81obZl6R0xVSUMX6HGTgeCXchxLhjxdKEnm/GNasc98zyYpdTFBLuQohxJ/RiCzqROSuGGTgeCXchxLiS6UsSeaUVz/k1OGt9xS6naCTchRDjSuiZ/aAhsOzsGGbgeCTchRDjRnJfP7ENHfiW1GKvcBe7nKKScBdCjAs6YxH83S5sZa6zZnCwE5FwF0KMC+EXmsl0xim7ZSaGy1bscopOwl0IMealO2OEnm+mZEE1JbPH731RT4WEuxBiTNNaE3x0F8ppo+ym6cUuZ9SQcBdCjGnxt7pI7Q1RumIqNv/oH6u9ZfsWLMvM+34k3IUQY5aVzNC3Zi+OyT68iyYWu5yTat7yDg9/+fOsf+zRvO9Lwl0IMWaFn2vGCqcou3nGqB8/JhLs5fH/+gZlk2o5/7ob8r4/CXchxJiU7ooRfrkVz4UTcNUHil3OCVmmyRPf+QapRJybP/15nCX5v0G3hLsQYszRWtP/+B6U3RgT48e88uuf0bJ1M8s+/DGqphTmHHwJdyHEmJPY3ktiR5DAtfWj/kPU3Rve5M0//JbzrlnO3HddXbD9SrgLIcYUnbboe3wP9poSfJfVFrucE+rv7OCP3/sWNVNncNUH7yvoviXchRBjSvilFsyeBGUrZ6BsozfCMuk0j337a2itWfl3n8PuLOxfGKP3yAghxCDpzhih5w5Qcl4V7sbRfROOF3/2Qzr27OL6v/kUZRMLf3NuCXchxJigLU3wd7krUVfOKHY5J7T9lRd566knuPCmW2i86NKi1CDhLoQYE6Lr2kntC1F247RR/SFqT0szT//g/1I7ey5L776naHVIuAshRj2zP0n/mr24ZpbhuXBCscs5rnQiwWPf/ip2l4ubPvUP2Oz2otUi4S6EGNW01gT/sBttaspvmYlSo/NKVK01z/zwe/S0NnPjJz6Lv6KqqPUMK9yVUsuVUjuUUk1Kqc+dYLvblVJaKbVo5EoUQpzN4pt7SGztoXRZA/bKkmKXc1xvP/Mk29Y+z2W3v5eG884vdjknD3ellA34HrACmAvcrZSaO8R2fuBvgTdGukghxNnJiqXpW92Eo9aL7/K6YpdzXK3bt/L8jx9g2sJFXHzrHcUuBxhey30x0KS13qO1TgG/AlYNsd1XgG8AiRGsTwhxFgv+YTdWNEP5bbNQttHZHRPp7eGxb3+VQHU1N3ziMxjG6LgL1HDCvQ5oHrDcklt3mFJqITBFa/34id5IKXWfUmq9Ump9V1fXKRcrhDh7xN7pIv52F4Fr6nHW+YpdzpAy6TSrv/1VUvE4q/7+C7i9o6fO4YT7UL8u9eEnlTKAbwN/f7I30lo/oLVepLVeVF1dPfwqhRBnFTOcou/3TTgm+/BfOaXY5RzX8z/+AQd3bmf533yKqvqpxS7nKMMJ9xZg4NGdDLQNWPYD5wIvKKX2AZcAq+VDVSHE6dBaE3xkF1bKouKO2aO2O+adZ//IO3/6I4tX3c6sSy4vdjnHGE64rwMalVLTlFJO4C5g9aEntdb9WusqrfVUrfVU4HXgZq31+rxULIQY12LrO0hs76V0+VQcNfkf9/x0tGzbzLMPfp+G8xay5K4PFLucIZ003LXWGeDjwFPANuBhrfUWpdT9Sqmb812gEOLskelN0Pf4HlzTS0ftiI/9ne2s/o9/o7RmAjd98h9HzQeogw3r8imt9RpgzaB1XzrOtleeeVlCiLONtjTB3+4EoPz2WaPytnnJWIxHv34/lmXy7n/4Em7f6PkAdTC5QlUIMSpEXmsjuaefspumY69wF7ucY1iWyZr/+01621pY+anPU1E7es+7Bwl3IcQokO6K0f/kPtxzKvAsGp1jx6z9xU/Y8+d1XP3BvxoVV6CejIS7EKKotKnpfXgnhtOg/NbGUTl2zOYX/sT6x37H+dffyPnX31jscoZFwl0IUVThF5tJN4cpWzUTW2D0DeXbsn0LzzzwXernn89V9xT2VnlnQsJdCFE0qbYIoWezd1byLBh9Fzb2tR9k9b//K6U1E1j5qc9h2EbnmTFDkXAXQhSFzlgEH96B4bFTtmpmscs5RjwS5ndf/xe01qP+zJihSLgLIYqi/6l9pNtjlN82C5vXUexyjpJJp1n97/9KqLOdVZ/5wqg/M2YoEu5CiIJL7AoSWduK95JJlMypKHY5R9Fa8/QPvkPLts1c/9FPMfmcc4td0mmRcBdCFJQZTdP78E7sNSWU3jCt2OUc49Xf/IJta59nyR3v55zLryx2OadNwl0IUTCHBwWLpam4aw6Gc3R9QLn5hT/x+iO/ZN4V13LxrXcWu5wzIuEuhCiY6Bvt2VvmLZ+Gs3Z0fUC5a91rPP2D71B/7gKW3fexUXm+/amQcBdCFES6PZodFGxWOb4lo2tQsAOb3+aJ//w6E6bPZNVnvoDNPro+4D0dEu5CiLzTaZOeX27HcNuoeM/oGhSsvWknv//m/6FsYi23fu7LOEtG5zDDp0rCXQiRd31P7CXTEaPijtnY/KPnKtSelgM88rUvU+IPcNsX7qfEHyh2SSNGwl0IkVfxzd1EXz+I7111uGeVF7ucw/o7O/jtv/4zhmFw+xe/gr+iqtgljSgJdyFE3mT6kvQ+sgtHnY/S66YWu5zDon1BfvuvXySdTHD7F75C+cTR9RnASJBwF0Lkhc5Y9P5qO5iairvnoOyjI24S0QiP/NuXiAR7ueUfv0x1w+g7134kjI6jLYQYV7TW9K3eTWpfiPJbZ+KoKil2SQCkkwke/fr99LQ0s+rT/0Td7HOKXVLeSLgLIUZc5NU2om+2479yCp7za4pdDgBmJs1j3/oqbTu3ccMnPsPU8y8sdkl5JeEuhBhRiR299D++B/fcSgLXNRS7HCB7i7wnv/st9r61gWUf+RizL728KHVordn0QgvJWDrv+xrWDbKFEGI40p0xen6xHcdELxV3zh4V57NrrXnuoe+z47W1LH3vBznvmuVFqcMyLV781U62rm0jk7JYeF19Xvcn4S6EGBFmNE33T7agHAaV98zFcBV/3BitNS/+7EHefuZJLlp1O4tX3V6UOjIpk6cf3MLet7u5cHkD5y+bkvd9SrgLIc6YNi16/3cbZl+S6vvOw17mLnZJ2WD/+UNseOL3LFy+kqV331OUOhKRNGv+5x0O7uln6Z2zOO+qyQXZr4S7EOKMHDozJrmnn/I7Z+NqKP5VnlprXvrfH7Hh8Uc5//obueqD9xVlILC+jhiPf/dtIsEk13/4XGZeWLgPlyXchRBnJPpqG9E32vFfORnvwuKfGaO1Zu0vf8L6x37HgmU3cPVf/nVRgr1tVx9rvv8OSilW/d1CJs0oLej+JdyFEKctsTNI3+EzY6YWuxy01rz8y5+w7g+/ZcGyFVzzoeIE+84323n2p9sIVJZw08fPo7S68IORSbgLIU5L9syYbTgmjI4zY7Rl8fxP/x8bn3yM865dzjUf+ijKKOzZ3lpr1q/Zx5uP7aW2sYwVfz0fd5HuDyvhLoQ4ZVYsTc9PtqDso+PMGMsyeeaB77L5+We48MZ3c8UH7i14i93MWLzw8+1sf72d2ZdM5Kr3z8FWxCEXJNyFEKdEmxY9/7uNzKEzY8qLe2aMmUmz5rvfYudra7n09ru59Pb3FjzYY6EUf3xgEweb+lm8chqLbpha9Ds5SbgLIYZNa03w0SaSu/spv2NW0c+MyaRSPPbtr7Lnz+t41/s/xEUrby14Dd0tYZ7473eIh9Nc9+F5NC6aUPAahiLhLoQYFq01/Wv2Elvfgf/qKXgvKG6IpRJx/vDNr3Bgyyau/fDHWLBsRcFr2LOxi2d+vBVXiZ1bP3MBNaPgNNBDJNyFEMMSfr6ZyNpWvJdOIrCsuGPGxCNhHv3al2nfvYsVH/s0c5deVdD9a63Z8OQ+3li9l5qpAW746Hy8pa6C1nAyEu5CiJOKvNpG6On9eBbWULZyRlH7k0PdXTzyb1+iv7OdlX/3ORoXX1bQ/adTJs//dBu71ncy6+IJXPX+OdgdxR9qYTAJdyHECUU3dNC3ejfuuZWU317cm1t3N+/nkX/7Eql4nNv+6X6mzJ1f0P33d8V48vub6WmLcOktM1h4XX3RPzg9Hgl3IcRxxbd0E3xkJ66ZZVTePQdlK16QtW7fyqPf+BfsThd3/cvXC34Hpb3vdPOnH21FKbjpYwtoOLeyoPs/VRLuQoghJZqC9PxiO846P5UfmItyFO+c7V3rXmPNf30Tf1U1t/3T/ZTWFO7DXMvSvLl6Dxv+uJ/qej/L7zuXwCi5s9SJSLgLIY6RPBCi56dbsVeVUPWX84p2kZLWmg1P/J4Xf/4QE2c0css//n94AoUboyUWSvHMQ1to2R5k7pJJLL1r1qjsXx+KhLsQ4iipg1G6H9qC4XdSfe98DE9xLp+3TJPnfvR93n7mSRovvowVH/s0DlfhLphq3RHk6Ye2kIxluOoDc5i7pLZg+x4JEu5CiMMy3XG6H9yE4TSovnc+toCzKHUkYzEe/8+vse/tP3PRzbex9O57CjZOjLY0G/6YHR+mtMbDyk+cT9VkX0H2PZKGFe5KqeXAfwE24Ida668Nev7TwIeBDNAFfEhrvX+EaxVC5FG6K0b3DzeDpam67zzsFcUZViDU3cmjX7+fnpYDLLvv4wW9LV4slOJPP9pC87YgjRdN4Mr3zcbpHptt4JNWrZSyAd8DlgEtwDql1Gqt9dYBm20EFmmtY0qpjwLfAO7MR8FCiJGXOhil+8FNoKHqw/Nx1BR+iFqA9qad/P6bXyGdTHLb5++n4bzzC7bv1p1Bnn4w1w3z/jmcs2TSqD3NcTiG8ytpMdCktd4DoJT6FbAKOBzuWuvnB2z/OvD+kSxSCJE/qeYwXQ9txnAYRQ32Tc89zbMP/Q/esnJu/+L/oWpKYa6CNU2L9U/sY8OT+8Z0N8xgwwn3OqB5wHILcPEJtr8XePJMihJCFEZyTx/dP96K4XNQ/eH5RemKyaRSPPfjH7Dp2aeon38+N/7tZwt2RkxfR4xnHtpC5/4wcy6bxNI7GsdsN8xgw/kqhvq7RA+5oVLvBxYBVxzn+fuA+wDq6+uHWaIQIh8SO3rp/tk27BWu7IenRRgbJdTVyepvfZWOPbtY/O73sOTO92MY+T/VUGvN1pfbePk3u7DZDa7/SGHvb1oIwwn3FmDKgOXJQNvgjZRS1wJfAK7QWieHeiOt9QPAAwCLFi0a8heEECL/Ypu66f3VdhwTPFR96FxsvsKfFbPvnY088Z1vYmUyrPrMF5l50SUF2W+0P8kL/7uDfe90M3lOOdfcMxdf+ega9GskDCfc1wGNSqlpQCtwF/DegRsopRYCPwCWa607R7xKIcSI0JYm/HwzoT/tx1kfoOqD8zBKCtsNoS2LN//wW1759c+pqJvMzX//BSpq6wqy76YNnbz4ix2kkyZLbp/JgqunFP32gPly0u+q1jqjlPo48BTZUyEf0lpvUUrdD6zXWq8Gvgn4gN/kPl0+oLW+OY91CyFOkZXI0PvwThJbe/AsrKH81pmoAl9tmYhG+ON//ye717/O7MvexfV/9bc43Pnv509E0rz4qx00re+kpsHPNR+cS8Ukb973W0zD+pWttV4DrBm07ksD5q8d4bqEECMo05ug+8ebyXTHKb1pOr4ltQU/za9t53ae+M43iPT2cNU9H2HhipsLUsPed7p54efbSUTTXLxqOhdcV49hK944OYUyPj4WFkIcV6o5TPdPtqBNTdW983HPKCvo/rVl8ebqR3jl1z/DX1nNnV/+OrWz5uR9v4lImld+u4vtr7dTWedj5d8uoGqyP+/7HS0k3IUYx6Lr2wk+2oSt1EX1B+cV/Bz2aF+QNd/9Dw5seotZly5l2Uc+htub33PItdbsWt/Byw/vIhnNcOGKBi66cRo2+/hvrQ8k4S7EOKRNi77H9xB97SCumWVU3D0Hm7ewA4DteO1lnn3wv0knkyy77xPMv/q6vHfDhHrivPiLnRzY0kNNg5+bP3nOuLgg6XRIuAsxzpjhFD3/u43UvhC+pXWULp9W0JtsxPr7ePbB/2HnG68wYXojKz72d1ROzu91LZal2fR8C6+v3gPA5e9pZP5VkzHG6ZkwwyHhLsQ4kmoO0/PzrZjRDBV3zcZzfmEvzDnUWk/FY1x+119w0c23Ydjye0ZOx74QL/1yB537w9TPq+SK984iUDn6b6aRbxLuQowDWmti6zoIrm7C5nNS89EFOOsK1x0xuLW+/KOfpKp+al73GY+keP33e9j6Shsev5Nl986lcdGEMT3Y10iScBdijDMjKYK/ayKxtSfbv37X7IJecVro1rplabaubeX1P+whlTBZcM0UFt84DWeBL8Ya7eRoCDGGxbf3EvztTqx4htIbpuG7vK5gV1yGe7p57kc/oGndawVrrbfv6efFX+6guzlC3ewylt45i8rasfOBqdaa+IYNuBobsZXmd3A0CXchxiAzkqLv8T3E3+rCnhsfxlmgkLMsk7eeeoKXf/UztGVx+d33cNHKW/PaWu/vivH67/fQtKETb5mL6z48j5kX1oyZLhhtWUSee46eHz5I/K23qPnsZ6i899687lPCXYgxRGtN7K0u+h/bjZU0CVxbj//KKagCncPdsaeJZ/7f9+jYs4upCy7gmnv/hrIJE/O2v0Qkzbo1e9n8YiuGTbHoxqksXFY/ZobltVIpQqtX0/PgQ6T27sUxeTIT/vmLlN16a973PTaOkBCCTDBB8NEmkjuDOOv9lN/WiGNCYcZHSSXivPrwz/nzmscoCQS48ZP/wOxLl+at5ZxJm7zzXAsb/rifdCLDOZdNYvHK6XjLxsbojWY4TN+vf03vT35KpqsL19xzqPvWf+C/7jqUvTCxK+EuxCinTU3k1TZCT+8DBaUrp+O7tLYgfevastjy4rO8/OufEe0LsuDa5Vx+9z15u8pUW5qd6zp4/Q+7ifQmaZhfyaW3zBgz/erpjk56f/oT+n71a6xoFO9ll1L79a/hufTSgnchSbgLMYql2iIEH9lFujWCe04FZe+egb2sMHdLOrD5HV782YN07tvNpMbZrPr7LzCpcXZe9qUtzZ63u1j3+D56WiNU1/u55p65TJ5dnpf9jbT4ps0Ef/4z+tc8CaZJYPlyKu79ECXz5hWtJgl3IUYhK2USevYAkbUtGB4HFXfPoeS8qoK0/jr2NLH2lz9h/zsb8VdVc+PffpbZl70rL/vWlmbPW12se2IvPa1RyiZ4WPah3Pnqo/zqUp1OE37mGXp/9nPiGzdieDyU33knFff8Bc4pU07+Bnkm4S7EKKK1JrG1l74n9mD2JvAsmkDZDdMwPPkfF6a3rYVXfv1zdr7+Mm5/gCv/4sMsWHYDdufInzM/VKhf+5dzabxowqgfMiDT00Pfb35L8Je/JNPRgaOhngn/9E+U3noLNt/o6T6ScBdilEgeCNG/Zi+pfSHs1SVUfaQww/OGe7p57be/YPMLf8LucHLJbXez6KZbcHlGfgRJbWl2b8yGem9blPKJ2Zb6zEWjO9S1ZRF74w2CDz9M+E/PQjqNd8kSJv7Ll/G9610oY/SNOCnhLkSRJfeHCD/fTGJ7L4bPQdktM/Eumpj3wb5i/X2se+x3bPzjY6A1C6+/iYtvuQNP6cj/QsmkTXa83s5bf2qmryOWDfV75zLzwtEd6pmeHvoffZTgb35Dev8BbKWlVLzvfZTd8R5c06cXu7wTknAXogi01iR39RF6vpnU3n4Mr53AdQ34ltRhuPI70FZ/ZzvrH3+Uzc89QyaTZt67rubS299Lac2EEd9XIpJm80stvPN8C/FwmpoGP9d9eB4zLqgZtaGuLYvYm28S/PWvD7fSPYsWUf3xT+C/bhmGa2ycjinhLkQBaUsT39JD+IVm0q0RbAEnpTdNx7t4IoYzv6HetX8vb/7ht+x4bS1KGcx911UsWnkrlXUj/+Ffx74Qm19qZde6Dsy0RcO5lSxcVk/trLLkdn/dAAAgAElEQVRRe1Vpuq2N/scep+93jxxppb/3vZTdeceob6UPRcJdiALQpkXsrS7CLzST6Ypjr3RTflsjnoU1eb26VGtN85Z3WP/4o+zduB6Hu4QLbljFhTeuwl9RNaL7SqdMdq3rYPOLrXQdCGN32ZhzyUTmXzmZygKOUHkqzEiE8FNP0796NbE33wStc630j+O/7rox00ofioS7EHmk0xbR9e2EX2zB7EvimOTNntY4vyqvp/qlkwm2vfwCG598jO7m/ZQESlly5wc4/7obcY/wGR3B9iibX2plx+vtJGMZKmq9vOuuWcy+eOKoHKlRp1JEXn2V0GOPE372WXQigaOhnqpPfJzSm2/GOXlysUscEaPvyAsxDlgpk+gb7YRfasEKp3A2BCh790zcs8vz2i0RbG9j03NPs+nZp0hEwlQ3TOP6v/4kc5ZcMaKnNJqmxb63u9n0YiutO4IYNsWMhdWce0Udk2aOvq4XnckQff0NQk+uIfynZ7H6+zFKSym95d2UrVqFe8GCUVfzmZJwF2KEaEuT2tdPdEMn8U3d6JSJa3op/rtm45pemr9xWFIpdr35Kpuee5rmLe+glMHMiy7hghU3U3fOvBHdb+/BKDvfaGfbaweJ9afwVbi4eNV05i6pxRMo3Bjyw6FNk9i69YSefJLw009jBoMYXi++a64msGIFviVLUHk4h3+0kHAX4gxleuJEN3QQ29iJGUyinDZK5lfhXTwRV0MgL/vUlkXrjq1sf+Uldrz6EolohNIJE7n8rr9g7hVXj2h/erQ/ya51Hex8s4OuA2GUgilzKzn3fXU0nFs5qs56sZJJYq+/TvjZ5wg//xxmVzeqpAT/VVcRuGEF3qVLx3Q/+qmQcBfiNFjxDPHN3UQ3dJDaFwIFrplllF43Ffe8yryc+aK1pnPvbra/+hI7Xl1LuKcLu9PFzIsuYf7V1zFl7vwRu5gmGUuz9+1udq7roGVbL1pDTYOfy9/TyMxFNXhLR09AZoJBIi++SOTZ54i88go6FsPwePAuXUpgxXJ8V1yBUTI67qmqteZA+ABlrjJKXXKzDiFGhXRXjPiWHpK7+0ju6QdTY68uIbB8Kp6FNdjzFHi9bS1sf+VFtr/yEsGDrRg2O1MXLGTpe+9hxqKLcbpHJrgS0Wyg7/5zJ83berFMjb/SzYUrpjJr8QTKJxZmeOGT0VqTamoisvZlIs89R+zPfwbLwl5TQ+nNK/Ffcw2eiy/GGAVdLlpr9vbvZUPnBjZ0bGB9+3o6Yh388yX/zB2z78jrviXchTiBTF+S+OZuYm91km6JAGCf4MF3WS0l86twTvGPeF+61pqe5v3sfONVdr35Kt0H9oFSTJk7n0Urb6Hx4iWU+Pwjsq9oX5L9m3vYvbGTlm1BLEvjr3Bz3tVTmHlBDTVTR/7rOx1mKET01deIvvIykbUvk2lvB8A1ezaVf3Uf/quvwX3uyH6+cDoyVoYdwR1saN/Anzv/zMbOjfQmegGodFdy4YQLuXjSxSytW5r3WiTchRhAm5pUa5jEjiCJrT2kD0YBcNT5KL1xGp7zqrHloYWeSaVo3bGV/Zveomnd6wTbWkAp6mbP5ap7PsKsSy7HV1F5xvuxLE3H3hD7N3Wzf0sP3c3ZX1j+SjcLrpnCjAtrqGkofqDrdJrEli1EX3uNyNqXib/9Npgmht+P99JL8X7sb/BdfjmOSZOKWmfSTLKpaxN/7vwzGzo28FbnW8QyMQDqfHVcXnc5F064kAtqLqAh0FDQ4yrhLs5q2tJkumIkd/eTaOojubsPnTRBgbMhQOmKabjnVuCoHtlBtCzLpHPvHvZveosDm96ibcc2MukUhs3G5HPmccGKm2lcfCnesjMfzzweSXFgSy/7N/dwYGsPyWgGZSgmTg9w6S0zaDi3kopab1EDXWcyJLZuJfbmm0TfeJP4hg1YsWxIus89l8r7PoJv6VJKzjuvYHcyOqZGrWmNtLK5ezPvdL/Dpq5NbOnZQtpKAzCzbCYrZ6zkgpoLuGDCBUz05u/2g8Mh4S7OKlYyQ2pfiOTeEKmWMKnmcDbMAVuFG8+Calwzy3DNKMPmHblhdrXW9LW3sX/T2xzY9BbNW94hEc22mqumNHDeshU0zD+fyefMw1lyZr9IkrE0B5v6aWvqo3VnH537Q6ChxO9g2vwq6s+tZMo5FbhH8Os7VVY0SnzTJuIbNxLbuJH4nzdiRbLHwzljBoFVN+O9+GI8ixdjr6goSo3BRJCtPVvZ1L2JTd2b2Ny9+XAXi8vm4pyKc3jvnPdy4YQLWVizkDJ3/kfwPBUS7mJcM6NpUgdCJPeFSO7pJ90aBgswFI5JXjwLa3BO9uGaXoa9YuTucKQti2D7Qdp37+TA5rc5sPltwt1dAPgrq5lx0SU0zD+f+nMXnHHrPBZK0barj7amPtp29dHTGgENhk1R0+Dnohum0jC/ipp6f1FugKG1Jt3aRnzjxmyYv7WR5PYdYFkAuBpnErjhBjwXL8a7eDH26uqC19cebWdb7za29W5je892tvVuoyPWAYBCMa10GkvrljK/aj7zq+fTWN6IwyjeL8fhkHAX44Y2Nen2KKnmEKn9YVIHQmR6EtknbQrnFD/+K6bgml6KsyEwYqcrHgryjr1NdOxponNPEx17d5OKZ7sVXF4v9fMWsHjVe2iYv4CyibWn3QWSSZt0N0fo2BeiY2+Izn0h+rviANgdBhNnlLL4pmnUziyjZloAR54HIxssG+StJLZsJbFlS/axdStmMAiA8ngoWXAeVX/9V5QsXEjJeedhK83vKYEDZawMB0IHsiHeu/3wtD/Zn60PxdTSqVww4QLOqTiHcyrPYV7lPPzOM/wAO5OC3j3QvQO6dkDjdVB7/gh8Rccn4S7GHG1pMj1xMh0x0u1R0p0xMp0x0l1xMDUAhs+Bsz6A56KJuOoDOCb7RiTMtWXR13GQjj1NtA8R5DaHg+r6qZxz+RXUTJvJxBmNVNU3YBinvm8zbdHTFqHrQJju5gid+0N0t0Swcl+jt9TJhGmlzL28ltrGMqrr/djyOAjZYFpr0gcOkNi69XCIJ7ZsxezPBiV2O66ZM/FdfRXuefPwLFyIq7GxIH3mGStDc7iZ3X27aeprYnffbnb372Zf/77DfeQOw0FjeSPX1l/LnIo5zKmYw6zyWXgcZ9AtlopC9y7o3gld27NB3r0zG+xW5sh2ngoJd3F20xkrG+BtUVJtEdJtEdIHo+h09k96FNjK3ThqPLhmVeCs9eKsD2Ard53xB4RmJk3wYBvdB/bRsXc3Hbt3nTTIKyfXYzvF8NJaE+1LETwYpfdglO7WbKAH26JYVjbInW4b1Q1+zr+2nglTA9RMDeArL8yFRFprMh0dJJt2k2zaRbKpiVTTbpJNTYf7yXE4cDc24r/uOtzz5uKeNw/XrFl5vxo0kUnQHG5mf2j/4QDf3bebvf17D4c4ZM9cmVE2g8vrLmdm2Uxml89metn00+taMTPQfwB690Jwb3batSPbKu87cGQ7ZYOK6VA9G85ZCdVzoGoWVDWCM//XDEi4i1HBSmTI9CYwexNkehOkO2OkWyOkO2KQCzjlsuGs8+G9eBKOSV4cEzzYazxn1CLXWhMPhwh1dhBsb6O3tZmelmZ6Wg4QbG9D5/qFRyLItaUJ9SSyId4eJXgwSrA9RvBglFTCPLxdid9Bdb2fhnMrqZ7ip7reR6CyJO/95TqdJtXSQmr/flL79pHavZvkriaSu3djhcOHt7NVVOCaMYPSm1fimjMH97x5uBsb8zZOS9pK0xpuZX9o/5FHODvtiHag0Ye3rfPVMb10OktqlzCjbAYzy2YyrXTaqbfGkxEI7jsS3gOnfc2gj3y/sLuhshEmL4aFH8gGePWcbLDbi3chlYS7KAhtWph9STK9CTLBBGZvkkxvnEwwidkbx4pmjtre8Dpw1Pnwz67AUevFWefDVu4+rYBLJxL0d7bT39VBf+fARzv9nR2kE/HD2yrDoGxiLZV1U2i8eAmVdZOpnNIw7CA3TYtIb4JQV4JQT5xQd5xQd4K+zhh97TEyh/7iADwBJ+WTvMy+ZBLlEz1UTPJSPslLid+Rt9MSrViMdFsb6bY2UvsPZIM890i3toJ5JLQOh/jKm3DOnIlrxkxcjTNH/OwVS1t0x7tpi7TRGmnlYPQgrZFW2iJtNIebaYu0YQ4I04AzwNTAVBZNWERDoIGGQAP1gXqmBU4hxBMh6G/OBnV/c7bFfWi57wBEO4/e3l0GFdOg9gI49zYon5ZdLp8G/klwCsM+JDMmWoPbkd/PQ5TW+uRb5cGiRYv0+vXri7JvMbK0aWGGU5ihFFY4jRnJzh8KczOYwOxPwsAfNUNhK3Nhr3Bjr3Bjq3Bjr3RjryjBXu7C8Azvz+VMOk002EO4t4dIbw+Rnm4iwR7Cvb2Euzrp7+og1t931GvsLhel1RMorZlA6YSJlFZPpLRmAmUTJlI2qQ674/j7TqdMon1JYv1JIsEkoe5ENsB74oS6EkSCCQb+kzJsCn+lm9LqEsonebMBPtFL+UTPiJ+KqC0Ls6+PTGcn6baDpFtbs0E+YHrog83D9Xk8OKY24Gw49JiKc2oDzqlTsZef+Tn2lrboTfTSEeugK9ZFZ6zz8ONg9CBtkTYORg8e1YUCUOGuoNZbS52/7nCANwQaaPA3nPiUQ60h1gvhg0ceoQHz/a3ZLpVE/9GvszmhdDKUToGy+iPBXTENyqdCycmPRdq06Imk6Aglso9wks5Qgvb+I/MdoQTBWJqv3zafOy+qP40jCkqpDVrrRSfbTlru4qSsZAYzmCTTl8TsS2RDO5jEPLQcSh0d3AAKDL8Te7kb17RSbOXZILeV58I84DruDaC11qQScRKRMIlIhFh/H+He7mx45x6Hwjwe6j/m9XanC39lJf7KKmZcuJjSmokEaiZQVpMN8ZLAscPvZlImsXCK7uYY0b4k0f4k0b5Ubpp79KdIxTPH7M8TcBKocjNpZimBqokEqtwEqkoIVJXgLXOd8aiJ2rIwe3vJdHWR6ewk09VFOjfNrstNu7shfXRIKpcLR20tjro63HPn4qiryy3X4pwyBVtV1Wn9lZAyU/Qmeo96dMY6jwrwjlgHPfEeMnrQX2XKoMpdxQTvBOZWzuXahmup9dZS66ulzlfHRO/Eo1vgWmc/qIx1Q3cTRLuz89EuCHccHeThdjBTxxbsqYLAJCitg/pLskFeNgVK67NTb80xre+MadEfTxMMp+nr6CUYSxOMpeiJpOiOJOkKJ4+aBmPpY3ZrMxTVPhcTAi6mVHhYNLWcCX4382rzf4aQtNzPYlprdNLMtrJDKaxc6zuTC/BDIa4TgwLNprCVurCXubCVu7Mt8FIXRsCJze/E5ndgeB1gKFLxQyGdDep4JEQiEjlqXSIaJh4OH7XOMo8NUYCSQCm+ikr8FZX4yivxVVTiq6zEf2i+ogq7s4RkLEM8kiYRSeWmaRLR7DR+1HyKRCRNJmUdsy/DpvCUOvGWuvCWuXLT3HKpC0+Zk0BlCY5TvKG1lUxiBoOYwSCZ3l7MYB9mby9m34DlYBAz2EsmNz+wu+Twt6G0FHtNNfbqGuzV1Ufma6pxTJqEo64OW2XlScNba008EyeUChFKhehL9NGb6KUn0UNvopdgInh0kMd7CafDQ76Xz+GjxlMz9KOkhpqSSiqVA3sqlm09J0PZaTyYDetoN8R6jp3PJIYu3uHNhrY/9xg4n1tOuavpTxv0x9P0x9OEctNDj2AsRV8uuIOxNH2xFMFoitDgn/sBPE4b1X4XVT4X1T4XVX4n1T43VX4nE/xuJgTcTAi4qPS5sI3wZyXDbbkPK9yVUsuB/wJswA+11l8b9LwL+ClwIdAD3Km13nei95Rwzx9taaxYGjOcPhzYZjgX3oOWdfrYUFMuG/ZyF7aybHAbZU4oUWScGVK2JEkrSiIaIT4woI8K8CNBfegDyaE4XG7cfj9un58Snw+314/L58Pp9uFwebA5PBj2EgybB7vTj2H3k0kpkvEMqdxj8HwymiGdPDYID3GW2HH7HJT4HNmpNzt1+xyU+J1HBbjb6ziqj19rjU6n0bEYVjyOFYthhcOY4TBmKHR43gqFMcOh3DQ8YH0IMxxGJ44TVEphKyvDVl6Orbwce0U5trJybBUV2fAeGODVVRguV/avHCtFNB0lmo4SS8eIZWJHLR8K7VAydGR+0HLGGjrIDGVQ5iqjwl1BhbucCmcpFQ4fFTY3FcpJBXYqgHLTosa08KTj2bBOhI4O70PLqaF/KRxmLwFvFXir0J4qrJJK0q4KUu4K4o4KEo4yoo4y+o0yerSf3rST/liavkGBPTDAY6nj/zwA+Fx2yjwOyj3Ow9Nyj4Oy3LTc6zwy73FS4XXidRWv02PEwl0pZQN2AsuAFmAdcLfWeuuAbf4GOE9r/ddKqbuAW7TWd57ofSXch0dnLKx4BiuWxoodPTVjGXQsgxlLD1iffe7Q+d5HcYB2KyyXxrSbZOxpUiRJEidhRoilw0RTfcTiIVKxGMlYlGQsdtQHjkOxu9w43V4cLi8Otxe7IxfMjhIMW/ahjBKybQA3WruwLCdmxiCTMsmkLDJpk3TKIpMyj+3iGcQwFM4SO84SW25qx+Wy4XAqXG6Fywlup8bpsHDZTVy2DE6VxkkKknF0PI4Vi2cDOh4btBxHx2NHLWe3SWDF40O2oI89IHZsgQCG34/y+8DnAZ8Xy1uC6XWT8bpIB0pI+d0kfE7iXjsxv52oS5HQKRJmgkQm9zCPTJOZJPFM/JjwHtztMRSFwm8vIWBzEzBcBAwHAWUngEEARcCCgNYETJOyTIbKTJqKVILSdBxbKg7paPYMEuvYroeBtLKRcfhJO/yk7D6Sdj8Jw0vc5iOmvESUlzBeQpQQ0h76zRJ6rRJ6TA8dpp/etINE2iSWMomnTYbbsVDisFHmcVBa4iBQkp0OfJzoOYetcNcGjISR7HNfDDRprffk3vhXwCpg64BtVgFfzs3/FviuUkrpYvX55JHWGqzsh4iYGp2x0KYGMzvVGRMzlcFKm1iHpvF0dj6RwUqZ6JSJlcxNUyY6aaLTFjqtIa0ho1EmKBMM6/g/eBYWaVKkdYqUlSBlxkmYMRLpCLF0P/FMhIQZIW5GSZgRzOOEgFJ2DJsLZeQeyolSblABDJsTp9eF1k7ADcqNMtygSnLbuFDKhgUk09nH0e+tsSsLm2FhUyYGcWwqgg0TgwwuncGjMxhkMKw0Np3GZiWxW4nsI5PAZsaxZ+LYkhHsyQhGMoZKpdDJNKRSkE6jrKF/1JK5x3G/nwpMlx3Tacd02cg47WScBhmnjYxLkfIZpJx2kg4fKYePpAPiDk3CoYnZNVGXRcQFIadJyGnR7zKJGhnShDEJnfBn6XBxPYOOmQY3CjcKlwaXBrfWuLWmRGuqLAuvaeKxTLxmBp9l4tEWXkvjtSw8Oje1NF5t4bcsfJbmeD9JGeUgaZSQVG4Syk0CF3Fc7MFFTPuIahdR7SJkuQhaHoKmm5A+FNBewngIaQ9hPMRwQfz43RAlDhslTtuxU4+NWoeNmU4bbqcNT26922HDM8T2Hqf9qIB2FvDirbFiOOFeBzQPWG4BLj7eNlrrjFKqH6gEukeiyIHWfPybTHPNyS0pjv4xUhzpXlTH/P+oZTXkq4+/pBQGNgxlG5HT1NJWClOnyVhpMjqNaaXJ6NSR5dxzSStOyoyTtBKkzCQpnSJppknpDKbWoBwo5QTlAA7NO3Pra8A2GWVzYCgndhRKGxjawGYpDA02C2xoDCuDkclkp1YaZWUwdHbesOLYzP5s+JopbFYKw0xhs9K5aQqbmcI4PE0fXjb0kW4ZU4FpgGnLTQc9LAMyuflkbjm7vcJUkLZD2gVpT3Y+Zc+ts0HKbmTnc+szttzztkPrFBkbJJyQdGQfCUf2uew3OoNdp7FpjQ2wa409N3VqjVODIzfv4Oh1Xq0p0xpnWuNMcfh5x4DXOnPh7LYs7JbCoQ3s2sCmDeyWgU3bsFkGNsuOxkYGGynspLQjO8VBGjvJQetS2IloB725+WRumtZHnj80TWoHCZzElYu0KiFlKyFjlOBwOHDZbbjsBi6Hgdtuw+UwDq9zO3LP2Q1cDhsVdoNJg9Zl57Ov8xwO4EPhbKckt81ouiXfeDeccB/quzHEuREn3Qal1H3AfQD19ad3GpDptuhL9hx5c53936FlddSSHlSIHviSo7Y89LzmyBejj9peY2FhaRNLW1jaIrvm0LKJldtGa51dl/vPtExMbWLqDKZOY2kThT5cj0Jnzy7J7S27rDG0BqzccnZqw8Jrs/BiAhZaZZ8DjVYWWlmAiTZMIIM2MmhlolV2GFuUwlIcfqQNhVYKrbJfuFagjezyofUD11k2haUU2ji0ToFNZedtBuBGGx60ocDIflHaMNCGQimFQmFw5FenkZtTh//jyLLm8GvUgG3JvUcJihLA0AaGMlDYMLChlHHkFzHZhw0bqEPPZ9dln7ejdHYdyoZlGGgMMGzZ74QysDDQKrd+0HL2GNnRhh1sDjAcaMMJNnv2YTgwbQ7iNidxw45hs2MYBoZS2AwwlMrNKwxDYSiwqUPzR7YpUQpfbp2hGLC9ym3PkfdRCodNYbcZOAyFw2Zgt2WnDpsx4h/widFpOOHeAkwZsDwZaDvONi1KKTtQCvQOfiOt9QPAA5Dtcz+dglf++z+ezsuEEOKsMpyOqnVAo1JqmlLKCdwFrB60zWrgntz87cBz47G/XQghxoqTttxzfegfB54ieyrkQ1rrLUqp+4H1WuvVwIPAz5RSTWRb7Hfls2ghhBAnNqyTNbXWa4A1g9Z9acB8AnjPyJYmhBDidMn5Q0IIMQ5JuAshxDgk4S6EEOOQhLsQQoxDEu5CCDEOFW3IX6VUF7D/NF9eRR6GNhgho7U2qevUSF2nbrTWNt7qatBaV59so6KF+5lQSq0fzqhoxTBaa5O6To3UdepGa21na13SLSOEEOOQhLsQQoxDYzXcHyh2AScwWmuTuk6N1HXqRmttZ2VdY7LPXQghxImN1Za7EEKIExg14a6Uekgp1amU2jxg3QKl1GtKqU1KqceUUoEBz31eKdWklNqhlLp+wPrluXVNSqnPFbIupdQypdSG3PoNSqmrB7zmhVxdb+UeNQWsa6pSKj5g398f8JoLc9s3KaW+o87wNlOnWNf7BtT0llLKUkqdn3tupI/XFKXU80qpbUqpLUqpT+bWVyilnlFK7cpNy3PrVe54NCml3lFKXTDgve7Jbb9LKXXP8faZx9rel6vpHaXUq0qpBQPea1/uOL+llDqjmxSfRl1XKqX6B3zPvjTgvUbs3+Vp1PXZATVtVkqZSqmK3HOFOF7vyS1bSqlFg16TvxzTWo+KB/Au4AJg84B164ArcvMfAr6Sm58LvA24gGnAbrLDEdty89MBZ26buQWsayFQm5s/F2gd8JoXgEVFOl5TB2436H3eBC4lewOkJ4EVhapr0OvmA3vyeLwmARfk5v1kb/o+F/gG8Lnc+s8BX8/N35A7Hgq4BHgjt74C2JOblufmywtc22WH9gmsOFRbbnkfUFWkY3Yl8PgQ7zOi/y5Pta5Br11J9n4ThTxe5wCzB/9Mk+ccG5F/OCP1YFAIASGOfC4wBdiam/888PkB2z1FNqAuBZ4asP6o7fJd16DXKLK3Pnbllo/6xhb4eB213aAfxu0Dlu8GflCk4/VvwL8OWB7x4zVof38AlgE7gEkDjseO3PwPgLsHbL8j9/xRx2jwdoWobdC25RzdiNjHCIXVaRyzKxk63PPy7/I0j9cvgI8U8ngNWD7qZ3rwcWCEc2zUdMscx2bg5tz8ezhyu7+hbtpdd4L1haproNuAjVrr5IB1P8r9+ffPZ9r9cRp1TVNKbVRKvaiUWppbV0f2GB1SzON1J/DLQevycryUUlPJ/pX1BjBBa30QIDc91P1TlJ+xYdY20L1k/8I4RANPq2y34H1FqOtSpdTbSqknlVLzcuvydsxO5XgppTzAcuCRAasLcbyOJ68/Y6M93D8EfEwptYHsnzmp3Prj3ZB7WDfqzmNdAOR+qL8O/NWA1e/TWs8HluYeHyhgXQeBeq31QuDTwC9Utt97tByvi4GY1nrzgNV5OV5KKR/Zf9yf0lqH/v/2zt+1iiAIwN9qXhVEjRoMBNFX2AQUVFKoiDYiERFJYyUaG0HBPyD+AaKNYuxSBQQLUSs7wUYJasREBI15CmKUBETwRxEsxmLnyN7xIl7e2zUc88Fxe3t7e/PmZufuZu6xf2vapC6qjZWQLWt/CO/cw4mF94nILny45rxz7kBCuV7g/xq/E7gB3M+6aNK2ZZ2V1Rc+JPNYRML5nf+nvqLa2Ip27iLyRkQOi8hu/FNdQ3ctNWn3v0zmHVMunHO9wD3glIg0gmNmdf0D/2rYn0ouEVkQka9antD67Xh99QZdJNeXcpLCU3sMfTnnavhBd0tE7mr1nHOuR/f3APNan9TGSsqGc24HMAocz64tgIh81vU83g5b0lsZuUTku4j81PIDoOac20gEnZXVl9LMzlLoayni2liMWFMLMaqt5GO13bpeBYwBQ7rdRz4R8R6fhOjQ8jYWExF9CeVap+ccLBzfgcb1gBpwBziXUK5NwGot14FZoEu3n+EThllCdSCVXEHdJ6AeU1/6+8aAa4X6q+STcFe0fJR8QvWp1ncBH/Cx7vVa7kos2xZgBthbaN8JrAnKT4AjCeXazGJupR/4qH20dVyWlUu31+Lnd+5Mra9g/yPyMfeofqylQdzOBX9H/QL81sF+FriIzzhPA5czw9H2w/gnwLcEX3jgv3KY1n3DKeUCLgG/gJfB0q2GMwFMAa+B66izTSTXoJ53Ev/qfCzoZw8+Jt4ARkIdJ7qOB4HxQh8x9LUf/2o7FVybAWAD8BB4p+vspueAm6qXV4VBOYR3rjPAmTbYWFnZRpUn3voAAAB5SURBVIFvQdvnWl/XazypemvJ/pch14XAzsYJbj60cVyWlUuPOQ3cLvSTSl8ndCwsAHPkk6XR/Jj9Q9UwDKOCrOiYu2EYhrE8zLkbhmFUEHPuhmEYFcScu2EYRgUx524YhlFBzLkbhmFUEHPuhmEYFcScu2EYRgX5A9BH4YvyJunIAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "\n",
    "print(len(Time))\n",
    "print(len(SL_wTd_nos_base_R0_RCP45_cdf[0:-1,500]))\n",
    "plt.plot(Time,SL_wTd_nos_base_R0_RCP45_cdf[0:-1,10])\n",
    "plt.plot(Time,SL_wTd_nos_base_R0_RCP45_cdf[0:-1,50])\n",
    "plt.plot(Time,SL_wTd_nos_base_R0_RCP45_cdf[0:-1,166])\n",
    "plt.plot(Time,SL_wTd_nos_base_R0_RCP45_cdf[0:-1,500])\n",
    "plt.plot(Time,SL_wTd_nos_base_R0_RCP45_cdf[0:-1,833])\n",
    "plt.plot(Time,SL_wTd_nos_base_R0_RCP45_cdf[0:-1,950])\n",
    "plt.plot(Time,SL_wTd_nos_base_R0_RCP45_cdf[0:-1,990])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.29786622524261475\n",
      "0.4696774184703827\n",
      "0.8328699469566345\n"
     ]
    }
   ],
   "source": [
    "print(SL_wTd_nos_base_R0_RCP45_cdf[-1,833])\n",
    "print(SL_wTd_nos_base_R0_RCP45_cdf[-1,950])\n",
    "print(SL_wTd_nos_base_R0_RCP45_cdf[-1,990])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}