{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import netCDF4 as nc\n",
    "import matplotlib.pylab as plt\n",
    "import imp\n",
    "import csv\n",
    "import pandas as pd\n",
    "from io import StringIO"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# AISM_VUB\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_AISM_VUB_RCP26.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_AISM_VUB_R0_RCP26 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_AISM_VUB_R1_RCP26 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_AISM_VUB_R2_RCP26 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_AISM_VUB_R3_RCP26 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_AISM_VUB_R4_RCP26 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_AISM_VUB_R5_RCP26 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_AISM_VUB_SU_RCP26 = SL_wTd_nos_base_AISM_VUB_R1_RCP26+SL_wTd_nos_base_AISM_VUB_R2_RCP26+SL_wTd_nos_base_AISM_VUB_R3_RCP26+SL_wTd_nos_base_AISM_VUB_R4_RCP26+SL_wTd_nos_base_AISM_VUB_R5_RCP26\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# BISI_LBL\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_BISI_LBL_RCP26.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_BISI_LBL_R0_RCP26 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_BISI_LBL_R1_RCP26 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_BISI_LBL_R2_RCP26 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_BISI_LBL_R3_RCP26 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_BISI_LBL_R4_RCP26 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_BISI_LBL_R5_RCP26 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_BISI_LBL_SU_RCP26 = SL_wTd_nos_base_BISI_LBL_R1_RCP26+SL_wTd_nos_base_BISI_LBL_R2_RCP26+SL_wTd_nos_base_BISI_LBL_R3_RCP26+SL_wTd_nos_base_BISI_LBL_R4_RCP26+SL_wTd_nos_base_BISI_LBL_R5_RCP26\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# CISM_NCA\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_CISM_NCA_RCP26.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_CISM_NCA_R0_RCP26 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_CISM_NCA_R1_RCP26 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_CISM_NCA_R2_RCP26 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_CISM_NCA_R3_RCP26 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_CISM_NCA_R4_RCP26 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_CISM_NCA_R5_RCP26 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_CISM_NCA_SU_RCP26 = SL_wTd_nos_base_CISM_NCA_R1_RCP26+SL_wTd_nos_base_CISM_NCA_R2_RCP26+SL_wTd_nos_base_CISM_NCA_R3_RCP26+SL_wTd_nos_base_CISM_NCA_R4_RCP26+SL_wTd_nos_base_CISM_NCA_R5_RCP26\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# FETI_VUB\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_FETI_VUB_RCP26.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_FETI_VUB_R0_RCP26 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_FETI_VUB_R1_RCP26 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_FETI_VUB_R2_RCP26 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_FETI_VUB_R3_RCP26 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_FETI_VUB_R4_RCP26 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_FETI_VUB_R5_RCP26 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_FETI_VUB_SU_RCP26 = SL_wTd_nos_base_FETI_VUB_R1_RCP26+SL_wTd_nos_base_FETI_VUB_R2_RCP26+SL_wTd_nos_base_FETI_VUB_R3_RCP26+SL_wTd_nos_base_FETI_VUB_R4_RCP26+SL_wTd_nos_base_FETI_VUB_R5_RCP26\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# GRIS_LSC\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_GRIS_LSC_RCP26.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_GRIS_LSC_R0_RCP26 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_GRIS_LSC_R1_RCP26 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_GRIS_LSC_R2_RCP26 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_GRIS_LSC_R3_RCP26 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_GRIS_LSC_R4_RCP26 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_GRIS_LSC_R5_RCP26 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_GRIS_LSC_SU_RCP26 = SL_wTd_nos_base_GRIS_LSC_R1_RCP26+SL_wTd_nos_base_GRIS_LSC_R2_RCP26+SL_wTd_nos_base_GRIS_LSC_R3_RCP26+SL_wTd_nos_base_GRIS_LSC_R4_RCP26+SL_wTd_nos_base_GRIS_LSC_R5_RCP26\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# IMAU_VUB\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_IMAU_VUB_RCP26.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_IMAU_VUB_R0_RCP26 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_IMAU_VUB_R1_RCP26 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_IMAU_VUB_R2_RCP26 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_IMAU_VUB_R3_RCP26 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_IMAU_VUB_R4_RCP26 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_IMAU_VUB_R5_RCP26 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_IMAU_VUB_SU_RCP26 = SL_wTd_nos_base_IMAU_VUB_R1_RCP26+SL_wTd_nos_base_IMAU_VUB_R2_RCP26+SL_wTd_nos_base_IMAU_VUB_R3_RCP26+SL_wTd_nos_base_IMAU_VUB_R4_RCP26+SL_wTd_nos_base_IMAU_VUB_R5_RCP26\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# ISSM_JPL\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_ISSM_JPL_RCP26.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_ISSM_JPL_R0_RCP26 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_ISSM_JPL_R1_RCP26 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_ISSM_JPL_R2_RCP26 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_ISSM_JPL_R3_RCP26 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_ISSM_JPL_R4_RCP26 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_ISSM_JPL_R5_RCP26 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_ISSM_JPL_SU_RCP26 = SL_wTd_nos_base_ISSM_JPL_R1_RCP26+SL_wTd_nos_base_ISSM_JPL_R2_RCP26+SL_wTd_nos_base_ISSM_JPL_R3_RCP26+SL_wTd_nos_base_ISSM_JPL_R4_RCP26+SL_wTd_nos_base_ISSM_JPL_R5_RCP26\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# ISSM_UCI\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_ISSM_UCI_RCP26.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_ISSM_UCI_R0_RCP26 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_ISSM_UCI_R1_RCP26 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_ISSM_UCI_R2_RCP26 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_ISSM_UCI_R3_RCP26 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_ISSM_UCI_R4_RCP26 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_ISSM_UCI_R5_RCP26 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_ISSM_UCI_SU_RCP26 = SL_wTd_nos_base_ISSM_UCI_R1_RCP26+SL_wTd_nos_base_ISSM_UCI_R2_RCP26+SL_wTd_nos_base_ISSM_UCI_R3_RCP26+SL_wTd_nos_base_ISSM_UCI_R4_RCP26+SL_wTd_nos_base_ISSM_UCI_R5_RCP26\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# MALI_LAN\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_MALI_LAN_RCP26.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_MALI_LAN_R0_RCP26 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_MALI_LAN_R1_RCP26 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_MALI_LAN_R2_RCP26 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_MALI_LAN_R3_RCP26 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_MALI_LAN_R4_RCP26 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_MALI_LAN_R5_RCP26 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_MALI_LAN_SU_RCP26 = SL_wTd_nos_base_MALI_LAN_R1_RCP26+SL_wTd_nos_base_MALI_LAN_R2_RCP26+SL_wTd_nos_base_MALI_LAN_R3_RCP26+SL_wTd_nos_base_MALI_LAN_R4_RCP26+SL_wTd_nos_base_MALI_LAN_R5_RCP26\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# PISM_AWI\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_PISM_AWI_RCP26.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_PISM_AWI_R0_RCP26 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_PISM_AWI_R1_RCP26 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_PISM_AWI_R2_RCP26 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_PISM_AWI_R3_RCP26 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_PISM_AWI_R4_RCP26 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_PISM_AWI_R5_RCP26 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_PISM_AWI_SU_RCP26 = SL_wTd_nos_base_PISM_AWI_R1_RCP26+SL_wTd_nos_base_PISM_AWI_R2_RCP26+SL_wTd_nos_base_PISM_AWI_R3_RCP26+SL_wTd_nos_base_PISM_AWI_R4_RCP26+SL_wTd_nos_base_PISM_AWI_R5_RCP26\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# PISM_DMI\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_PISM_DMI_RCP26.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_PISM_DMI_R0_RCP26 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_PISM_DMI_R1_RCP26 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_PISM_DMI_R2_RCP26 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_PISM_DMI_R3_RCP26 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_PISM_DMI_R4_RCP26 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_PISM_DMI_R5_RCP26 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_PISM_DMI_SU_RCP26 = SL_wTd_nos_base_PISM_DMI_R1_RCP26+SL_wTd_nos_base_PISM_DMI_R2_RCP26+SL_wTd_nos_base_PISM_DMI_R3_RCP26+SL_wTd_nos_base_PISM_DMI_R4_RCP26+SL_wTd_nos_base_PISM_DMI_R5_RCP26\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# PISM_PIK\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_PISM_PIK_RCP26.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_PISM_PIK_R0_RCP26 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_PISM_PIK_R1_RCP26 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_PISM_PIK_R2_RCP26 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_PISM_PIK_R3_RCP26 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_PISM_PIK_R4_RCP26 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_PISM_PIK_R5_RCP26 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_PISM_PIK_SU_RCP26 = SL_wTd_nos_base_PISM_PIK_R1_RCP26+SL_wTd_nos_base_PISM_PIK_R2_RCP26+SL_wTd_nos_base_PISM_PIK_R3_RCP26+SL_wTd_nos_base_PISM_PIK_R4_RCP26+SL_wTd_nos_base_PISM_PIK_R5_RCP26\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# PISM_VUW\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_PISM_VUW_RCP26.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_PISM_VUW_R0_RCP26 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_PISM_VUW_R1_RCP26 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_PISM_VUW_R2_RCP26 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_PISM_VUW_R3_RCP26 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_PISM_VUW_R4_RCP26 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_PISM_VUW_R5_RCP26 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_PISM_VUW_SU_RCP26 = SL_wTd_nos_base_PISM_VUW_R1_RCP26+SL_wTd_nos_base_PISM_VUW_R2_RCP26+SL_wTd_nos_base_PISM_VUW_R3_RCP26+SL_wTd_nos_base_PISM_VUW_R4_RCP26+SL_wTd_nos_base_PISM_VUW_R5_RCP26\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# PS3D_PSU\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_PS3D_PSU_RCP26.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_PS3D_PSU_R0_RCP26 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_PS3D_PSU_R1_RCP26 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_PS3D_PSU_R2_RCP26 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_PS3D_PSU_R3_RCP26 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_PS3D_PSU_R4_RCP26 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_PS3D_PSU_R5_RCP26 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_PS3D_PSU_SU_RCP26 = SL_wTd_nos_base_PS3D_PSU_R1_RCP26+SL_wTd_nos_base_PS3D_PSU_R2_RCP26+SL_wTd_nos_base_PS3D_PSU_R3_RCP26+SL_wTd_nos_base_PS3D_PSU_R4_RCP26+SL_wTd_nos_base_PS3D_PSU_R5_RCP26\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# SICO_UHO\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_SICO_UHO_RCP26.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_SICO_UHO_R0_RCP26 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_SICO_UHO_R1_RCP26 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_SICO_UHO_R2_RCP26 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_SICO_UHO_R3_RCP26 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_SICO_UHO_R4_RCP26 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_SICO_UHO_R5_RCP26 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_SICO_UHO_SU_RCP26 = SL_wTd_nos_base_SICO_UHO_R1_RCP26+SL_wTd_nos_base_SICO_UHO_R2_RCP26+SL_wTd_nos_base_SICO_UHO_R3_RCP26+SL_wTd_nos_base_SICO_UHO_R4_RCP26+SL_wTd_nos_base_SICO_UHO_R5_RCP26\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# UA_UNN\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_UA_UNN_RCP26.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_UA_UNN_R0_RCP26 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_UA_UNN_R1_RCP26 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_UA_UNN_R2_RCP26 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_UA_UNN_R3_RCP26 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_UA_UNN_R4_RCP26 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_UA_UNN_R5_RCP26 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_UA_UNN_SU_RCP26 = SL_wTd_nos_base_UA_UNN_R1_RCP26+SL_wTd_nos_base_UA_UNN_R2_RCP26+SL_wTd_nos_base_UA_UNN_R3_RCP26+SL_wTd_nos_base_UA_UNN_R4_RCP26+SL_wTd_nos_base_UA_UNN_R5_RCP26\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "SL_wTd_nos_base_RCP26 =np.vstack([SL_wTd_nos_base_AISM_VUB_SU_RCP26,SL_wTd_nos_base_BISI_LBL_SU_RCP26,SL_wTd_nos_base_CISM_NCA_SU_RCP26,SL_wTd_nos_base_FETI_VUB_SU_RCP26,SL_wTd_nos_base_GRIS_LSC_SU_RCP26,SL_wTd_nos_base_IMAU_VUB_SU_RCP26,SL_wTd_nos_base_ISSM_JPL_SU_RCP26,SL_wTd_nos_base_ISSM_UCI_SU_RCP26,SL_wTd_nos_base_MALI_LAN_SU_RCP26,SL_wTd_nos_base_PISM_AWI_SU_RCP26,SL_wTd_nos_base_PISM_DMI_SU_RCP26,SL_wTd_nos_base_PISM_PIK_SU_RCP26,SL_wTd_nos_base_PISM_VUW_SU_RCP26,SL_wTd_nos_base_PS3D_PSU_SU_RCP26,SL_wTd_nos_base_SICO_UHO_SU_RCP26,SL_wTd_nos_base_UA_UNN_SU_RCP26])\n",
    "\n",
    "SL_wTd_nos_base_R1_RCP26 =np.vstack([SL_wTd_nos_base_AISM_VUB_R1_RCP26,SL_wTd_nos_base_BISI_LBL_R1_RCP26,SL_wTd_nos_base_CISM_NCA_R1_RCP26,SL_wTd_nos_base_FETI_VUB_R1_RCP26,SL_wTd_nos_base_GRIS_LSC_R1_RCP26,SL_wTd_nos_base_IMAU_VUB_R1_RCP26,SL_wTd_nos_base_ISSM_JPL_R1_RCP26,SL_wTd_nos_base_ISSM_UCI_R1_RCP26,SL_wTd_nos_base_MALI_LAN_R1_RCP26,SL_wTd_nos_base_PISM_AWI_R1_RCP26,SL_wTd_nos_base_PISM_DMI_R1_RCP26,SL_wTd_nos_base_PISM_PIK_R1_RCP26,SL_wTd_nos_base_PISM_VUW_R1_RCP26,SL_wTd_nos_base_PS3D_PSU_R1_RCP26,SL_wTd_nos_base_SICO_UHO_R1_RCP26,SL_wTd_nos_base_UA_UNN_R1_RCP26])\n",
    "\n",
    "SL_wTd_nos_base_R2_RCP26 =np.vstack([SL_wTd_nos_base_AISM_VUB_R2_RCP26,SL_wTd_nos_base_BISI_LBL_R2_RCP26,SL_wTd_nos_base_CISM_NCA_R2_RCP26,SL_wTd_nos_base_FETI_VUB_R2_RCP26,SL_wTd_nos_base_GRIS_LSC_R2_RCP26,SL_wTd_nos_base_IMAU_VUB_R2_RCP26,SL_wTd_nos_base_ISSM_JPL_R2_RCP26,SL_wTd_nos_base_ISSM_UCI_R2_RCP26,SL_wTd_nos_base_MALI_LAN_R2_RCP26,SL_wTd_nos_base_PISM_AWI_R2_RCP26,SL_wTd_nos_base_PISM_DMI_R2_RCP26,SL_wTd_nos_base_PISM_PIK_R2_RCP26,SL_wTd_nos_base_PISM_VUW_R2_RCP26,SL_wTd_nos_base_PS3D_PSU_R2_RCP26,SL_wTd_nos_base_SICO_UHO_R2_RCP26,SL_wTd_nos_base_UA_UNN_R2_RCP26])\n",
    "\n",
    "SL_wTd_nos_base_R3_RCP26 =np.vstack([SL_wTd_nos_base_AISM_VUB_R3_RCP26,SL_wTd_nos_base_BISI_LBL_R3_RCP26,SL_wTd_nos_base_CISM_NCA_R3_RCP26,SL_wTd_nos_base_FETI_VUB_R3_RCP26,SL_wTd_nos_base_GRIS_LSC_R3_RCP26,SL_wTd_nos_base_IMAU_VUB_R3_RCP26,SL_wTd_nos_base_ISSM_JPL_R3_RCP26,SL_wTd_nos_base_ISSM_UCI_R3_RCP26,SL_wTd_nos_base_MALI_LAN_R3_RCP26,SL_wTd_nos_base_PISM_AWI_R3_RCP26,SL_wTd_nos_base_PISM_DMI_R3_RCP26,SL_wTd_nos_base_PISM_PIK_R3_RCP26,SL_wTd_nos_base_PISM_VUW_R3_RCP26,SL_wTd_nos_base_PS3D_PSU_R3_RCP26,SL_wTd_nos_base_SICO_UHO_R3_RCP26,SL_wTd_nos_base_UA_UNN_R3_RCP26])\n",
    "\n",
    "SL_wTd_nos_base_R4_RCP26 =np.vstack([SL_wTd_nos_base_AISM_VUB_R4_RCP26,SL_wTd_nos_base_BISI_LBL_R4_RCP26,SL_wTd_nos_base_CISM_NCA_R4_RCP26,SL_wTd_nos_base_FETI_VUB_R4_RCP26,SL_wTd_nos_base_GRIS_LSC_R4_RCP26,SL_wTd_nos_base_IMAU_VUB_R4_RCP26,SL_wTd_nos_base_ISSM_JPL_R4_RCP26,SL_wTd_nos_base_ISSM_UCI_R4_RCP26,SL_wTd_nos_base_MALI_LAN_R4_RCP26,SL_wTd_nos_base_PISM_AWI_R4_RCP26,SL_wTd_nos_base_PISM_DMI_R4_RCP26,SL_wTd_nos_base_PISM_PIK_R4_RCP26,SL_wTd_nos_base_PISM_VUW_R4_RCP26,SL_wTd_nos_base_PS3D_PSU_R4_RCP26,SL_wTd_nos_base_SICO_UHO_R4_RCP26,SL_wTd_nos_base_UA_UNN_R4_RCP26])\n",
    "\n",
    "SL_wTd_nos_base_R5_RCP26 =np.vstack([SL_wTd_nos_base_AISM_VUB_R5_RCP26,SL_wTd_nos_base_BISI_LBL_R5_RCP26,SL_wTd_nos_base_CISM_NCA_R5_RCP26,SL_wTd_nos_base_FETI_VUB_R5_RCP26,SL_wTd_nos_base_GRIS_LSC_R5_RCP26,SL_wTd_nos_base_IMAU_VUB_R5_RCP26,SL_wTd_nos_base_ISSM_JPL_R5_RCP26,SL_wTd_nos_base_ISSM_UCI_R5_RCP26,SL_wTd_nos_base_MALI_LAN_R5_RCP26,SL_wTd_nos_base_PISM_AWI_R5_RCP26,SL_wTd_nos_base_PISM_DMI_R5_RCP26,SL_wTd_nos_base_PISM_PIK_R5_RCP26,SL_wTd_nos_base_PISM_VUW_R5_RCP26,SL_wTd_nos_base_PS3D_PSU_R5_RCP26,SL_wTd_nos_base_SICO_UHO_R5_RCP26,SL_wTd_nos_base_UA_UNN_R5_RCP26])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "320\n",
      "R0:  0\n",
      "R0:  1\n",
      "R0:  2\n",
      "R0:  3\n",
      "R0:  4\n",
      "R0:  5\n",
      "R0:  6\n",
      "R0:  7\n",
      "R0:  8\n",
      "R0:  9\n",
      "R0:  10\n",
      "R0:  11\n",
      "R0:  12\n",
      "R0:  13\n",
      "R0:  14\n",
      "R0:  15\n",
      "R0:  16\n",
      "R0:  17\n",
      "R0:  18\n",
      "R0:  19\n",
      "R0:  20\n",
      "R0:  21\n",
      "R0:  22\n",
      "R0:  23\n",
      "R0:  24\n",
      "R0:  25\n",
      "R0:  26\n",
      "R0:  27\n",
      "R0:  28\n",
      "R0:  29\n",
      "R0:  30\n",
      "R0:  31\n",
      "R0:  32\n",
      "R0:  33\n",
      "R0:  34\n",
      "R0:  35\n",
      "R0:  36\n",
      "R0:  37\n",
      "R0:  38\n",
      "R0:  39\n",
      "R0:  40\n",
      "R0:  41\n",
      "R0:  42\n",
      "R0:  43\n",
      "R0:  44\n",
      "R0:  45\n",
      "R0:  46\n",
      "R0:  47\n",
      "R0:  48\n",
      "R0:  49\n",
      "R0:  50\n",
      "R0:  51\n",
      "R0:  52\n",
      "R0:  53\n",
      "R0:  54\n",
      "R0:  55\n",
      "R0:  56\n",
      "R0:  57\n",
      "R0:  58\n",
      "R0:  59\n",
      "R0:  60\n",
      "R0:  61\n",
      "R0:  62\n",
      "R0:  63\n",
      "R0:  64\n",
      "R0:  65\n",
      "R0:  66\n",
      "R0:  67\n",
      "R0:  68\n",
      "R0:  69\n",
      "R0:  70\n",
      "R0:  71\n",
      "R0:  72\n",
      "R0:  73\n",
      "R0:  74\n",
      "R0:  75\n",
      "R0:  76\n",
      "R0:  77\n",
      "R0:  78\n",
      "R0:  79\n",
      "R0:  80\n",
      "R0:  81\n",
      "R0:  82\n",
      "R0:  83\n",
      "R0:  84\n",
      "R0:  85\n",
      "R0:  86\n",
      "R0:  87\n",
      "R0:  88\n",
      "R0:  89\n",
      "R0:  90\n",
      "R0:  91\n",
      "R0:  92\n",
      "R0:  93\n",
      "R0:  94\n",
      "R0:  95\n",
      "R0:  96\n",
      "R0:  97\n",
      "R0:  98\n",
      "R0:  99\n",
      "R0:  100\n",
      "R0:  101\n",
      "R0:  102\n",
      "R0:  103\n",
      "R0:  104\n",
      "R0:  105\n",
      "R0:  106\n",
      "R0:  107\n",
      "R0:  108\n",
      "R0:  109\n",
      "R0:  110\n",
      "R0:  111\n",
      "R0:  112\n",
      "R0:  113\n",
      "R0:  114\n",
      "R0:  115\n",
      "R0:  116\n",
      "R0:  117\n",
      "R0:  118\n",
      "R0:  119\n",
      "R0:  120\n",
      "R0:  121\n",
      "R0:  122\n",
      "R0:  123\n",
      "R0:  124\n",
      "R0:  125\n",
      "R0:  126\n",
      "R0:  127\n",
      "R0:  128\n",
      "R0:  129\n",
      "R0:  130\n",
      "R0:  131\n",
      "R0:  132\n",
      "R0:  133\n",
      "R0:  134\n",
      "R0:  135\n",
      "R0:  136\n",
      "R0:  137\n",
      "R0:  138\n",
      "R0:  139\n",
      "R0:  140\n",
      "R0:  141\n",
      "R0:  142\n",
      "R0:  143\n",
      "R0:  144\n",
      "R0:  145\n",
      "R0:  146\n",
      "R0:  147\n",
      "R0:  148\n",
      "R0:  149\n",
      "R0:  150\n",
      "R0:  151\n",
      "R0:  152\n",
      "R0:  153\n",
      "R0:  154\n",
      "R0:  155\n",
      "R0:  156\n",
      "R0:  157\n",
      "R0:  158\n",
      "R0:  159\n",
      "R0:  160\n",
      "R0:  161\n",
      "R0:  162\n",
      "R0:  163\n",
      "R0:  164\n",
      "R0:  165\n",
      "R0:  166\n",
      "R0:  167\n",
      "R0:  168\n",
      "R0:  169\n",
      "R0:  170\n",
      "R0:  171\n",
      "R0:  172\n",
      "R0:  173\n",
      "R0:  174\n",
      "R0:  175\n",
      "R0:  176\n",
      "R0:  177\n",
      "R0:  178\n",
      "R0:  179\n",
      "R0:  180\n",
      "R0:  181\n",
      "R0:  182\n",
      "R0:  183\n",
      "R0:  184\n",
      "R0:  185\n",
      "R0:  186\n",
      "R0:  187\n",
      "R0:  188\n",
      "R0:  189\n",
      "R0:  190\n",
      "R0:  191\n",
      "R0:  192\n",
      "R0:  193\n",
      "R0:  194\n",
      "R0:  195\n",
      "R0:  196\n",
      "R0:  197\n",
      "R0:  198\n",
      "R0:  199\n",
      "R1:  0\n",
      "R1:  1\n",
      "R1:  2\n",
      "R1:  3\n",
      "R1:  4\n",
      "R1:  5\n",
      "R1:  6\n",
      "R1:  7\n",
      "R1:  8\n",
      "R1:  9\n",
      "R1:  10\n",
      "R1:  11\n",
      "R1:  12\n",
      "R1:  13\n",
      "R1:  14\n",
      "R1:  15\n",
      "R1:  16\n",
      "R1:  17\n",
      "R1:  18\n",
      "R1:  19\n",
      "R1:  20\n",
      "R1:  21\n",
      "R1:  22\n",
      "R1:  23\n",
      "R1:  24\n",
      "R1:  25\n",
      "R1:  26\n",
      "R1:  27\n",
      "R1:  28\n",
      "R1:  29\n",
      "R1:  30\n",
      "R1:  31\n",
      "R1:  32\n",
      "R1:  33\n",
      "R1:  34\n",
      "R1:  35\n",
      "R1:  36\n",
      "R1:  37\n",
      "R1:  38\n",
      "R1:  39\n",
      "R1:  40\n",
      "R1:  41\n",
      "R1:  42\n",
      "R1:  43\n",
      "R1:  44\n",
      "R1:  45\n",
      "R1:  46\n",
      "R1:  47\n",
      "R1:  48\n",
      "R1:  49\n",
      "R1:  50\n",
      "R1:  51\n",
      "R1:  52\n",
      "R1:  53\n",
      "R1:  54\n",
      "R1:  55\n",
      "R1:  56\n",
      "R1:  57\n",
      "R1:  58\n",
      "R1:  59\n",
      "R1:  60\n",
      "R1:  61\n",
      "R1:  62\n",
      "R1:  63\n",
      "R1:  64\n",
      "R1:  65\n",
      "R1:  66\n",
      "R1:  67\n",
      "R1:  68\n",
      "R1:  69\n",
      "R1:  70\n",
      "R1:  71\n",
      "R1:  72\n",
      "R1:  73\n",
      "R1:  74\n",
      "R1:  75\n",
      "R1:  76\n",
      "R1:  77\n",
      "R1:  78\n",
      "R1:  79\n",
      "R1:  80\n",
      "R1:  81\n",
      "R1:  82\n",
      "R1:  83\n",
      "R1:  84\n",
      "R1:  85\n",
      "R1:  86\n",
      "R1:  87\n",
      "R1:  88\n",
      "R1:  89\n",
      "R1:  90\n",
      "R1:  91\n",
      "R1:  92\n",
      "R1:  93\n",
      "R1:  94\n",
      "R1:  95\n",
      "R1:  96\n",
      "R1:  97\n",
      "R1:  98\n",
      "R1:  99\n",
      "R1:  100\n",
      "R1:  101\n",
      "R1:  102\n",
      "R1:  103\n",
      "R1:  104\n",
      "R1:  105\n",
      "R1:  106\n",
      "R1:  107\n",
      "R1:  108\n",
      "R1:  109\n",
      "R1:  110\n",
      "R1:  111\n",
      "R1:  112\n",
      "R1:  113\n",
      "R1:  114\n",
      "R1:  115\n",
      "R1:  116\n",
      "R1:  117\n",
      "R1:  118\n",
      "R1:  119\n",
      "R1:  120\n",
      "R1:  121\n",
      "R1:  122\n",
      "R1:  123\n",
      "R1:  124\n",
      "R1:  125\n",
      "R1:  126\n",
      "R1:  127\n",
      "R1:  128\n",
      "R1:  129\n",
      "R1:  130\n",
      "R1:  131\n",
      "R1:  132\n",
      "R1:  133\n",
      "R1:  134\n",
      "R1:  135\n",
      "R1:  136\n",
      "R1:  137\n",
      "R1:  138\n",
      "R1:  139\n",
      "R1:  140\n",
      "R1:  141\n",
      "R1:  142\n",
      "R1:  143\n",
      "R1:  144\n",
      "R1:  145\n",
      "R1:  146\n",
      "R1:  147\n",
      "R1:  148\n",
      "R1:  149\n",
      "R1:  150\n",
      "R1:  151\n",
      "R1:  152\n",
      "R1:  153\n",
      "R1:  154\n",
      "R1:  155\n",
      "R1:  156\n",
      "R1:  157\n",
      "R1:  158\n",
      "R1:  159\n",
      "R1:  160\n",
      "R1:  161\n",
      "R1:  162\n",
      "R1:  163\n",
      "R1:  164\n",
      "R1:  165\n",
      "R1:  166\n",
      "R1:  167\n",
      "R1:  168\n",
      "R1:  169\n",
      "R1:  170\n",
      "R1:  171\n",
      "R1:  172\n",
      "R1:  173\n",
      "R1:  174\n",
      "R1:  175\n",
      "R1:  176\n",
      "R1:  177\n",
      "R1:  178\n",
      "R1:  179\n",
      "R1:  180\n",
      "R1:  181\n",
      "R1:  182\n",
      "R1:  183\n",
      "R1:  184\n",
      "R1:  185\n",
      "R1:  186\n",
      "R1:  187\n",
      "R1:  188\n",
      "R1:  189\n",
      "R1:  190\n",
      "R1:  191\n",
      "R1:  192\n",
      "R1:  193\n",
      "R1:  194\n",
      "R1:  195\n",
      "R1:  196\n",
      "R1:  197\n",
      "R1:  198\n",
      "R1:  199\n",
      "R2:  0\n",
      "R2:  1\n",
      "R2:  2\n",
      "R2:  3\n",
      "R2:  4\n",
      "R2:  5\n",
      "R2:  6\n",
      "R2:  7\n",
      "R2:  8\n",
      "R2:  9\n",
      "R2:  10\n",
      "R2:  11\n",
      "R2:  12\n",
      "R2:  13\n",
      "R2:  14\n",
      "R2:  15\n",
      "R2:  16\n",
      "R2:  17\n",
      "R2:  18\n",
      "R2:  19\n",
      "R2:  20\n",
      "R2:  21\n",
      "R2:  22\n",
      "R2:  23\n",
      "R2:  24\n",
      "R2:  25\n",
      "R2:  26\n",
      "R2:  27\n",
      "R2:  28\n",
      "R2:  29\n",
      "R2:  30\n",
      "R2:  31\n",
      "R2:  32\n",
      "R2:  33\n",
      "R2:  34\n",
      "R2:  35\n",
      "R2:  36\n",
      "R2:  37\n",
      "R2:  38\n",
      "R2:  39\n",
      "R2:  40\n",
      "R2:  41\n",
      "R2:  42\n",
      "R2:  43\n",
      "R2:  44\n",
      "R2:  45\n",
      "R2:  46\n",
      "R2:  47\n",
      "R2:  48\n",
      "R2:  49\n",
      "R2:  50\n",
      "R2:  51\n",
      "R2:  52\n",
      "R2:  53\n",
      "R2:  54\n",
      "R2:  55\n",
      "R2:  56\n",
      "R2:  57\n",
      "R2:  58\n",
      "R2:  59\n",
      "R2:  60\n",
      "R2:  61\n",
      "R2:  62\n",
      "R2:  63\n",
      "R2:  64\n",
      "R2:  65\n",
      "R2:  66\n",
      "R2:  67\n",
      "R2:  68\n",
      "R2:  69\n",
      "R2:  70\n",
      "R2:  71\n",
      "R2:  72\n",
      "R2:  73\n",
      "R2:  74\n",
      "R2:  75\n",
      "R2:  76\n",
      "R2:  77\n",
      "R2:  78\n",
      "R2:  79\n",
      "R2:  80\n",
      "R2:  81\n",
      "R2:  82\n",
      "R2:  83\n",
      "R2:  84\n",
      "R2:  85\n",
      "R2:  86\n",
      "R2:  87\n",
      "R2:  88\n",
      "R2:  89\n",
      "R2:  90\n",
      "R2:  91\n",
      "R2:  92\n",
      "R2:  93\n",
      "R2:  94\n",
      "R2:  95\n",
      "R2:  96\n",
      "R2:  97\n",
      "R2:  98\n",
      "R2:  99\n",
      "R2:  100\n",
      "R2:  101\n",
      "R2:  102\n",
      "R2:  103\n",
      "R2:  104\n",
      "R2:  105\n",
      "R2:  106\n",
      "R2:  107\n",
      "R2:  108\n",
      "R2:  109\n",
      "R2:  110\n",
      "R2:  111\n",
      "R2:  112\n",
      "R2:  113\n",
      "R2:  114\n",
      "R2:  115\n",
      "R2:  116\n",
      "R2:  117\n",
      "R2:  118\n",
      "R2:  119\n",
      "R2:  120\n",
      "R2:  121\n",
      "R2:  122\n",
      "R2:  123\n",
      "R2:  124\n",
      "R2:  125\n",
      "R2:  126\n",
      "R2:  127\n",
      "R2:  128\n",
      "R2:  129\n",
      "R2:  130\n",
      "R2:  131\n",
      "R2:  132\n",
      "R2:  133\n",
      "R2:  134\n",
      "R2:  135\n",
      "R2:  136\n",
      "R2:  137\n",
      "R2:  138\n",
      "R2:  139\n",
      "R2:  140\n",
      "R2:  141\n",
      "R2:  142\n",
      "R2:  143\n",
      "R2:  144\n",
      "R2:  145\n",
      "R2:  146\n",
      "R2:  147\n",
      "R2:  148\n",
      "R2:  149\n",
      "R2:  150\n",
      "R2:  151\n",
      "R2:  152\n",
      "R2:  153\n",
      "R2:  154\n",
      "R2:  155\n",
      "R2:  156\n",
      "R2:  157\n",
      "R2:  158\n",
      "R2:  159\n",
      "R2:  160\n",
      "R2:  161\n",
      "R2:  162\n",
      "R2:  163\n",
      "R2:  164\n",
      "R2:  165\n",
      "R2:  166\n",
      "R2:  167\n",
      "R2:  168\n",
      "R2:  169\n",
      "R2:  170\n",
      "R2:  171\n",
      "R2:  172\n",
      "R2:  173\n",
      "R2:  174\n",
      "R2:  175\n",
      "R2:  176\n",
      "R2:  177\n",
      "R2:  178\n",
      "R2:  179\n",
      "R2:  180\n",
      "R2:  181\n",
      "R2:  182\n",
      "R2:  183\n",
      "R2:  184\n",
      "R2:  185\n",
      "R2:  186\n",
      "R2:  187\n",
      "R2:  188\n",
      "R2:  189\n",
      "R2:  190\n",
      "R2:  191\n",
      "R2:  192\n",
      "R2:  193\n",
      "R2:  194\n",
      "R2:  195\n",
      "R2:  196\n",
      "R2:  197\n",
      "R2:  198\n",
      "R2:  199\n",
      "R3:  0\n",
      "R3:  1\n",
      "R3:  2\n",
      "R3:  3\n",
      "R3:  4\n",
      "R3:  5\n",
      "R3:  6\n",
      "R3:  7\n",
      "R3:  8\n",
      "R3:  9\n",
      "R3:  10\n",
      "R3:  11\n",
      "R3:  12\n",
      "R3:  13\n",
      "R3:  14\n",
      "R3:  15\n",
      "R3:  16\n",
      "R3:  17\n",
      "R3:  18\n",
      "R3:  19\n",
      "R3:  20\n",
      "R3:  21\n",
      "R3:  22\n",
      "R3:  23\n",
      "R3:  24\n",
      "R3:  25\n",
      "R3:  26\n",
      "R3:  27\n",
      "R3:  28\n",
      "R3:  29\n",
      "R3:  30\n",
      "R3:  31\n",
      "R3:  32\n",
      "R3:  33\n",
      "R3:  34\n",
      "R3:  35\n",
      "R3:  36\n",
      "R3:  37\n",
      "R3:  38\n",
      "R3:  39\n",
      "R3:  40\n",
      "R3:  41\n",
      "R3:  42\n",
      "R3:  43\n",
      "R3:  44\n",
      "R3:  45\n",
      "R3:  46\n",
      "R3:  47\n",
      "R3:  48\n",
      "R3:  49\n",
      "R3:  50\n",
      "R3:  51\n",
      "R3:  52\n",
      "R3:  53\n",
      "R3:  54\n",
      "R3:  55\n",
      "R3:  56\n",
      "R3:  57\n",
      "R3:  58\n",
      "R3:  59\n",
      "R3:  60\n",
      "R3:  61\n",
      "R3:  62\n",
      "R3:  63\n",
      "R3:  64\n",
      "R3:  65\n",
      "R3:  66\n",
      "R3:  67\n",
      "R3:  68\n",
      "R3:  69\n",
      "R3:  70\n",
      "R3:  71\n",
      "R3:  72\n",
      "R3:  73\n",
      "R3:  74\n",
      "R3:  75\n",
      "R3:  76\n",
      "R3:  77\n",
      "R3:  78\n",
      "R3:  79\n",
      "R3:  80\n",
      "R3:  81\n",
      "R3:  82\n",
      "R3:  83\n",
      "R3:  84\n",
      "R3:  85\n",
      "R3:  86\n",
      "R3:  87\n",
      "R3:  88\n",
      "R3:  89\n",
      "R3:  90\n",
      "R3:  91\n",
      "R3:  92\n",
      "R3:  93\n",
      "R3:  94\n",
      "R3:  95\n",
      "R3:  96\n",
      "R3:  97\n",
      "R3:  98\n",
      "R3:  99\n",
      "R3:  100\n",
      "R3:  101\n",
      "R3:  102\n",
      "R3:  103\n",
      "R3:  104\n",
      "R3:  105\n",
      "R3:  106\n",
      "R3:  107\n",
      "R3:  108\n",
      "R3:  109\n",
      "R3:  110\n",
      "R3:  111\n",
      "R3:  112\n",
      "R3:  113\n",
      "R3:  114\n",
      "R3:  115\n",
      "R3:  116\n",
      "R3:  117\n",
      "R3:  118\n",
      "R3:  119\n",
      "R3:  120\n",
      "R3:  121\n",
      "R3:  122\n",
      "R3:  123\n",
      "R3:  124\n",
      "R3:  125\n",
      "R3:  126\n",
      "R3:  127\n",
      "R3:  128\n",
      "R3:  129\n",
      "R3:  130\n",
      "R3:  131\n",
      "R3:  132\n",
      "R3:  133\n",
      "R3:  134\n",
      "R3:  135\n",
      "R3:  136\n",
      "R3:  137\n",
      "R3:  138\n",
      "R3:  139\n",
      "R3:  140\n",
      "R3:  141\n",
      "R3:  142\n",
      "R3:  143\n",
      "R3:  144\n",
      "R3:  145\n",
      "R3:  146\n",
      "R3:  147\n",
      "R3:  148\n",
      "R3:  149\n",
      "R3:  150\n",
      "R3:  151\n",
      "R3:  152\n",
      "R3:  153\n",
      "R3:  154\n",
      "R3:  155\n",
      "R3:  156\n",
      "R3:  157\n",
      "R3:  158\n",
      "R3:  159\n",
      "R3:  160\n",
      "R3:  161\n",
      "R3:  162\n",
      "R3:  163\n",
      "R3:  164\n",
      "R3:  165\n",
      "R3:  166\n",
      "R3:  167\n",
      "R3:  168\n",
      "R3:  169\n",
      "R3:  170\n",
      "R3:  171\n",
      "R3:  172\n",
      "R3:  173\n",
      "R3:  174\n",
      "R3:  175\n",
      "R3:  176\n",
      "R3:  177\n",
      "R3:  178\n",
      "R3:  179\n",
      "R3:  180\n",
      "R3:  181\n",
      "R3:  182\n",
      "R3:  183\n",
      "R3:  184\n",
      "R3:  185\n",
      "R3:  186\n",
      "R3:  187\n",
      "R3:  188\n",
      "R3:  189\n",
      "R3:  190\n",
      "R3:  191\n",
      "R3:  192\n",
      "R3:  193\n",
      "R3:  194\n",
      "R3:  195\n",
      "R3:  196\n",
      "R3:  197\n",
      "R3:  198\n",
      "R3:  199\n",
      "R4:  0\n",
      "R4:  1\n",
      "R4:  2\n",
      "R4:  3\n",
      "R4:  4\n",
      "R4:  5\n",
      "R4:  6\n",
      "R4:  7\n",
      "R4:  8\n",
      "R4:  9\n",
      "R4:  10\n",
      "R4:  11\n",
      "R4:  12\n",
      "R4:  13\n",
      "R4:  14\n",
      "R4:  15\n",
      "R4:  16\n",
      "R4:  17\n",
      "R4:  18\n",
      "R4:  19\n",
      "R4:  20\n",
      "R4:  21\n",
      "R4:  22\n",
      "R4:  23\n",
      "R4:  24\n",
      "R4:  25\n",
      "R4:  26\n",
      "R4:  27\n",
      "R4:  28\n",
      "R4:  29\n",
      "R4:  30\n",
      "R4:  31\n",
      "R4:  32\n",
      "R4:  33\n",
      "R4:  34\n",
      "R4:  35\n",
      "R4:  36\n",
      "R4:  37\n",
      "R4:  38\n",
      "R4:  39\n",
      "R4:  40\n",
      "R4:  41\n",
      "R4:  42\n",
      "R4:  43\n",
      "R4:  44\n",
      "R4:  45\n",
      "R4:  46\n",
      "R4:  47\n",
      "R4:  48\n",
      "R4:  49\n",
      "R4:  50\n",
      "R4:  51\n",
      "R4:  52\n",
      "R4:  53\n",
      "R4:  54\n",
      "R4:  55\n",
      "R4:  56\n",
      "R4:  57\n",
      "R4:  58\n",
      "R4:  59\n",
      "R4:  60\n",
      "R4:  61\n",
      "R4:  62\n",
      "R4:  63\n",
      "R4:  64\n",
      "R4:  65\n",
      "R4:  66\n",
      "R4:  67\n",
      "R4:  68\n",
      "R4:  69\n",
      "R4:  70\n",
      "R4:  71\n",
      "R4:  72\n",
      "R4:  73\n",
      "R4:  74\n",
      "R4:  75\n",
      "R4:  76\n",
      "R4:  77\n",
      "R4:  78\n",
      "R4:  79\n",
      "R4:  80\n",
      "R4:  81\n",
      "R4:  82\n",
      "R4:  83\n",
      "R4:  84\n",
      "R4:  85\n",
      "R4:  86\n",
      "R4:  87\n",
      "R4:  88\n",
      "R4:  89\n",
      "R4:  90\n",
      "R4:  91\n",
      "R4:  92\n",
      "R4:  93\n",
      "R4:  94\n",
      "R4:  95\n",
      "R4:  96\n",
      "R4:  97\n",
      "R4:  98\n",
      "R4:  99\n",
      "R4:  100\n",
      "R4:  101\n",
      "R4:  102\n",
      "R4:  103\n",
      "R4:  104\n",
      "R4:  105\n",
      "R4:  106\n",
      "R4:  107\n",
      "R4:  108\n",
      "R4:  109\n",
      "R4:  110\n",
      "R4:  111\n",
      "R4:  112\n",
      "R4:  113\n",
      "R4:  114\n",
      "R4:  115\n",
      "R4:  116\n",
      "R4:  117\n",
      "R4:  118\n",
      "R4:  119\n",
      "R4:  120\n",
      "R4:  121\n",
      "R4:  122\n",
      "R4:  123\n",
      "R4:  124\n",
      "R4:  125\n",
      "R4:  126\n",
      "R4:  127\n",
      "R4:  128\n",
      "R4:  129\n",
      "R4:  130\n",
      "R4:  131\n",
      "R4:  132\n",
      "R4:  133\n",
      "R4:  134\n",
      "R4:  135\n",
      "R4:  136\n",
      "R4:  137\n",
      "R4:  138\n",
      "R4:  139\n",
      "R4:  140\n",
      "R4:  141\n",
      "R4:  142\n",
      "R4:  143\n",
      "R4:  144\n",
      "R4:  145\n",
      "R4:  146\n",
      "R4:  147\n",
      "R4:  148\n",
      "R4:  149\n",
      "R4:  150\n",
      "R4:  151\n",
      "R4:  152\n",
      "R4:  153\n",
      "R4:  154\n",
      "R4:  155\n",
      "R4:  156\n",
      "R4:  157\n",
      "R4:  158\n",
      "R4:  159\n",
      "R4:  160\n",
      "R4:  161\n",
      "R4:  162\n",
      "R4:  163\n",
      "R4:  164\n",
      "R4:  165\n",
      "R4:  166\n",
      "R4:  167\n",
      "R4:  168\n",
      "R4:  169\n",
      "R4:  170\n",
      "R4:  171\n",
      "R4:  172\n",
      "R4:  173\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "R4:  174\n",
      "R4:  175\n",
      "R4:  176\n",
      "R4:  177\n",
      "R4:  178\n",
      "R4:  179\n",
      "R4:  180\n",
      "R4:  181\n",
      "R4:  182\n",
      "R4:  183\n",
      "R4:  184\n",
      "R4:  185\n",
      "R4:  186\n",
      "R4:  187\n",
      "R4:  188\n",
      "R4:  189\n",
      "R4:  190\n",
      "R4:  191\n",
      "R4:  192\n",
      "R4:  193\n",
      "R4:  194\n",
      "R4:  195\n",
      "R4:  196\n",
      "R4:  197\n",
      "R4:  198\n",
      "R4:  199\n",
      "R5:  0\n",
      "R5:  1\n",
      "R5:  2\n",
      "R5:  3\n",
      "R5:  4\n",
      "R5:  5\n",
      "R5:  6\n",
      "R5:  7\n",
      "R5:  8\n",
      "R5:  9\n",
      "R5:  10\n",
      "R5:  11\n",
      "R5:  12\n",
      "R5:  13\n",
      "R5:  14\n",
      "R5:  15\n",
      "R5:  16\n",
      "R5:  17\n",
      "R5:  18\n",
      "R5:  19\n",
      "R5:  20\n",
      "R5:  21\n",
      "R5:  22\n",
      "R5:  23\n",
      "R5:  24\n",
      "R5:  25\n",
      "R5:  26\n",
      "R5:  27\n",
      "R5:  28\n",
      "R5:  29\n",
      "R5:  30\n",
      "R5:  31\n",
      "R5:  32\n",
      "R5:  33\n",
      "R5:  34\n",
      "R5:  35\n",
      "R5:  36\n",
      "R5:  37\n",
      "R5:  38\n",
      "R5:  39\n",
      "R5:  40\n",
      "R5:  41\n",
      "R5:  42\n",
      "R5:  43\n",
      "R5:  44\n",
      "R5:  45\n",
      "R5:  46\n",
      "R5:  47\n",
      "R5:  48\n",
      "R5:  49\n",
      "R5:  50\n",
      "R5:  51\n",
      "R5:  52\n",
      "R5:  53\n",
      "R5:  54\n",
      "R5:  55\n",
      "R5:  56\n",
      "R5:  57\n",
      "R5:  58\n",
      "R5:  59\n",
      "R5:  60\n",
      "R5:  61\n",
      "R5:  62\n",
      "R5:  63\n",
      "R5:  64\n",
      "R5:  65\n",
      "R5:  66\n",
      "R5:  67\n",
      "R5:  68\n",
      "R5:  69\n",
      "R5:  70\n",
      "R5:  71\n",
      "R5:  72\n",
      "R5:  73\n",
      "R5:  74\n",
      "R5:  75\n",
      "R5:  76\n",
      "R5:  77\n",
      "R5:  78\n",
      "R5:  79\n",
      "R5:  80\n",
      "R5:  81\n",
      "R5:  82\n",
      "R5:  83\n",
      "R5:  84\n",
      "R5:  85\n",
      "R5:  86\n",
      "R5:  87\n",
      "R5:  88\n",
      "R5:  89\n",
      "R5:  90\n",
      "R5:  91\n",
      "R5:  92\n",
      "R5:  93\n",
      "R5:  94\n",
      "R5:  95\n",
      "R5:  96\n",
      "R5:  97\n",
      "R5:  98\n",
      "R5:  99\n",
      "R5:  100\n",
      "R5:  101\n",
      "R5:  102\n",
      "R5:  103\n",
      "R5:  104\n",
      "R5:  105\n",
      "R5:  106\n",
      "R5:  107\n",
      "R5:  108\n",
      "R5:  109\n",
      "R5:  110\n",
      "R5:  111\n",
      "R5:  112\n",
      "R5:  113\n",
      "R5:  114\n",
      "R5:  115\n",
      "R5:  116\n",
      "R5:  117\n",
      "R5:  118\n",
      "R5:  119\n",
      "R5:  120\n",
      "R5:  121\n",
      "R5:  122\n",
      "R5:  123\n",
      "R5:  124\n",
      "R5:  125\n",
      "R5:  126\n",
      "R5:  127\n",
      "R5:  128\n",
      "R5:  129\n",
      "R5:  130\n",
      "R5:  131\n",
      "R5:  132\n",
      "R5:  133\n",
      "R5:  134\n",
      "R5:  135\n",
      "R5:  136\n",
      "R5:  137\n",
      "R5:  138\n",
      "R5:  139\n",
      "R5:  140\n",
      "R5:  141\n",
      "R5:  142\n",
      "R5:  143\n",
      "R5:  144\n",
      "R5:  145\n",
      "R5:  146\n",
      "R5:  147\n",
      "R5:  148\n",
      "R5:  149\n",
      "R5:  150\n",
      "R5:  151\n",
      "R5:  152\n",
      "R5:  153\n",
      "R5:  154\n",
      "R5:  155\n",
      "R5:  156\n",
      "R5:  157\n",
      "R5:  158\n",
      "R5:  159\n",
      "R5:  160\n",
      "R5:  161\n",
      "R5:  162\n",
      "R5:  163\n",
      "R5:  164\n",
      "R5:  165\n",
      "R5:  166\n",
      "R5:  167\n",
      "R5:  168\n",
      "R5:  169\n",
      "R5:  170\n",
      "R5:  171\n",
      "R5:  172\n",
      "R5:  173\n",
      "R5:  174\n",
      "R5:  175\n",
      "R5:  176\n",
      "R5:  177\n",
      "R5:  178\n",
      "R5:  179\n",
      "R5:  180\n",
      "R5:  181\n",
      "R5:  182\n",
      "R5:  183\n",
      "R5:  184\n",
      "R5:  185\n",
      "R5:  186\n",
      "R5:  187\n",
      "R5:  188\n",
      "R5:  189\n",
      "R5:  190\n",
      "R5:  191\n",
      "R5:  192\n",
      "R5:  193\n",
      "R5:  194\n",
      "R5:  195\n",
      "R5:  196\n",
      "R5:  197\n",
      "R5:  198\n",
      "R5:  199\n"
     ]
    }
   ],
   "source": [
    "# compute cumulative probability distributions\n",
    "cdfnum = 1000\n",
    "cdfstep = int(len(SL_wTd_nos_base_RCP26[:,0])/cdfnum)\n",
    "print(cdfstep)\n",
    "\n",
    "SL_wTd_nos_base_R0_RCP26_cdf = [0] * (cdfnum+1)\n",
    "for t in range(len(SL_wTd_nos_base_RCP26[1,:])):\n",
    "    print(\"R0: \",t)\n",
    "    sortind = np.argsort(SL_wTd_nos_base_RCP26[:,t])\n",
    "\n",
    "    slcdf = []\n",
    "    slcdf.append(0)\n",
    "    for i in range(1,cdfnum+1):\n",
    "        cdfval = float(i/cdfnum)\n",
    "        slval = SL_wTd_nos_base_RCP26[sortind[i*cdfstep],t]\n",
    "        slcdf.append(slval)\n",
    "    SL_wTd_nos_base_R0_RCP26_cdf=np.vstack([SL_wTd_nos_base_R0_RCP26_cdf, slcdf])\n",
    "\n",
    "\n",
    "SL_wTd_nos_base_R1_RCP26_cdf = [0] * (cdfnum+1)\n",
    "for t in range(len(SL_wTd_nos_base_R1_RCP26[1,:])):\n",
    "    print(\"R1: \",t)\n",
    "    sortind = np.argsort(SL_wTd_nos_base_R1_RCP26[:,t])\n",
    "\n",
    "    slcdf = []\n",
    "    slcdf.append(0)\n",
    "    for i in range(1,cdfnum+1):\n",
    "        cdfval = float(i/cdfnum)\n",
    "        slval = SL_wTd_nos_base_R1_RCP26[sortind[i*cdfstep],t]\n",
    "        slcdf.append(slval)\n",
    "    SL_wTd_nos_base_R1_RCP26_cdf=np.vstack([SL_wTd_nos_base_R1_RCP26_cdf, slcdf])\n",
    "\n",
    "SL_wTd_nos_base_R2_RCP26_cdf = [0] * (cdfnum+1)\n",
    "for t in range(len(SL_wTd_nos_base_R2_RCP26[1,:])):\n",
    "    print(\"R2: \",t)\n",
    "    sortind = np.argsort(SL_wTd_nos_base_R2_RCP26[:,t])\n",
    "\n",
    "    slcdf = []\n",
    "    slcdf.append(0)\n",
    "    for i in range(1,cdfnum+1):\n",
    "        cdfval = float(i/cdfnum)\n",
    "        slval = SL_wTd_nos_base_R2_RCP26[sortind[i*cdfstep],t]\n",
    "        slcdf.append(slval)\n",
    "    SL_wTd_nos_base_R2_RCP26_cdf=np.vstack([SL_wTd_nos_base_R2_RCP26_cdf, slcdf])\n",
    "\n",
    "SL_wTd_nos_base_R3_RCP26_cdf = [0] * (cdfnum+1)\n",
    "for t in range(len(SL_wTd_nos_base_R3_RCP26[1,:])):\n",
    "    print(\"R3: \",t)\n",
    "    sortind = np.argsort(SL_wTd_nos_base_R3_RCP26[:,t])\n",
    "\n",
    "    slcdf = []\n",
    "    slcdf.append(0)\n",
    "    for i in range(1,cdfnum+1):\n",
    "        cdfval = float(i/cdfnum)\n",
    "        slval = SL_wTd_nos_base_R3_RCP26[sortind[i*cdfstep],t]\n",
    "        slcdf.append(slval)\n",
    "    SL_wTd_nos_base_R3_RCP26_cdf=np.vstack([SL_wTd_nos_base_R3_RCP26_cdf, slcdf])\n",
    "\n",
    "SL_wTd_nos_base_R4_RCP26_cdf = [0] * (cdfnum+1)\n",
    "for t in range(len(SL_wTd_nos_base_R4_RCP26[1,:])):\n",
    "    print(\"R4: \",t)\n",
    "    sortind = np.argsort(SL_wTd_nos_base_R4_RCP26[:,t])\n",
    "\n",
    "    slcdf = []\n",
    "    slcdf.append(0)\n",
    "    for i in range(1,cdfnum+1):\n",
    "        cdfval = float(i/cdfnum)\n",
    "        slval = SL_wTd_nos_base_R4_RCP26[sortind[i*cdfstep],t]\n",
    "        slcdf.append(slval)\n",
    "    SL_wTd_nos_base_R4_RCP26_cdf=np.vstack([SL_wTd_nos_base_R4_RCP26_cdf, slcdf])\n",
    "\n",
    "SL_wTd_nos_base_R5_RCP26_cdf = [0] * (cdfnum+1)\n",
    "for t in range(len(SL_wTd_nos_base_R5_RCP26[1,:])):\n",
    "    print(\"R5: \",t)\n",
    "    sortind = np.argsort(SL_wTd_nos_base_R5_RCP26[:,t])\n",
    "\n",
    "    slcdf = []\n",
    "    slcdf.append(0)\n",
    "    for i in range(1,cdfnum+1):\n",
    "        cdfval = float(i/cdfnum)\n",
    "        slval = SL_wTd_nos_base_R5_RCP26[sortind[i*cdfstep],t]\n",
    "        slcdf.append(slval)\n",
    "    SL_wTd_nos_base_R5_RCP26_cdf=np.vstack([SL_wTd_nos_base_R5_RCP26_cdf, slcdf])\n",
    "\n",
    "\n",
    "Percentile = np.arange(0,float((cdfnum+1)/cdfnum),float(1/cdfnum))\n",
    "\n",
    "# write cdfs\n",
    "ncfile = nc.Dataset('Cdfs/SL_wTd_nos_base_RCP26_cdf.nc','w', format='NETCDF4')\n",
    "ncfile.createDimension('Time', None)\n",
    "ncfile.createDimension('Percentile', None)\n",
    "\n",
    "SL_wTd_weighted_base_R0 = ncfile.createVariable('Antarctica', 'f4', ('Time','Percentile'))\n",
    "SL_wTd_weighted_base_R1 = ncfile.createVariable('EAIS', 'f4', ('Time','Percentile'))\n",
    "SL_wTd_weighted_base_R2 = ncfile.createVariable('Ross', 'f4', ('Time','Percentile'))\n",
    "SL_wTd_weighted_base_R3 = ncfile.createVariable('Amundsen', 'f4', ('Time','Percentile'))\n",
    "SL_wTd_weighted_base_R4 = ncfile.createVariable('Weddell', 'f4', ('Time','Percentile'))\n",
    "SL_wTd_weighted_base_R5 = ncfile.createVariable('Peninsula', 'f4', ('Time','Percentile'))\n",
    "p = ncfile.createVariable('Percentile', 'f4', 'Percentile')\n",
    "t = ncfile.createVariable('Time', 'f4', 'Time')\n",
    "\n",
    "t[:] = Time\n",
    "t.units = 'years'\n",
    "SL_wTd_weighted_base_R0[:,:] = SL_wTd_nos_base_R0_RCP26_cdf\n",
    "SL_wTd_weighted_base_R1[:,:] = SL_wTd_nos_base_R1_RCP26_cdf\n",
    "SL_wTd_weighted_base_R2[:,:] = SL_wTd_nos_base_R2_RCP26_cdf\n",
    "SL_wTd_weighted_base_R3[:,:] = SL_wTd_nos_base_R3_RCP26_cdf\n",
    "SL_wTd_weighted_base_R4[:,:] = SL_wTd_nos_base_R4_RCP26_cdf\n",
    "SL_wTd_weighted_base_R5[:,:] = SL_wTd_nos_base_R5_RCP26_cdf\n",
    "p[:] = Percentile\n",
    "\n",
    "SL_wTd_weighted_base_R0.units = 'meter'\n",
    "SL_wTd_weighted_base_R1.units = 'meter'\n",
    "SL_wTd_weighted_base_R2.units = 'meter'\n",
    "SL_wTd_weighted_base_R3.units = 'meter'\n",
    "SL_wTd_weighted_base_R4.units = 'meter'\n",
    "SL_wTd_weighted_base_R5.units = 'meter'\n",
    "\n",
    "p.units = 'percent'\n",
    "\n",
    "ncfile.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "200\n",
      "200\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x12e041322e8>]"
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd8HPWd//HXd/uuVlp1F8my5N4wNhhMNR1MADu0AIEULgm5u5ArSS6X9suRkNzlkmvJ7/jdHcmRS+fomGAwvTcb24CNmyzJtiRbdbV9d3Zmvr8/VpZlI9uyLWkl+fPMYzK7s1/tfCyJ946+853vKK01QgghxhdHvgsQQggx9CTchRBiHJJwF0KIcUjCXQghxiEJdyGEGIck3IUQYhyScBdCiHFIwl0IIcYhCXchhBiHXPnacXl5ua6trc3X7oUQYkx69913O7XWFUdrl7dwr62tZd26dfnavRBCjElKqV2DaSfdMkIIMQ5JuAshxDgk4S6EEOOQhLsQQoxDgwp3pdRypdQ2pVS9UuobA7z+r0qpjb3LdqVUz9CXKoQQYrCOOlpGKeUE7gEuA5qBtUqpVVrrD/e30Vr/db/2XwYWD0OtQgghBmkwR+5nAvVa6wattQHcD6w8QvtbgD8MRXFCCCGOz2DCvQrY0+95c++2j1BKTQXqgBdOvDQhhBhftK3pebKBbEdy2Pc1mHBXA2w73I1XbwYe0lpbA76RUncopdYppdZ1dHQMtkYhhBgXkuvbiL/agrErOuz7Gky4NwNT+j2vBloP0/ZmjtAlo7W+V2u9RGu9pKLiqFfPCiHEuGEns0SeasQztYjAaROGfX+DCfe1wEylVJ1SykMuwFcd2kgpNRsoAd4c2hKFEGLsizy7CztpUrxyOsoxUIfI0DpquGutTeBOYA2wBXhAa71ZKfV9pdSKfk1vAe7XWh+uy0YIIU5K2fYkibf3UnDWJDyTgyOyz0FNHKa1Xg2sPmTbdw95ftfQlSWEEONHZHUjyu2k6JKaEdunXKEqhBDDKF3fQ3prN4UXTcEZ9IzYfiXchRBimGhbE1ndgLPYS+G5A44gHzYS7kIIMUySG9rJtiYILa9FuUc2biXchRBiGNiGRXRNE+7qIP6FIz/0W8JdCCGGQfzVFqyoQfHV00Zk6OOhJNyFEGKIWTGD2Mt78M8vw1sbyksNEu5CCDHEIk83oS1N6Mq6vNUg4S6EEEPIaI6RXN9G8NwqXOX+vNUh4S6EEENEa03PEw04CtwUXTzl6F8wjCTchRBiiKTe78DYFSV0eS0O36AmABg2Eu5CCDEEbMMisroJ9+QCAkuGf9bHo5FwF0KIIRB/pRkrkqH4mpGZ9fFoJNyFEOIEmT0ZYi83419YjrcuP0MfDyXhLoQQJyjydCNak9ehj4eScBdCiBOQ2RUltbGDwmVVuEp8+S6nj4S7EEIcJ21rep7YibPIQ+GF+R36eCgJdyGEOE7J9e1km+MUXVmHw+PMdzkHkXAXQojjYGdMImsa8dQUEjh15Gd9PBoJdyGEOA6xF5uxY9lRM/TxUIMKd6XUcqXUNqVUvVLqG4dp8wml1IdKqc1Kqd8PbZlCCDF6mF0pYq82E1hciWdKYb7LGdBRr49VSjmBe4DLgGZgrVJqldb6w35tZgLfBM7VWoeVUpXDVbAQQuRbZHUjyqkILa/NdymHNZgj9zOBeq11g9baAO4HVh7S5gvAPVrrMIDWun1oyxRCiNEhvbOH1OYuCi+cgjPkzXc5hzWYcK8C9vR73ty7rb9ZwCyl1OtKqbeUUsuHqkAhhBgttK2JPNF7w+vzR/aG18dqMNOWDXSmQA/wPjOBC4Fq4FWl1AKtdc9Bb6TUHcAdADU1NcdcrBBC5FNi7T6y+xKU3joH5R5dQx8PNZgj92ag/+j8aqB1gDaPa62zWutGYBu5sD+I1vperfUSrfWSiorRN3RICCEOx06ZRJ9pwlNXhH9Beb7LOarBhPtaYKZSqk4p5QFuBlYd0uYx4CIApVQ5uW6ahqEsVAgh8in6/G7spJkb+qhG39DHQx013LXWJnAnsAbYAjygtd6slPq+UmpFb7M1QJdS6kPgReBvtNZdw1W0EEKMpGx7kvgbrRScMRHP5GC+yxmUQd0qRGu9Glh9yLbv9nusga/0LkIIMa5EnmxAuR0UXT4136UMmlyhKoQQR5Da1k16W5iiS2pwBj35LmfQJNyFEOIwtGUT+WMDrnI/wXMm57ucYyLhLoQQhxF/cy9mR4rQVXUo19iKy7FVrRBCjBArkSX63G68M4vxzSnNdznHTMJdCCEGEH12F9owKb562pgY+ngoCXchhDhEdl+CxNt7CZ41GfeEgnyXc1wk3IUQoh+tc7fOc/hdFF06dqdJkXAXQoh+0h92kdkZoeiyqTgC7nyXc9wk3IUQopc2bXqebMQ1IUDBmZPyXc4JkXAXQohesddasLrTuZOozrF3ErU/CXchhACsmEHshT345pbim1mS73JOmIS7EEIAkaeb0JZN6Kpp+S5lSEi4CyFOekZzjOT6NoLnVuEu9+e7nCEh4S6EOKnlhj424ChwU3TxlKN/wRgh4S6EOKml3u/A2BUldHktDt+gZkEfEyTchRAnLTtl0vPHRtxVQQJLJuS7nCEl4S6EOGlFnm7EjhuUXDsD5RjbQx8PJeEuhDgpZZoiJN7eR/DcKjzVhfkuZ8hJuAshTjratAk/Uo+z2EvRZWPn1nnHQsJdCHHSib3ajNmepPjjM3B4nfkuZ1gMKtyVUsuVUtuUUvVKqW8M8PpnlVIdSqmNvcvnh75UIYQ4cWYkQ+yFPfjnl+EfgzfhGKyjjvtRSjmBe4DLgGZgrVJqldb6w0Oa/q/W+s5hqFEIIYZM9OkmtNbj5krUwxnMkfuZQL3WukFrbQD3AyuHtywhhBh6md1RkhvaKTy/GlepL9/lDKvBhHsVsKff8+bebYe6Xin1vlLqIaXUgJd5KaXuUEqtU0qt6+joOI5yhRDi+GhbE3miAUehm8ILx8+VqIczmHAfaPCnPuT5E0Ct1noh8Bzwq4HeSGt9r9Z6idZ6SUVFxbFVKoQQJyD5XgfGnhihK+rG7UnU/gYT7s1A/4+5aqC1fwOtdZfWOtP79OfA6UNTnhBCnDg7YxF5qhF3dZDAaZX5LmdEDCbc1wIzlVJ1SikPcDOwqn8DpVT/W5asALYMXYlCCHFiYi/uxo4aFF8zfdxdiXo4Rx0to7U2lVJ3AmsAJ3Cf1nqzUur7wDqt9SrgL5RSKwAT6AY+O4w1CyHEoGU7U8RebSFwWiXeqUX5LmfEDGoKNK31amD1Idu+2+/xN4FvDm1pQghx4iJ/bEC5HISW1+W7lBElV6gKIcat1NZu0lu7KbqkBmeRJ9/ljCgJdyHEuKRNm8gfG3BV+AmeMznf5Yw4CXchxLgUe60FszNF8dXTUK6TL+pOvn+xEGLcs6IZYi/sxje3FN/s8Tt/zJFIuAshxp3I6ka0rSm+enzPH3MkEu5CiHEl0xQhubEjN39MmT/f5eSNhLsQYtzQlqbn8Z04Qx4KLxr/88cciYS7EGLciL/WQnZvgtDV03F4xv/8MUci4S6EGBfMrhSRZ3fhm1eGf0FZvsvJOwl3IcSYp7Um/Gg9yqkoWTkdpU6O+WOORMJdCDHmJd9tJ1PfQ+jKOpwhb77LGRUk3IUQY5qVyBJZ3YBnahEFZ07MdzmjhoS7EGJMiz7ThJ02Kbl2xkkzne9gSLgLIcYsoyVO4p19BM+ejHtiQb7LGVUk3IUQY5K2NT2P1+MocFN06dR8lzPqSLgLIcak5IZ2jN0xQsvrcPgHdWuKk4qEuxBizLGTWSJPNeKpKTxp7ol6rCTchRBjTs/qRuxkluKVchL1cCTchRBjSrq+h+S6NgrPr8ZTFcx3OaPWoMJdKbVcKbVNKVWvlPrGEdrdoJTSSqklQ1eiEELk6KxF+NEdOMt8FF1ak+9yRrWjhrtSygncA1wJzANuUUrNG6BdIfAXwNtDXaQQQgBEn9uN1ZWm5LqZKPfYnBisu7UFrfWw72cwR+5nAvVa6wattQHcD6wcoN3dwI+B9BDWJ4QQQG5Me+zVZgJLJuCbXpzvco5Ly7Yt/ObrX2b96lXDvq/BhHsVsKff8+bebX2UUouBKVrrPw5hbUIIAeTmaQ8/sgNHwE3xx+ryXc5x6W5t4bGf3E2wrIy551847PsbTLgPdCq6728KpZQD+Ffgq0d9I6XuUEqtU0qt6+joGHyVQoiTWvz1FrItcYpXTscRcOe7nGOWjPTwyI/+DgVc983vESgKDfs+BxPuzUD/W5pUA639nhcCC4CXlFJNwFnAqoFOqmqt79VaL9FaL6moqDj+qoUQJw2zK0W0b5728nyXc8yy6TSP/uP3SITDXPu3f0fJxMkjst/BhPtaYKZSqk4p5QFuBvo6jLTWEa11uda6VmtdC7wFrNBarxuWioUQJ43987TjGJvztNuWxR9/+o+0Nezkqr/8OpNmzh6xfR813LXWJnAnsAbYAjygtd6slPq+UmrFcBcohDh5jeV52rXWvPDL/6Rh/Vouvv2LzFiydET3P6gJGbTWq4HVh2z77mHaXnjiZQkhTnZWzKDnyQY8tWNznvZ3Hn+I9559ijNW3sCiK64a8f3LFapCiFGp54mdaMPKjWkfY1MMbHn1RV77w6+Yc+4FnH/zp/NSg4S7EGLUSX3YRer9TooursFdGch3Ocdk96b3ePo/fsqUeadwxZ/9FcqRn5iVcBdCjCp22qTn8XpcEwIUXlCd73KOScfuJh7/px9SMmkyK772bVzu/A3blHAXQowqkTVNWFGDkutnolxjJ6JiXZ088qO78Ph8XPfNu/AV5HdSs7HznRNCjHuZpgiJt/YSPGcy3pqifJczaJlkgkd/dBdGMsG137iLovL8zzEv4S6EGBV01ib88A6cIS9Fl9fmu5xBM7NZVv3zD+lq2cM1X/kWlbXT8l0SIOEuhBglos/twuxIUXLdTBzesTHjo21ZrP7ZT9i96X0u/+JfULtwcb5L6iPhLoTIO2NPjNgrvTM+zirJdzmDorXm2Z/fw4533uDCT3+B+Rdcku+SDiLhLoTIK23adD+0HWehh+KrR0eXxtForXnld79k04vPcNb1N3P6VQPNgp5fEu5CiLyKvrAbsy1J8XUzcfgGddF83r3z+EOse+IRFl1xFefceGu+yxmQhLsQIm+MPTFiL+0hcFol/jml+S5nUN5/7um+q08v/uwXR+1kZhLuQoi80FmL7ge25bpjrpme73IGZdubr/HsL+6hbtHpLP/zv87b1aeDMXorE0KMa5E1vaNjbpiFwz/6u2Oa3lvP6v/7T0yeNZdrvvJNnK7RXbOEuxBixGUaeoi/3kLBWZPwzRz9o2Nat2/h8X/+IWXVU7j2b7+L2+vLd0lHJeEuhBhRdsak+8HtOEt9hMbA/VA7dzfx6I++R7C4lOu/9f28TyswWBLuQogRFXmyEasnQ+mNs3B4RvfFSuF9rTz099/F5fFww3fupqB49P+VsZ+EuxBixKS2dZN4Zx/BZdV4a4f/JtEnItrZzoN3fxvLNLn+23cTqhxbNwyRcBdCjAgrkSX80HZcEwKELp2a73KOKB7u5sG7v42RTHLDt75P+ZTRXe9AJNyFEMNOa03PIzuwkyalN81GuUdv9CSjER76wXdIhMNc9827mDBtRr5LOi6D+g4rpZYrpbYppeqVUt8Y4PU/VUp9oJTaqJR6TSk1b+hLFUKMVcn17aQ2dxG6fCqeyaP3hGQ6Eefhv/8ukbZ9fPzr32XyrLn5Lum4HTXclVJO4B7gSmAecMsA4f17rfUpWutFwI+BfxnySoUQY5IZTtOzaiee2iKC54/eOysZ6RSP/OguOnfvYsVXv0XNgoX5LumEDObI/UygXmvdoLU2gPuBg2bJ0VpH+z0tAPTQlSiEGKu0ZdP9h60AlH5i9qi90XXWyPDYj+9mX/12rv7Lr1O3eEm+Szphg7nEqgrY0+95M7D00EZKqS8BXwE8wMVDUp0QYkyLPrsbY3eM0ltm4yodnRf+WGaWJ/7lH9jz4Qd87EtfYebSc/Jd0pAYzJH7QB+1Hzky11rfo7WeDvwt8J0B30ipO5RS65RS6zo6Oo6tUiHEmJLa2k3spT0UnDGRwKn5v+3cQGzL4smf/YTGDeu47AtfYu75F+W7pCEzmHBvBqb0e14NtB6h/f3Axwd6QWt9r9Z6idZ6SUVFxeCrFEKMKWZ3mu77t+GeVEDxitE5R7u2bdb8x7+x4+03uOgzX2DhJcvzXdKQGky4rwVmKqXqlFIe4GZgVf8GSqmZ/Z5eBewYuhKFEGOJztp0/fZDAMpum4tyj76rULXWPPff/48PX32R827+NKd9bPTdbONEHbXPXWttKqXuBNYATuA+rfVmpdT3gXVa61XAnUqpS4EsEAY+M5xFCyFGr55VO8m2Jij7zDxcZf58l/MRWmte+vUveP+5p1l67SdYeu0n8l3SsBjUnJVa69XA6kO2fbff478c4rqEEGNQYu0+Emv3UXjRFPxzy/JdzkdorXnpVz9n/VOrOO1jKzn3pk/lu6RhM7onJBZCjBlGS5zw4zvxziim6LLRd7l+/2A//aqVXPCpz4/auygNBQl3IcQJs5NZun63BWeBi9KbR994dq01L/7qXjY89cRJEewgc8sIIU6QtjXdD2zHimQovXUuzqAn3yUdRGvNi/+zP9g/flIEO8iRuxDiBMVe3kN6azfFK6bjrSnKdzkH0Vrzwi//i41r/sjpV1/LBbf9yUkR7CDhLoQ4AekdYaLP7MJ/agUFZ0/KdzkHyQX7f7JxzZMsueY6lt16+0kT7CDdMkKI42RGMnTfvxVXRYCS62aOquDUWvP8faMv2C3L5q3Hd5LoyQz7vuTIXQhxzLRp0/27Leispuy2uTi8o+dCJdu2eO7n9/DBC8+MqmBP9GRY8/NN7N0ZIVDkZeFFwztDpoS7EOKYRVY35iYEu3UO7spAvsvpY5lZnvr3f2Hbm6+y9NqbOPem20ZFsLdsD7PmF5vJpk0u+9w8Zp0x/Lfsk3AXQhyT5MZ24m+0EjyvisApo2eOqKyR4Y//+iMa1q9l2a23c8aK6/NdElprNj63hzcf3Umows/Kv1pE2QjdrETCXQgxaNm2BOGHd+CpLSJ0ZW2+y+ljpJI89uO72bNlE5d+/kucetmV+S4JI2Xywq+3sHNDB9MWV3DJp+fi8Y9c5Eq4CyEGxc6YdP12C8rrpOyTc1DO0TEeIxWP8cg//B1tDfV87M6vMve8C/NdEl2tcZ7+r01EOlKcc90MFl02ZcS7hyTchRBHpbUm/NAOzK4UFZ8/BWeRN98lAZDoCfPQD75DeF8rK776bWYs+ch9hEbcjnVtvPCbrbg9Dlb+1SKqZpXkpQ4JdyHEUcVfayH1QSehK+vwTivOdzkARDvaefAH3yYRDnPt3/4dU09ZlNd6LMvmjYfref+FZiZND3HFFxZQUJy/D0EJdyHEEaW2dBFZ3Yh/fhnBZVX5LgeA7tZmHvzBd8imU9zwnbuZPGtuXuvpP8xx4cXVnHP9DJx57raScBdCHJbRGqf7D1txTw5SctPsUTGssL2pgYd++H9QSvGJ7/4DlbX5vdNT3zDHjMXln5vPzDMm5LWe/STchRADsqIGXb/ajMPvovwz83B48n+hUuv2LTzyD3fh9vu58Ts/oHTy8F4IdCRaazY+u4c3Hxv5YY6DIeEuhPgI27Do/NVm7JRJxZ+eOipOoDZuWMeqf/0HgiWl3PidH1JUkb+bbqcTWV787VYa8jTMcTBGVzVCiLzTtqb7f7eRbY1T9ql5eEbB0eiml57jmf/6GRU1dVz3zbsoKM7PCBSA1voenv3vzSQjBudcP4NFl478MMfBkHAXQhwksqaJ9OYuQldPwz8vv7fK01rzzmMP8tr9v6bmlEWs+Mq38AbyM92Bbdmse2oX655spLDcz3VfP50JtaNriuP+JNyFEH0Sa/cRf7mZgqUTCZ47Oa+12LbFC7+8l/eeeZI5517A8j//K5wud15qiXWnefa+zeytjzB76USW3TILj290x+egqlNKLQd+CjiBX2itf3TI618BPg+YQAfwJ1rrXUNcqxBiGKW2dBF+dAfemcUUr5ie164G0zBY/X//iR3vvJGb2fGTn0U58jO0cOf6dl787VZsS3Pp7fOYvXT4J/0aCkcNd6WUE7gHuAxoBtYqpVZprT/s12wDsERrnVRK/RnwY+Cm4ShYCDH0Mk0Run63FfekIGW3zc3r1ALpeJzHfnI3LVs3c+Gnv8DpV63MSx1Zw+L1B3ew+dVWKqcWctnn5lM8imbAPJrBHLmfCdRrrRsAlFL3AyuBvnDXWr/Yr/1bwG1DWaQQYvhk9yXo/J8PcRV7Kb99Pg5v/robYl2dPPz33yW8t5Wr/uJvmHPuBXmpo7M5zjP/vZnw3gSLL69h6YppOF2jYy6dwRrMT7EK2NPveTNwpAkcPgc8NdALSqk7gDsAampqBlmiEGK4mOE0HfdtQrkdlP/Jgrze3Hrfzh089pO7yaZTXP+t71Gz4NQRr0FrzaaXW3j9oXo8ARcr/mIRU+aVjngdQ2Ew4T5Qx5sesKFStwFLgAE/brXW9wL3AixZsmTA9xBCjAwrbtD535vQhkXFF0/FVerLWy3b3nyNp//fvxIIhbj++z+hoqZ2xGtIRg1e/M0Wmj7oomZ+GZd8Zi6Bovx92J2owYR7MzCl3/NqoPXQRkqpS4FvAxdorYf/BoFCiONmJ7N0/vcmzJ4MFZ9bgGdSQV7q0Frz1iP388YDv2PyrLms/Nq3CYRGfmKyho0dvPjbrWTTFufdOJOFF1WjHKNv7PqxGEy4rwVmKqXqgBbgZuCT/RsopRYD/wUs11q3D3mVQoghY6dNOu7bRLY9Sfln5uOtC+WljqyR4Zn//BlbX3+ZeedfxGV3fBmXZ2SPlI20yWsP7GDLG3spnxLkstvnUzo5Px90Q+2o4a61NpVSdwJryA2FvE9rvVkp9X1gndZ6FfATIAg82Dt8arfWesUw1i2EOA52xqTzvk1k9yYou20uvjzNNZ7oCfP4T37A3vptnHfLZzhz5Q0jPvRyb30Pz/3Ph8S60py+fCpnXF035k6aHsmgTotrrVcDqw/Z9t1+jy8d4rqEEEMsF+ybMZpjlH1yLv65+bn6tL2pgcd+fDepeJQVX/0WM888Z0T3b2Vt3vljIxue2UVhmY9rv3oak2aMjjnqh9LovsRKCDEk7LRJ5y83Y+yJUnrLHPwLyvNSx4633+Cpe/4FbzDIzd/7MRPqpo/o/tuaojz/qy2E9yaYd+4kzr1x5qi/0vR4jc9/lRCij53OdcUYzTFKb5lD4JSKka/Btnj9/t/wzuMPMWnGbFZ87dsES0ZuiKGVtXnnyUY2PLObgpCHq798KlPn53fenOEm4S7EOHYg2OOU3jKXwCkjf8SeikV58mc/Ydf7G1h4yXIuuv2LuNwjN0dM+67c0Xp3a4K55+SO1r2jbHre4TD+/4VCnKTsZJbO/9mM0Ryn7JP56Yppb2rg8X/6IYlwF5fd8WUWXnLFiO3bytqsfbKR9c/sJlDo5uo7T2XqgvF9tN6fhLsQ45AZydB53ybMzlRegl1rzfvPPc1Lv/o5vsJCbrrrH5k0c/aI7b//0fqcsydy3o0z8QbyM6Nkvki4CzHOZNuTdN63CTtlUn77AnwjPBIknYjz7L3/zva3XqP21NO48ktfGbELk8ysxbrVTaxfkztav+pLC6nNQ1fUaCDhLsQ4ktkdpet/NoNDUXHHQjxVI3sXpb07tvHHn/6YeHcny269nSVXXztiU/U2bwvz0u+2EmlPMfus3NG6r+DkOlrvT8JdiHEitbWb7t9twVHooeJPFuAq94/YvrVts/aJR3j9f39DsLScm+76RybPmjMi+07Hs7z+8A62vrmPogr/mJ7sayhJuAsxxmmtib/SQuTpRtyTCii/fQHOwpG7jD8Z6eGpe/6FpvfWM2vpuVz2xS/jKxj+vxi01mx/p43XHtyBkTQ5bflUzvhYLS6Pc9j3PRZIuAsxhumsRfjhHSQ3duA/pZySG2fhGMFw2/XBRp76938mk0hw6ee/xMJLl4/INALhfQleuX87zVvDTKgr4qLb5lA2wl1Qo52EuxBjVLYjSffvt5Ldm6Do8qkUXjRlxOZnscwsbz70B95+7EFKJ1dz/bfvHpFpeo2UydonG3n/hWZcXifLbp7F/GVVOMb4DI7DQcJdiDEosb6NnsfqUS4HZZ+dj3/OyPUxtzXUs+Y//o2O3U0suOhyLv7sHbh9wzsXvLY1297exxuP7iQVM5h7ziTOWjl9TM+3Ptwk3IUYQ+yMRc/j9STXt+OpK6L05jm4Qt4R2beZzfLWw/fzzuMPEggVs/Jv/g8zlhzppmxDo31XlFfu305bY5QJdUVc9ecLmVBbNOz7Hesk3IUYI4zWON2/34rZlaLwkhqKLqkZsRtK7KvfztP/8W90Ne9m/gWXcuGnP48vOLx93KmYwVuPN/Dh6634g24u/vRc5pw1cUzfRMPs6CD8h/spuvpqvNPqhnVfEu5CjHJaaxJv7qXnyQYcBW7KP38KvukjdFGQYfDGg79j3ROPUlBaynXfuIu6xUuGdZ+2ZbPplRbeeaKRbNri1IuncMbVdWN6PpjUps2Ef/NrIqufAtPEWV4m4S7EycxOZul+aAfpD7vwzSml5MZZOEfowpyWbVtY858/JdzazCkXX84Fn/oc3sDw3qWoeWs3rz6wg+7WBNVzSjj/E7PG7J2RtGkSe+55un/zG1LvvosjEKDkppsove1WPLW1w75/CXchRqlMU4Tu+7dhxQxCV00jeN7kERkNk82kef1/f8O7q1dRWFbO9d++m9qFi4d1n53Ncd58tJ7dm7sJlnpZfscCpi2uGPG7Mw0FKxKh56GH6P7d7zBb9+KurqbyG39L8fXX4ywsHLE6JNyFGGW0rYm9vIfos7twlvio/LNT8VSPTCjs+fADnvmvn9Gzby+nXvYxlt36WTz+wLDtL9ad5p1VDWx9ex9ev4uzr5vOwgurx+SFSJkdO+j+/e+JPPY4OpUicOaZTPx8pgOpAAAgAElEQVTWtwhedBHKOfL/Hgl3IUYRozVOz6P1GHti+E+toOTaGThG4E5Bse5OXvntL9n6+suEKidw4//5e2oWLBy2/aUTWdY/vYv3X2wGYNGlNZy+fOqYmwtGGwbRZ58l/Ic/kFr3Lsrtpuiaayj91G345s7Na22D+q1RSi0HfkruBtm/0Fr/6JDXlwH/BiwEbtZaPzTUhQoxntmGRfS53cRfa8bhd1N602z8i4a/W8LMZlm/+nHeevh+bNvirOtv5syVN+D2Ds+4dSNl8t4Le9j43B6MtMnspRM585o6ispGbh6coWA0t9DzwAP0PPwwVlcX7ilTqPzaVwlddx2u0tExr81Rw10p5QTuAS4DmoG1SqlVWusP+zXbDXwW+NpwFCnEeKVtTfLdNiLP7MKOGRScMZHQlbU4hnnuca01O999h1d+ex/hvS1MX7KUCz/9BYonTByW/Rlpkw9eambDs7vJJEzqTi3nzGvqKB+h7qahoC2L+Kuv0vOH+4m/8gooRfDCCym55WYKzj13xGa/HKzBHLmfCdRrrRsAlFL3AyuBvnDXWjf1vmYPQ41CjEvpHWEiTzaS3ZfAU1NI6La5eKcO/8U5e3ds4+Xf3kfL1s2UTKoa1uGNWcNi00strH9mF+l4lqmnlHHm1XVUjsC/c6iYXV30PPQwPQ88QLalBWdFOWV/+kVKbrwR9+TJ+S7vsAYT7lXAnn7Pm4HhvyxNiHEq25ag58lGMtvDOEt9lH5yDv5Tyoe9Cya8t4XX/vBrtr/9OoFQMZd+/s9ZcNHlOF1D36efTmTZ9HIL77+4h1Qsy5R5pZx5dR0Tp4WGfF/DQZsm8ddeI/LwI8RefBFMk8DSpVT+zdcovOQS1AjeA/Z4DeanOtBvnD6enSml7gDuAKipqTmetxBizLJiBtFnd5FYuw/ldRH6WB3BcyajXMP753yiJ8xbj9zP+889jdPl5uwbPsmSa67F4xv6fu5Yd5r3nt/D5tdaMTMWNfPLOP3KqUwe4btBHa9MYyORRx4l8thjmB0dOEtLKf3Upyi+4Xq806fnu7xjMphwbwam9HteDbQez8601vcC9wIsWbLkuD4ghBhrbMMi/moLsZeb0aZN8JzJFF5cM+wXIyWjEdauepiNa57EMrMsvGQ5Z99wCwXFJUO+r66WOBue3c2Od9rQwMwzKll82VTKq0f/NLx2IkH06TX0PPIIqXffBaeT4LJlFF9/HcFly1CesTk52WDCfS0wUylVB7QANwOfHNaqhBgHtK1Jbmgn+kwTVsTAN7+M0JV1uIf5DkmpWJR1f3yUDU89QdbIMPe8CznrupspnVw1pPvRWrO3vof1z+xm1wdduDwOFlxYxamXTBn1o1+0aZJ44w0iq54g9vzz6FQKT10dlV/7KkUrVuCurMx3iSfsqOGutTaVUncCa8gNhbxPa71ZKfV9YJ3WepVS6gzgUaAEuEYp9T2t9fxhrVyIUUprTWZHD5GnG8m2JnBXBym9aQ7eYe5vjna2s371Kt5/fg3ZTJrZZ5/P2dffQln1lKN/8THQtqbxvU7WP7OLtsYovqCbM6+p45QLqvEFR29ftNaa9KbNRJ5YRfTJ1VhdXThCIUIrVxBasQL/4sVj8orYw1Fa56d3ZMmSJXrdunV52bcQw0GbNsn3O4i/0kJ2XwJnsZfQ8lr8CyuGdSbD9qYG1j3xCNvefBWtNbPPPp+lH7+R8iG+eUYqbrDl9b1sfrWFaGeaonIfiy6tYc45k3CP4itKjeZmok88QWTVExiNjSi3m+BFFxFacQ0Fy5bhGGPdLkqpd7XWRx3eJFeoCnGCrEiG+Dv7SLyzDztm4JoQoOSGWQQWVQzbyVLLNNm57i3ee3Y1uze9j9vrY9EVV3P6x1ZSVDF0XQpaa/Y1RNn0SjM73+3AMm0mzyzmrI9PZ/riChzO0TW2e79sayvRZ54h9vQaUhs3AhA44wxK/+R2iq64AmfR2BmKebwk3IU4DtrSpLd3k1zXRmpLF2jwzSqh4JyZ+GaVDNuf99HOdj54fg0fvPAMiZ4wheUVnHfLZzj10iuHdH71TDLLjrVtbHq1la7mOG6fk3nnTmL+sqpRe69So7mZ2JpniK5ZQ/r99wHwzp1LxV//NaFrrh7VY9KHg4S7EMcg25Yg8W4byfXt2PEsjgI3wfOqCC6dhGuYTiLatkXTe+t579mnaFy/Do1m2uIlnHrZx6hddBoOx9B0iWhb07wtzJY39tKwsQMra1NWHeTCW2cz84wJeEZgjptjlWloJPbcc8TWrCG9eTMAvvnzqfjKVyi64nI8U6fmucL8GX0/LSFGGZ21SKxvJ7F2H9nmODgUvjmlFJw+Ad+cEtQwdU1EO9rZ/PLzbHrpOaIdbQRCxZz58RtZeMkVQ9r1Eu1MseXNvWx9cy/x7gzegIt550xizjmTqKgpHFUnGbVlkXrvfeIvPE/s+RcwGhsB8C1cmLvA6Ior8FRX57nKgWmtaYw0sq5tHUsmLmFaaNqw7k/CXYgBaK3J7kuS3NhO8t027HgW98QCQldPI7CoAmdweE7CZTNpdrzzJptfepbdm3JdCzULTmXZrbcz44ylOF1DMxolHc/SsLGD7Wv30bKtBxTUzC3lnOtmUHdqOS736DlBaqfTJN54k9gLzxN/8SWsri5wuSg48wxKbr2VwosvGpVdLoZlsLlrMxvaN7ChfQPvtb9HOBMG4OtnfF3CXYiRorUm25ogvaWL5AedmG3J3FH67BIKz6/CUxcalqPYZDRCw/q17Fz3Nk3vr8fMZAhVTuCcG29l/gWXDNlR+v5Ar1/fTvPWMNrWhCr8LF0xjdlnTaSwdHhmgjxWWmuMxiYSr71K/LXXSL6zFp1O4wgGCS5bRvDiiwkuO3/UnRQNp8NsbN/Iho4NbGjbwOauzWTtLABTi6ayrHoZp004jSUTljClcGiHpw5Ewl2c1GzDwmiKktrSRXpLN1ZPBhR4phZR/PHp+E+pGJYrScP7Wtm59i3q171N67YtaG0TLC1j/rJLmH3O+VTPmT8kswym41ka3uug/t0DgV5U4Wfx5TXMOK2S8inBUdHtYsXjJN96i/irr5F47TWyLS0AeGprKb7hBoIXXUjBGWeMmqtFtdY0RZtyYd57ZN4UbQLA5XAxr2wen5zzSRZPWMyiikWU+ctGvEYJd3FS0ZaNsStGenuYTEMPRnMcbI1yO/DOLKHo0hp8c0qHvNtF2zb7du6gft1b7Fz3Nl3NuwGoqKll6XWfYMaSs6ism37CQattTceeGLs3d7FrUzdtjRG0hqJyH4svq2HG6aMj0O10mtTGjSTefpvk2++Qev99ME0cgQCBs8+m7Aufp+C880ZN/3l3uptNnZvY3LmZTV2b+KDjg74ulpA3xKKKRaycsZLFlYuZXzYfnyv/fwVJuItxz4pmSG8Pk94WJr0jjE5b4FB4qoMULqvCWxfCUxfCMcQX4hipJHs+3MTOd9+m4d13SPSEUQ4H1XMXsPCSK5i+ZCmhyhOfPz2dyLJnSze7N3Wx68NuUlEDgIqaQk6/spZpiyryHuh2JkNq43sk336b5DvvkHrvPXQ2Cw4HvvnzKbv9dgrOP4/AokV5PzpPZpNs7trcF+SbOjfREs/9JaFQTC+ezrLqZSyuXMziysXUhmpxqNE33l/CXYw7Vtwg0xAhs7OHTEMEsyMFgKPIQ+CUCnyzS/DOKB7y29dljQyt27awZ/MH7N78Hm07d2BbFm6fn7pTT2P6GWdRt3gJ/uCJ3aDCSJvs3RmhdXuYlu09tDdF0Rq8BS5q5pZSs6CMmnllBIryF5JmOExqw0ZSG9aTXL+B9AcfoA0jF+Zz51Jy220Elp5JYMkSnEM4Pv9YxYwY27q3sS28jS1dW9jctZmGSAO2zt2aoipYxfyy+dw8+2bml89nXtk8CtwFeav3WEi4izFNmzbZ9iTZljhGS5xMYyR3IhRQHifeuiIKzpiId0Yx7kkFQ3r0mugJs7d+O3t3bKV1+xb2bt+KZZooh4OJ02ey5JrrqJl/KlVz5+M6gfm/0/Es+xoj7K3vyYX5rhja1jicigm1RZx+ZS1TF5RRWVuEYxinOTgcbdsYTU2kNmwguX49qfUb+oYo4nbjmzeXkltuIbB0KYElp+flRKjWmrZkG1u7t7K1eyvburextXsrzfHmvjalvlLml83n8qmXM798PgvKF1DqG6Jb5mkNkT3QviW3zLgEJp4yNO99GBLuYszQWmNFMhi7Y7llTwyjJQZmbn4k5XXimVJIYFEl3ukhPFXBIRuDbhoG7U072bsjF+Z767cT7WgDwOF0UjG1jkXLr6FmwUKqZs/HGwgc135sy6arNUFbY5R9DRHaGqP09H5Y7Q/z066ooWpWCROnhXB7R3bIotaabEsL6U2bSH3wAekPNpHevBk7kQDAGQrhX7yY0LXXEli8CN8pp+DwjWz/c9pM0xRtYkd4Ry7Ew7kw78n0ALmulalFU5lfPp/rZ13P7JLZzC2bS7m//MR3bpnQsws6tkLHNujcnnvcuQOM+IF2ngIJd3HyshJZjOYY2T0xjOY4RnMMO54bWobLgacqSPCsyXimBHFXFeIq9Q3JBF2mYdC5u4m2xnr27aynrbGerj27sC0LgMKyCibNnM3i5VczacZsKqdNx+3xHvN+tNbEutJ0Nsdpa4rS1hChbVcMM5Pbj7/QzYS6EHPOnsjEuhCVtUUjGubasjB27SKzdSvpbdtJf/gh6U2bsMK5E4nK7cY7Zw6hlSvwzV+Af/EiPHV1I9a3nzJTNEYa2dmzk4ZIA/U99TT0NNAcb+7rVvE6vcwsnsklNZcwp3QOc0rnMKtkFgH38X349smmoaseOrdBx/be9bbcNss40K5wMlTMgkW3QuUcqJwHFXPAP/w3L5FwF3lnGxZWdxqzK0W2I5XrYmmOYYUzuQYKXBV+fLNK8FQX4qkpxD2x4IQn5TLSKcKtLXS3NtPd2kK4tZnulj10tezpC3JfsJAJ02ZQd/W1TJwxi0kzZhMsPfZhbdmMRVdrnK7mOJ3Ncbpaco+NdG4/DoeifEqQuWdPYuK0IibUhSgq941YUFqRCOlt28hs3UZ621Yy27aT2bEDnen9GbhceKdNI3jxRfhPOQXfglPwzZo5Iic/I5kIu6O7aYo29QV4fU89LfEWdO9N4VzKxdSiqcwpncNV065ievF0poemUxuqxeU4zphLRyHcCN2Nh6ybINoMvR8gKAcUT4WK2TDzMiifnXtcPhN8+butoIS7GBF22sTsygX4gXXusR01DmrrLPHmQvysybirg3iqgsd98lPbNrGuzt4A7xfirc3Eu7v62inloKiyktJJVdSddgYTps1gQt0MiioqjylgM8ks4bYkPfuXfUk6W+JEOlJ9N6d0+5yUVwWZtXQiZVVByquDlFUHh33aXG3bmHv3kmlswmhowGhqJNPQiNHYiNnW1tfOWVKCd85sSm65Be/s2fjmzMYzffqwTo3bk+5hd2w3u6K72BPbw+7YbnZHd7M7tptIJtLXzuVwUVtUy7yyeayYviIX4sXTqSmqwe04xvMatg2J9gHCu3ed7Dq4faAcSuug5iwonZYL74o5UDYD3Pkf+ngoCXcxJLTW2EkTsyuVOwrvTB0U5nYie1B7R6EbV5kf34xiXGV+XOW+3LrUhyNwbP+RWmaWWGcn0c52oh3tRDra+kI8vLcV08j0tfX4A5RWVVMzfyGlVVMomVxF6eRqiidOHvRJz0wyS6w7TbQznQvw9gNhnood+Hcqh6Ko3EdZVZBZZ06kvDoX5IVD1H00EG2amG1tGM0tZJubybY0YzQ15UK8qQmdTve1dRQW4plWR8FZZ+GdOQPv7Dl4Z8/CVVExpH8xaK2JGlH2JvbSGm9lb2Ive+N7aU200hpvZU9sD1Ej2tdeoZhUMIkpRVO4YuoV1BTVMKVwCrVFtUwpmjL4EDczEGnOnciMNENP7zqyO/c42nJwF4pyQKgaSupg7jW5dWldbl1SC75jOxFs25quhEFbNM2+SJp9/dbXn1bN2dOH98ImCXcxaFpr7Hg2F9idaczufgHemUanzYPaO0NeXGU+/PPLcJb2hndZbu04hr5jI50i2tHeG94dfSEe7Wwn1tFOvCecG43Qq/9ReM2ChZRMqqa0qprSydUEQsVHDC6tNcmoQaw7TawrTaw7Tbx3vX/b/q6U/fyFboonBKhdWE7xhAAlEwIUTwhQVO7HOcTzuduJBNn2dsy2dsz2NrItLRjNzWRbWnNhvm8fmP1+Dg4H7qqqXIgvXYpn2jQ8dbV4p03DWVY2JCGezCbpTHXSnmynPdlOa6KVvfG9uRDvDfSkmTzoa7xOL5MKJjGpYBJX1l3JlMIpTC2aSk1hDVWFVXidRziHoTVkYhBvg9heiO07sI62Hgj0eNshX6igcCKEpsDkxTBvRe5xSW0uwItrwHX4v0601kTTJt0Jo28JJwy6EgbhpEFXvHedMOiMZWiPpclaB98MyelQVAS9nDtj+K9YlTsxiYNoy8aKGJjhA0fdVr+uFG3YBxorcJb4+gL7QHj7cic3jzD5lNYaI5UkHu4mEQ6T6OkmEe4m3hMmEe4m0W+dSSYO+lqH00lhWTlF5ZUUVVRSWF5JUUXFgedlFR85Cs9mLJLRDMmIQTI6wBLJ5NYxA9s8+L8Jj99FYamPwjJfbt3vcfEEP95j/EtjILZhYHV1Yba3k21rw2zvwGxrywV4X5i3Y8fjH/laV0UF7qoq3NXVvesqPPsfT5x43P3iKTNFR7KDjlQHHckO2pPtuRBPtR+0PZ79aE3F3uK+8J4cnMzEgolMDk5mckHucamv9OAPFq3BSOS6QpJdkOzOrRPt/cK7X5hnEx/ZJ+4CKJqUC+xQdS6sQ9UHnhdVHRTeGdMinMgeCOukQXc8Q3cyS3ciQziRpatvbdCTNDDtgfPS63JQVuChpMBDaYGH8qCXiSEfE4t8TCjyMSnkY2LIR3nQi/ME/2ob7J2YJNxPItrOHXlbkQxmTwYrksHqtzZ7Mthxo69vGACnwnXIUberzIezzI+r2Nt3UtMyTdLxGOl4jFQ0SioeJRWLkYpFD9qWjsVIRMIkwuGDukv2c7k9FJSUUFBc2rcOlpRSVFHZF96BUDHZjCaTzJKOm6QT2YOXeJZUb2gnogapqEE2Y31kX0qBv9BDIOQhUHRgCZYcCPBgqQ+v/9j/wNWGgdnTg9XdjdXdjdnVjRXuXXd3Y+7f3t2F1dU9YGjjduOqKMddOQFXZSWuCRNwVVbgntD7vHIC7smTBj3UMGWmCKfDhDNhetI9A68zPXSmOulMdhLLxj7yHl6nl3J/OZWBSir8FVQEKqjwV1AZqOzbPslfScDKQioM6R5IR3KP9wf2oUuid2199Pch930I5I64Cyfl1sGJBz8vnIQOVhK1/bmATmToTmT71oceVYd7wzyeMQfeH1AccFNa4KE0kAvrQ5eSAk8uzAMeyoIe/G7niJ38HtJwV0otB35K7gbZv9Ba/+iQ173Ar4HTgS7gJq1105HeU8J96Git0SkTK5HNhXc8ix03sCIGVk8aM5LJPY5k4JA/E5XbgbPYizPkxRnyQIET22djekwMl0GGBOlkgnQiTiYRzwV1PLdOx2KkE7lAN1Kpw9bncnvwFRXhLyzCHyzEFwzhKwzhC4TwBEK4fYU4PUW4XEFs7cHM2BgZk2zKIp3MkukL7lyQZxJZjvRr6w24ckEd8hAo8h4U3P23+4Luj1z0o7VGp9PYyeSBJbF/ncBOJLCiEexoDCsaxY5FsSLRjzzu37d9EKcTZ2kJrpJSnGWlvesyXGWlOEtLcVVW9oW3s6Skb/Iw0zZJmSmS2STxbJyYESOejRM34sSysdz6kG0xI7c9YkToSfeQtgauyaEcFHuL+5YybwkV3hAV7kIqXQVUOP1UaAcVtqYom0GlI7nQTvX0C++eA9uMj34oHMRXDIEyCJShA6VYvlJMXxlpTzEZdzFJVzFxZ4i4s4iIo5io5SeZtUhmLVKGRThpnNBRdd8S6BfS/dbFfjeuUXr7QBjCcFdKOYHtwGVAM7AWuEVr/WG/Nn8OLNRa/6lS6mbgWq31TUd6Xwn3w9O2RhsWdtrCTvQGdbw3uBPGQQGe25b9SGgDoED7FbZfY7pNss4MaVKk7RgJI0IsEyaRCJNOxkknEmQScbRtf/R99r+dw4HHV4DbX4DbW4DLE8DlKcDp9uNw9i4OPzj8aO3Dtr1YlgfLcJDNWBhpi2zaPGIw9+f2OvEWuPAVuPEVuPEWuPH5nXi9Cq8XvC4bj0vjcZl4HSZusrjJgJFBZwx0Jo2dzmCneoO5N6z1/sDut63/whG+Bwe+GQpHYSHOwkIcRYVQGIRgAbqwALvAh1Xoxwr6yYYCGEV+0kEviUIXCa8mZWdIZpOkzFQusM1kX3Afum3/9v1Txx6JA0XQ6aPQ6SXo8BB0uClUbkIONyXKRTFOSm0otm1KzCzFWYOSbJrCTAKHEYdMPHehjWUcdV+WK4DpLsRwh8i4C0k7C0k7gyQchSQcQWIEiRAgYhcQ1gG67QDtZpA2s4B4VpM0ckGdNEwOk8mH+7YT8o/eo+qRMJQ3yD4TqNdaN/S+8f3ASuDDfm1WAnf1Pn4I+HellNL56vMZRtrWaNMG00abucfastFZG8swsY0stmH2PrbQhomVzmKnLXTGxM5Y6IyFnbHRhgVZfWAxNcpSOOzD/yJaWBhkMOw0GTtJykyQNuOkjChpM07aSpC2kmTsJBkr2TcOuI9y4HT6cDh9KIcP5fCiVDGoCXgLfGjtzS14QflQKtcG5QPcKKUwbTBTwCEH606HjVPlFpcji0ulcGHixaSALE5t4HQZOO3c4rLTOC0Dp5XCaaZxmmlcVgpHNonTSEEmA0YWMgYYBmQM1CFJYPYuB5+uG+DnphSWz4XldWF6XZg+F6bXQdbjJFvmwJjkwvCEyHiLMdyKtAdSHk3KrUm6bBJum7jLIu626fGaRNwWBgYZ3Ybm0BN3/ez/Pg3QxKXBjwM/Cp+GgAaf1hTZmgm2TYFt4bctApZJwM4SsDV+rSm0bYK23bvWfY8DWnOkCLNwkHH4STsCpJWflAqwR/lJqWISTCKufcQcXqJ4idheekwvPZaXBH4iuoAogd51AdmjREfA4yTgceL3OAm4Xfg9Tgp8Tia5XQe/5nES8PTf5iLgPvB6gdeF332gnc/tGFdBPZwGE+5VwJ5+z5uBpYdro7U2lVIRoAzoHIoi+1t950+o88495JdYceDnrY74/6jcUKt+X3nw+xxodEgrhUM5T3j2t6ydwbQNTJ0laxuYtkFW59a57cZB2zNWmrSdIW2lMexs7kp75UYpD/QuSrlza0pAVYLbg1Ie3NqJAwcO7cBpO3BqhcMGpzZxGCYOO4vD7l1rE6dl4LAjOK0sTiuDwzZyj+0MDsvAaWdzayuD0zZw9L6W+zoT1e+DxHSA7citrf2Ls99jByQPeW45FZbKtTOdYBRB1gVGvyXrcvSuD92+f60+sj3lya1RGsji0AYuDS40Lq1xQW7dtw3cWuPVGk+/dUhrKmyNJ6nxavpe82rd1/7Qr/FojbKdOLQTl3bgtp04bScO24WNiyyKLC6yuDC0iwweMrhzi3YfeIybWN9zzwCve8hoN5bDg+nwYDs8WA4PlsOL6fCgHV5wunA5FS6Hwulw9K5zz71uB363E5/bid+dC9ZCt5OK3sf+3u2+fo/9HsdB7fd/vdclATwaDCbcB/opHXpEPpg2KKXuAO4AqKmpGcSuP8ry2YQznb3vfmAX+qBdHvyM/cev/SrS/doeXGjv137k/TW2trC1nVtjY2kLm/3b+i29/9PaxtI2pm1i6iw2JqBR9D/CsntDUeNAo9SBx2D1trUJOHML2gJstLJzYaUstLLRykIrC6VMbJVFO+xc1Q6FVqAVmArs/c8duaNZrQBHbwUOsJVC935+2Q6V+3pH/8e5BacT7XCCChzY1m9R/7+9s42x4irj+O8/9y41xVpZKYqlFUjUCFYsJVWqrWhSpRg0Bok0RFEaX5I2qTExQqr9oNHY6gdfE0tqTWqsfvAVDQ0aFT9Y2wIWKGgpC6KBkmKqEW0Vjfv44TwL5467271378y9XJ5fMplznjnnzH+fOee5M2fu3qMCkT4WU3M6k9aZnB+3PJ/qFZ4vEBcCM/PykI6owGggivTBS9P3DaQmBU2kBtJQOpbCOCqajFKACkbVwCgYVYGpgcnTNNyW0hQNpLQ3NVDRABWo0QQJFQ1G1eSZosnTjRlYYwgaM6BoUhSikChES1Adavx/kH1OoziTbhTyYFy05BuFGCoKGo2z5YaKoic/Ghb0L1MJ7seAfE2oecATE5Q5JqkJXAz8pdyQmW0BtkCac+9E8OrPf6yTakEQBOcVU5lj2Am8VNICSTOAdcDWUpmtwAZPvxP4xSDOtwdBEJwrPOudu8+h3wJsJ30V8h4zOyDpk8AuM9sKfB34pqQR0h37uipFB0EQBJMzpf/OMLNtwLaS7fYs/S9gbXelBUEQBJ3Sv9/UD4IgCDomgnsQBMEAEsE9CIJgAIngHgRBMIBEcA+CIBhAevaTv5L+DPyxw+qzqeCnDbpEv2oLXe0RutqnX7UNmq6XmNklz1aoZ8F9OkjaNZVfResF/aotdLVH6GqfftV2vuqKaZkgCIIBJIJ7EATBAHKuBvctvRYwCf2qLXS1R+hqn37Vdl7qOifn3IMgCILJOVfv3IMgCIJJ6JvgLukeSScl7c9sSyT9RtKjkn4s6XnZsc2SRiQdlPSWzL7SbSOSNtWpS9L1kna7fbekN2V1driuPb7NqVHXfEn/zM79tazOVV5+RNKXNM0ldNrUtT7TtEfSqKRX+7Fu++sySb+U9HtJByTd6vZhST+TdMj3s9wu98eIpH2SlmZtbfDyhyRtmOicFWpb75r2SXpA0i55RQAAAATFSURBVJKsraPu5z2SprVIcQe6Vkj6W3bNbs/a6tq47EDXRzNN+yX9V9KwH6vDX2s9PyppWalOdXHMzPpiA64DlgL7M9tO4A2e3gh8ytOLgL3ABcAC4DDp54gbnl4IzPAyi2rUdSXwYk+/Ejie1dkBLOuRv+bn5UrtPAwsJy2QdD9wQ126SvWuAI5U6K+5wFJPX0Ra9H0RcCewye2bgDs8vcr9IeC1wENuHwaO+H6Wp2fVrO2asXMCN4xp8/xRYHaPfLYC+Mk47XR1XLarq1R3NWm9iTr99Qrg5eU+TcVxrCsDp1sbpSAEnOLse4HLgN95ejOwOSu3nRSglgPbM3tLuap1leoIeAq4wPMtF7Zmf7WUK3XGx7L8jcBdPfLXZ4BPZ/mu+6t0vh8B1wMHgbmZPw56+i7gxqz8QT/e4qNyuTq0lcrOovUm4ihdClYd+GwF4wf3SsZlh/66D3h/nf7K8i19uuwHuhzH+mZaZgL2A2/z9FrOLvc33qLdl05ir0tXzhrgETM7ndm+4Y9/n5ju9EcHuhZIekTSryRd67ZLST4ao5f+ehfw7ZKtEn9Jmk96ynoIeKGZnQDw/dj0T0/62BS15dxEesIYw4CfKk0LfqAHupZL2ivpfkmL3VaZz9rxl6QLgZXA9zJzHf6aiEr7WL8H943AzZJ2kx5z/u32iRbkntJC3RXqAsA79R3ABzPzejO7ArjWt3fXqOsEcLmZXQl8BLhPad67X/z1GuAZM9ufmSvxl6Tnkgb3h83s1GRFx7FV2sfa0DZW/o2k4J4vLPw6M1tKmq65WdJ1Ner6Lelf45cAXwZ+ONbEOGWn7bN2/UWakvm1meXrO/fSX5X2sb4O7mb2mJm92cyuIt3VHfZDEy3aPZXFvKvUhaR5wA+A95jZ4azOcd//nfRoeHVduszstJk95endbn8ZyV/zsiZq95ezjtJdexX+kjREGnTfMrPvu/lJSXP9+FzgpNtr7WNtakPSq4C7gbePXVsAM3vC9ydJ/XBafmtHl5mdMrN/eHobMCRpNhX4rF1/OeP1szr8NRHV9rEq5pqmMUc1n9a52jm+L4B7gY2eX0zri4gjpJcQTU8v4OyLiMU16nq+n3NNqX4Tn9cDhoDvAh+qUdclQMPTC4HjwLDnd5JeGI69UF1Vl67MdgxYWKW//O+7F/hCyf45Wl/C3enpt9L6QvVhtw8DfyDNdc/y9HDN2i4HRoBrSuVnAhdl6QeAlTXqehFn361cDfzJ2+jquGxXl+cvJq3vPLNuf2XHd9A6515pHJvWIO7mRvpEPQH8xwf7TcCtpDfOjwOfHes4Xv420h3gQbJveJC+5fC4H7utTl3Ax4GngT3ZNsc7zm5gH3AA+CIebGvStcbPu5f06Lw6a2cZaU78MPCV3Mc1XccVwIOlNqrw1+tJj7b7smuzCngB8HPgkO/HPvQEfNX98mhpUG4kBdcR4H1d6GPtarsb+GtWdpfbF/o13ut+m1b/70DXLVk/e5Dsw4cujst2dXmd9wLfKbVTl7/e4WPhNPAkrS9LK4tj8R+qQRAEA0hfz7kHQRAEnRHBPQiCYACJ4B4EQTCARHAPgiAYQCK4B0EQDCAR3IMgCAaQCO5BEAQDSAT3IAiCAeR/2+JxJLF20IsAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "\n",
    "print(len(Time))\n",
    "print(len(SL_wTd_nos_base_R0_RCP26_cdf[0:-1,500]))\n",
    "plt.plot(Time,SL_wTd_nos_base_R0_RCP26_cdf[0:-1,10])\n",
    "plt.plot(Time,SL_wTd_nos_base_R0_RCP26_cdf[0:-1,50])\n",
    "plt.plot(Time,SL_wTd_nos_base_R0_RCP26_cdf[0:-1,166])\n",
    "plt.plot(Time,SL_wTd_nos_base_R0_RCP26_cdf[0:-1,500])\n",
    "plt.plot(Time,SL_wTd_nos_base_R0_RCP26_cdf[0:-1,833])\n",
    "plt.plot(Time,SL_wTd_nos_base_R0_RCP26_cdf[0:-1,950])\n",
    "plt.plot(Time,SL_wTd_nos_base_R0_RCP26_cdf[0:-1,990])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.26417553424835205\n",
      "0.40920981764793396\n",
      "0.7070159316062927\n"
     ]
    }
   ],
   "source": [
    "print(SL_wTd_nos_base_R0_RCP26_cdf[-1,833])\n",
    "print(SL_wTd_nos_base_R0_RCP26_cdf[-1,950])\n",
    "print(SL_wTd_nos_base_R0_RCP26_cdf[-1,990])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}