{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import netCDF4 as nc\n",
    "import matplotlib.pylab as plt\n",
    "import imp\n",
    "import csv\n",
    "import pandas as pd\n",
    "from io import StringIO"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# AISM_VUB\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_AISM_VUB_RCP19.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_AISM_VUB_R0_RCP19 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_AISM_VUB_R1_RCP19 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_AISM_VUB_R2_RCP19 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_AISM_VUB_R3_RCP19 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_AISM_VUB_R4_RCP19 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_AISM_VUB_R5_RCP19 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_AISM_VUB_SU_RCP19 = SL_wTd_nos_base_AISM_VUB_R1_RCP19+SL_wTd_nos_base_AISM_VUB_R2_RCP19+SL_wTd_nos_base_AISM_VUB_R3_RCP19+SL_wTd_nos_base_AISM_VUB_R4_RCP19+SL_wTd_nos_base_AISM_VUB_R5_RCP19\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# BISI_LBL\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_BISI_LBL_RCP19.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_BISI_LBL_R0_RCP19 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_BISI_LBL_R1_RCP19 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_BISI_LBL_R2_RCP19 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_BISI_LBL_R3_RCP19 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_BISI_LBL_R4_RCP19 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_BISI_LBL_R5_RCP19 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_BISI_LBL_SU_RCP19 = SL_wTd_nos_base_BISI_LBL_R1_RCP19+SL_wTd_nos_base_BISI_LBL_R2_RCP19+SL_wTd_nos_base_BISI_LBL_R3_RCP19+SL_wTd_nos_base_BISI_LBL_R4_RCP19+SL_wTd_nos_base_BISI_LBL_R5_RCP19\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# CISM_NCA\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_CISM_NCA_RCP19.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_CISM_NCA_R0_RCP19 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_CISM_NCA_R1_RCP19 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_CISM_NCA_R2_RCP19 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_CISM_NCA_R3_RCP19 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_CISM_NCA_R4_RCP19 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_CISM_NCA_R5_RCP19 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_CISM_NCA_SU_RCP19 = SL_wTd_nos_base_CISM_NCA_R1_RCP19+SL_wTd_nos_base_CISM_NCA_R2_RCP19+SL_wTd_nos_base_CISM_NCA_R3_RCP19+SL_wTd_nos_base_CISM_NCA_R4_RCP19+SL_wTd_nos_base_CISM_NCA_R5_RCP19\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# FETI_VUB\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_FETI_VUB_RCP19.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_FETI_VUB_R0_RCP19 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_FETI_VUB_R1_RCP19 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_FETI_VUB_R2_RCP19 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_FETI_VUB_R3_RCP19 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_FETI_VUB_R4_RCP19 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_FETI_VUB_R5_RCP19 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_FETI_VUB_SU_RCP19 = SL_wTd_nos_base_FETI_VUB_R1_RCP19+SL_wTd_nos_base_FETI_VUB_R2_RCP19+SL_wTd_nos_base_FETI_VUB_R3_RCP19+SL_wTd_nos_base_FETI_VUB_R4_RCP19+SL_wTd_nos_base_FETI_VUB_R5_RCP19\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# GRIS_LSC\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_GRIS_LSC_RCP19.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_GRIS_LSC_R0_RCP19 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_GRIS_LSC_R1_RCP19 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_GRIS_LSC_R2_RCP19 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_GRIS_LSC_R3_RCP19 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_GRIS_LSC_R4_RCP19 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_GRIS_LSC_R5_RCP19 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_GRIS_LSC_SU_RCP19 = SL_wTd_nos_base_GRIS_LSC_R1_RCP19+SL_wTd_nos_base_GRIS_LSC_R2_RCP19+SL_wTd_nos_base_GRIS_LSC_R3_RCP19+SL_wTd_nos_base_GRIS_LSC_R4_RCP19+SL_wTd_nos_base_GRIS_LSC_R5_RCP19\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# IMAU_VUB\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_IMAU_VUB_RCP19.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_IMAU_VUB_R0_RCP19 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_IMAU_VUB_R1_RCP19 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_IMAU_VUB_R2_RCP19 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_IMAU_VUB_R3_RCP19 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_IMAU_VUB_R4_RCP19 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_IMAU_VUB_R5_RCP19 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_IMAU_VUB_SU_RCP19 = SL_wTd_nos_base_IMAU_VUB_R1_RCP19+SL_wTd_nos_base_IMAU_VUB_R2_RCP19+SL_wTd_nos_base_IMAU_VUB_R3_RCP19+SL_wTd_nos_base_IMAU_VUB_R4_RCP19+SL_wTd_nos_base_IMAU_VUB_R5_RCP19\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# ISSM_JPL\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_ISSM_JPL_RCP19.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_ISSM_JPL_R0_RCP19 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_ISSM_JPL_R1_RCP19 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_ISSM_JPL_R2_RCP19 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_ISSM_JPL_R3_RCP19 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_ISSM_JPL_R4_RCP19 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_ISSM_JPL_R5_RCP19 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_ISSM_JPL_SU_RCP19 = SL_wTd_nos_base_ISSM_JPL_R1_RCP19+SL_wTd_nos_base_ISSM_JPL_R2_RCP19+SL_wTd_nos_base_ISSM_JPL_R3_RCP19+SL_wTd_nos_base_ISSM_JPL_R4_RCP19+SL_wTd_nos_base_ISSM_JPL_R5_RCP19\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# ISSM_UCI\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_ISSM_UCI_RCP19.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_ISSM_UCI_R0_RCP19 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_ISSM_UCI_R1_RCP19 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_ISSM_UCI_R2_RCP19 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_ISSM_UCI_R3_RCP19 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_ISSM_UCI_R4_RCP19 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_ISSM_UCI_R5_RCP19 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_ISSM_UCI_SU_RCP19 = SL_wTd_nos_base_ISSM_UCI_R1_RCP19+SL_wTd_nos_base_ISSM_UCI_R2_RCP19+SL_wTd_nos_base_ISSM_UCI_R3_RCP19+SL_wTd_nos_base_ISSM_UCI_R4_RCP19+SL_wTd_nos_base_ISSM_UCI_R5_RCP19\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# MALI_LAN\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_MALI_LAN_RCP19.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_MALI_LAN_R0_RCP19 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_MALI_LAN_R1_RCP19 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_MALI_LAN_R2_RCP19 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_MALI_LAN_R3_RCP19 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_MALI_LAN_R4_RCP19 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_MALI_LAN_R5_RCP19 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_MALI_LAN_SU_RCP19 = SL_wTd_nos_base_MALI_LAN_R1_RCP19+SL_wTd_nos_base_MALI_LAN_R2_RCP19+SL_wTd_nos_base_MALI_LAN_R3_RCP19+SL_wTd_nos_base_MALI_LAN_R4_RCP19+SL_wTd_nos_base_MALI_LAN_R5_RCP19\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# PISM_AWI\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_PISM_AWI_RCP19.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_PISM_AWI_R0_RCP19 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_PISM_AWI_R1_RCP19 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_PISM_AWI_R2_RCP19 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_PISM_AWI_R3_RCP19 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_PISM_AWI_R4_RCP19 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_PISM_AWI_R5_RCP19 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_PISM_AWI_SU_RCP19 = SL_wTd_nos_base_PISM_AWI_R1_RCP19+SL_wTd_nos_base_PISM_AWI_R2_RCP19+SL_wTd_nos_base_PISM_AWI_R3_RCP19+SL_wTd_nos_base_PISM_AWI_R4_RCP19+SL_wTd_nos_base_PISM_AWI_R5_RCP19\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# PISM_DMI\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_PISM_DMI_RCP19.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_PISM_DMI_R0_RCP19 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_PISM_DMI_R1_RCP19 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_PISM_DMI_R2_RCP19 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_PISM_DMI_R3_RCP19 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_PISM_DMI_R4_RCP19 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_PISM_DMI_R5_RCP19 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_PISM_DMI_SU_RCP19 = SL_wTd_nos_base_PISM_DMI_R1_RCP19+SL_wTd_nos_base_PISM_DMI_R2_RCP19+SL_wTd_nos_base_PISM_DMI_R3_RCP19+SL_wTd_nos_base_PISM_DMI_R4_RCP19+SL_wTd_nos_base_PISM_DMI_R5_RCP19\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# PISM_PIK\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_PISM_PIK_RCP19.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_PISM_PIK_R0_RCP19 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_PISM_PIK_R1_RCP19 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_PISM_PIK_R2_RCP19 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_PISM_PIK_R3_RCP19 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_PISM_PIK_R4_RCP19 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_PISM_PIK_R5_RCP19 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_PISM_PIK_SU_RCP19 = SL_wTd_nos_base_PISM_PIK_R1_RCP19+SL_wTd_nos_base_PISM_PIK_R2_RCP19+SL_wTd_nos_base_PISM_PIK_R3_RCP19+SL_wTd_nos_base_PISM_PIK_R4_RCP19+SL_wTd_nos_base_PISM_PIK_R5_RCP19\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# PISM_VUW\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_PISM_VUW_RCP19.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_PISM_VUW_R0_RCP19 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_PISM_VUW_R1_RCP19 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_PISM_VUW_R2_RCP19 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_PISM_VUW_R3_RCP19 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_PISM_VUW_R4_RCP19 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_PISM_VUW_R5_RCP19 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_PISM_VUW_SU_RCP19 = SL_wTd_nos_base_PISM_VUW_R1_RCP19+SL_wTd_nos_base_PISM_VUW_R2_RCP19+SL_wTd_nos_base_PISM_VUW_R3_RCP19+SL_wTd_nos_base_PISM_VUW_R4_RCP19+SL_wTd_nos_base_PISM_VUW_R5_RCP19\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# PS3D_PSU\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_PS3D_PSU_RCP19.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_PS3D_PSU_R0_RCP19 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_PS3D_PSU_R1_RCP19 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_PS3D_PSU_R2_RCP19 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_PS3D_PSU_R3_RCP19 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_PS3D_PSU_R4_RCP19 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_PS3D_PSU_R5_RCP19 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_PS3D_PSU_SU_RCP19 = SL_wTd_nos_base_PS3D_PSU_R1_RCP19+SL_wTd_nos_base_PS3D_PSU_R2_RCP19+SL_wTd_nos_base_PS3D_PSU_R3_RCP19+SL_wTd_nos_base_PS3D_PSU_R4_RCP19+SL_wTd_nos_base_PS3D_PSU_R5_RCP19\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# SICO_UHO\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_SICO_UHO_RCP19.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_SICO_UHO_R0_RCP19 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_SICO_UHO_R1_RCP19 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_SICO_UHO_R2_RCP19 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_SICO_UHO_R3_RCP19 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_SICO_UHO_R4_RCP19 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_SICO_UHO_R5_RCP19 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_SICO_UHO_SU_RCP19 = SL_wTd_nos_base_SICO_UHO_R1_RCP19+SL_wTd_nos_base_SICO_UHO_R2_RCP19+SL_wTd_nos_base_SICO_UHO_R3_RCP19+SL_wTd_nos_base_SICO_UHO_R4_RCP19+SL_wTd_nos_base_SICO_UHO_R5_RCP19\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read data\n",
    "# UA_UNN\n",
    "\n",
    "fname=\"../ComputeProjections4OneIceModel_SSPs/EnsembleSingleModelProjections/SL_wTd_nos_base_UA_UNN_RCP19.nc\"\n",
    "ncf = nc.Dataset(fname, \"r\")\n",
    "\n",
    "Time = ncf.variables[\"Time\"][:]\n",
    "SL_wTd_nos_base_UA_UNN_R0_RCP19 = ncf.variables[\"Antarctica\"][:]\n",
    "SL_wTd_nos_base_UA_UNN_R1_RCP19 = ncf.variables[\"EAIS\"][:]\n",
    "SL_wTd_nos_base_UA_UNN_R2_RCP19 = ncf.variables[\"Ross\"][:]\n",
    "SL_wTd_nos_base_UA_UNN_R3_RCP19 = ncf.variables[\"Amundsen\"][:]\n",
    "SL_wTd_nos_base_UA_UNN_R4_RCP19 = ncf.variables[\"Weddell\"][:]\n",
    "SL_wTd_nos_base_UA_UNN_R5_RCP19 = ncf.variables[\"Peninsula\"][:]\n",
    "SL_wTd_nos_base_UA_UNN_SU_RCP19 = SL_wTd_nos_base_UA_UNN_R1_RCP19+SL_wTd_nos_base_UA_UNN_R2_RCP19+SL_wTd_nos_base_UA_UNN_R3_RCP19+SL_wTd_nos_base_UA_UNN_R4_RCP19+SL_wTd_nos_base_UA_UNN_R5_RCP19\n",
    "ncf.close()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [],
   "source": [
    "SL_wTd_nos_base_RCP19 =np.vstack([SL_wTd_nos_base_AISM_VUB_SU_RCP19,SL_wTd_nos_base_BISI_LBL_SU_RCP19,SL_wTd_nos_base_CISM_NCA_SU_RCP19,SL_wTd_nos_base_FETI_VUB_SU_RCP19,SL_wTd_nos_base_GRIS_LSC_SU_RCP19,SL_wTd_nos_base_IMAU_VUB_SU_RCP19,SL_wTd_nos_base_ISSM_JPL_SU_RCP19,SL_wTd_nos_base_ISSM_UCI_SU_RCP19,SL_wTd_nos_base_MALI_LAN_SU_RCP19,SL_wTd_nos_base_PISM_AWI_SU_RCP19,SL_wTd_nos_base_PISM_DMI_SU_RCP19,SL_wTd_nos_base_PISM_PIK_SU_RCP19,SL_wTd_nos_base_PISM_VUW_SU_RCP19,SL_wTd_nos_base_PS3D_PSU_SU_RCP19,SL_wTd_nos_base_SICO_UHO_SU_RCP19,SL_wTd_nos_base_UA_UNN_SU_RCP19])\n",
    "\n",
    "SL_wTd_nos_base_R1_RCP19 =np.vstack([SL_wTd_nos_base_AISM_VUB_R1_RCP19,SL_wTd_nos_base_BISI_LBL_R1_RCP19,SL_wTd_nos_base_CISM_NCA_R1_RCP19,SL_wTd_nos_base_FETI_VUB_R1_RCP19,SL_wTd_nos_base_GRIS_LSC_R1_RCP19,SL_wTd_nos_base_IMAU_VUB_R1_RCP19,SL_wTd_nos_base_ISSM_JPL_R1_RCP19,SL_wTd_nos_base_ISSM_UCI_R1_RCP19,SL_wTd_nos_base_MALI_LAN_R1_RCP19,SL_wTd_nos_base_PISM_AWI_R1_RCP19,SL_wTd_nos_base_PISM_DMI_R1_RCP19,SL_wTd_nos_base_PISM_PIK_R1_RCP19,SL_wTd_nos_base_PISM_VUW_R1_RCP19,SL_wTd_nos_base_PS3D_PSU_R1_RCP19,SL_wTd_nos_base_SICO_UHO_R1_RCP19,SL_wTd_nos_base_UA_UNN_R1_RCP19])\n",
    "\n",
    "SL_wTd_nos_base_R2_RCP19 =np.vstack([SL_wTd_nos_base_AISM_VUB_R2_RCP19,SL_wTd_nos_base_BISI_LBL_R2_RCP19,SL_wTd_nos_base_CISM_NCA_R2_RCP19,SL_wTd_nos_base_FETI_VUB_R2_RCP19,SL_wTd_nos_base_GRIS_LSC_R2_RCP19,SL_wTd_nos_base_IMAU_VUB_R2_RCP19,SL_wTd_nos_base_ISSM_JPL_R2_RCP19,SL_wTd_nos_base_ISSM_UCI_R2_RCP19,SL_wTd_nos_base_MALI_LAN_R2_RCP19,SL_wTd_nos_base_PISM_AWI_R2_RCP19,SL_wTd_nos_base_PISM_DMI_R2_RCP19,SL_wTd_nos_base_PISM_PIK_R2_RCP19,SL_wTd_nos_base_PISM_VUW_R2_RCP19,SL_wTd_nos_base_PS3D_PSU_R2_RCP19,SL_wTd_nos_base_SICO_UHO_R2_RCP19,SL_wTd_nos_base_UA_UNN_R2_RCP19])\n",
    "\n",
    "SL_wTd_nos_base_R3_RCP19 =np.vstack([SL_wTd_nos_base_AISM_VUB_R3_RCP19,SL_wTd_nos_base_BISI_LBL_R3_RCP19,SL_wTd_nos_base_CISM_NCA_R3_RCP19,SL_wTd_nos_base_FETI_VUB_R3_RCP19,SL_wTd_nos_base_GRIS_LSC_R3_RCP19,SL_wTd_nos_base_IMAU_VUB_R3_RCP19,SL_wTd_nos_base_ISSM_JPL_R3_RCP19,SL_wTd_nos_base_ISSM_UCI_R3_RCP19,SL_wTd_nos_base_MALI_LAN_R3_RCP19,SL_wTd_nos_base_PISM_AWI_R3_RCP19,SL_wTd_nos_base_PISM_DMI_R3_RCP19,SL_wTd_nos_base_PISM_PIK_R3_RCP19,SL_wTd_nos_base_PISM_VUW_R3_RCP19,SL_wTd_nos_base_PS3D_PSU_R3_RCP19,SL_wTd_nos_base_SICO_UHO_R3_RCP19,SL_wTd_nos_base_UA_UNN_R3_RCP19])\n",
    "\n",
    "SL_wTd_nos_base_R4_RCP19 =np.vstack([SL_wTd_nos_base_AISM_VUB_R4_RCP19,SL_wTd_nos_base_BISI_LBL_R4_RCP19,SL_wTd_nos_base_CISM_NCA_R4_RCP19,SL_wTd_nos_base_FETI_VUB_R4_RCP19,SL_wTd_nos_base_GRIS_LSC_R4_RCP19,SL_wTd_nos_base_IMAU_VUB_R4_RCP19,SL_wTd_nos_base_ISSM_JPL_R4_RCP19,SL_wTd_nos_base_ISSM_UCI_R4_RCP19,SL_wTd_nos_base_MALI_LAN_R4_RCP19,SL_wTd_nos_base_PISM_AWI_R4_RCP19,SL_wTd_nos_base_PISM_DMI_R4_RCP19,SL_wTd_nos_base_PISM_PIK_R4_RCP19,SL_wTd_nos_base_PISM_VUW_R4_RCP19,SL_wTd_nos_base_PS3D_PSU_R4_RCP19,SL_wTd_nos_base_SICO_UHO_R4_RCP19,SL_wTd_nos_base_UA_UNN_R4_RCP19])\n",
    "\n",
    "SL_wTd_nos_base_R5_RCP19 =np.vstack([SL_wTd_nos_base_AISM_VUB_R5_RCP19,SL_wTd_nos_base_BISI_LBL_R5_RCP19,SL_wTd_nos_base_CISM_NCA_R5_RCP19,SL_wTd_nos_base_FETI_VUB_R5_RCP19,SL_wTd_nos_base_GRIS_LSC_R5_RCP19,SL_wTd_nos_base_IMAU_VUB_R5_RCP19,SL_wTd_nos_base_ISSM_JPL_R5_RCP19,SL_wTd_nos_base_ISSM_UCI_R5_RCP19,SL_wTd_nos_base_MALI_LAN_R5_RCP19,SL_wTd_nos_base_PISM_AWI_R5_RCP19,SL_wTd_nos_base_PISM_DMI_R5_RCP19,SL_wTd_nos_base_PISM_PIK_R5_RCP19,SL_wTd_nos_base_PISM_VUW_R5_RCP19,SL_wTd_nos_base_PS3D_PSU_R5_RCP19,SL_wTd_nos_base_SICO_UHO_R5_RCP19,SL_wTd_nos_base_UA_UNN_R5_RCP19])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "320\n",
      "R0:  0\n",
      "R0:  1\n",
      "R0:  2\n",
      "R0:  3\n",
      "R0:  4\n",
      "R0:  5\n",
      "R0:  6\n",
      "R0:  7\n",
      "R0:  8\n",
      "R0:  9\n",
      "R0:  10\n",
      "R0:  11\n",
      "R0:  12\n",
      "R0:  13\n",
      "R0:  14\n",
      "R0:  15\n",
      "R0:  16\n",
      "R0:  17\n",
      "R0:  18\n",
      "R0:  19\n",
      "R0:  20\n",
      "R0:  21\n",
      "R0:  22\n",
      "R0:  23\n",
      "R0:  24\n",
      "R0:  25\n",
      "R0:  26\n",
      "R0:  27\n",
      "R0:  28\n",
      "R0:  29\n",
      "R0:  30\n",
      "R0:  31\n",
      "R0:  32\n",
      "R0:  33\n",
      "R0:  34\n",
      "R0:  35\n",
      "R0:  36\n",
      "R0:  37\n",
      "R0:  38\n",
      "R0:  39\n",
      "R0:  40\n",
      "R0:  41\n",
      "R0:  42\n",
      "R0:  43\n",
      "R0:  44\n",
      "R0:  45\n",
      "R0:  46\n",
      "R0:  47\n",
      "R0:  48\n",
      "R0:  49\n",
      "R0:  50\n",
      "R0:  51\n",
      "R0:  52\n",
      "R0:  53\n",
      "R0:  54\n",
      "R0:  55\n",
      "R0:  56\n",
      "R0:  57\n",
      "R0:  58\n",
      "R0:  59\n",
      "R0:  60\n",
      "R0:  61\n",
      "R0:  62\n",
      "R0:  63\n",
      "R0:  64\n",
      "R0:  65\n",
      "R0:  66\n",
      "R0:  67\n",
      "R0:  68\n",
      "R0:  69\n",
      "R0:  70\n",
      "R0:  71\n",
      "R0:  72\n",
      "R0:  73\n",
      "R0:  74\n",
      "R0:  75\n",
      "R0:  76\n",
      "R0:  77\n",
      "R0:  78\n",
      "R0:  79\n",
      "R0:  80\n",
      "R0:  81\n",
      "R0:  82\n",
      "R0:  83\n",
      "R0:  84\n",
      "R0:  85\n",
      "R0:  86\n",
      "R0:  87\n",
      "R0:  88\n",
      "R0:  89\n",
      "R0:  90\n",
      "R0:  91\n",
      "R0:  92\n",
      "R0:  93\n",
      "R0:  94\n",
      "R0:  95\n",
      "R0:  96\n",
      "R0:  97\n",
      "R0:  98\n",
      "R0:  99\n",
      "R0:  100\n",
      "R0:  101\n",
      "R0:  102\n",
      "R0:  103\n",
      "R0:  104\n",
      "R0:  105\n",
      "R0:  106\n",
      "R0:  107\n",
      "R0:  108\n",
      "R0:  109\n",
      "R0:  110\n",
      "R0:  111\n",
      "R0:  112\n",
      "R0:  113\n",
      "R0:  114\n",
      "R0:  115\n",
      "R0:  116\n",
      "R0:  117\n",
      "R0:  118\n",
      "R0:  119\n",
      "R0:  120\n",
      "R0:  121\n",
      "R0:  122\n",
      "R0:  123\n",
      "R0:  124\n",
      "R0:  125\n",
      "R0:  126\n",
      "R0:  127\n",
      "R0:  128\n",
      "R0:  129\n",
      "R0:  130\n",
      "R0:  131\n",
      "R0:  132\n",
      "R0:  133\n",
      "R0:  134\n",
      "R0:  135\n",
      "R0:  136\n",
      "R0:  137\n",
      "R0:  138\n",
      "R0:  139\n",
      "R0:  140\n",
      "R0:  141\n",
      "R0:  142\n",
      "R0:  143\n",
      "R0:  144\n",
      "R0:  145\n",
      "R0:  146\n",
      "R0:  147\n",
      "R0:  148\n",
      "R0:  149\n",
      "R0:  150\n",
      "R0:  151\n",
      "R0:  152\n",
      "R0:  153\n",
      "R0:  154\n",
      "R0:  155\n",
      "R0:  156\n",
      "R0:  157\n",
      "R0:  158\n",
      "R0:  159\n",
      "R0:  160\n",
      "R0:  161\n",
      "R0:  162\n",
      "R0:  163\n",
      "R0:  164\n",
      "R0:  165\n",
      "R0:  166\n",
      "R0:  167\n",
      "R0:  168\n",
      "R0:  169\n",
      "R0:  170\n",
      "R0:  171\n",
      "R0:  172\n",
      "R0:  173\n",
      "R0:  174\n",
      "R0:  175\n",
      "R0:  176\n",
      "R0:  177\n",
      "R0:  178\n",
      "R0:  179\n",
      "R0:  180\n",
      "R0:  181\n",
      "R0:  182\n",
      "R0:  183\n",
      "R0:  184\n",
      "R0:  185\n",
      "R0:  186\n",
      "R0:  187\n",
      "R0:  188\n",
      "R0:  189\n",
      "R0:  190\n",
      "R0:  191\n",
      "R0:  192\n",
      "R0:  193\n",
      "R0:  194\n",
      "R0:  195\n",
      "R0:  196\n",
      "R0:  197\n",
      "R0:  198\n",
      "R0:  199\n",
      "R1:  0\n",
      "R1:  1\n",
      "R1:  2\n",
      "R1:  3\n",
      "R1:  4\n",
      "R1:  5\n",
      "R1:  6\n",
      "R1:  7\n",
      "R1:  8\n",
      "R1:  9\n",
      "R1:  10\n",
      "R1:  11\n",
      "R1:  12\n",
      "R1:  13\n",
      "R1:  14\n",
      "R1:  15\n",
      "R1:  16\n",
      "R1:  17\n",
      "R1:  18\n",
      "R1:  19\n",
      "R1:  20\n",
      "R1:  21\n",
      "R1:  22\n",
      "R1:  23\n",
      "R1:  24\n",
      "R1:  25\n",
      "R1:  26\n",
      "R1:  27\n",
      "R1:  28\n",
      "R1:  29\n",
      "R1:  30\n",
      "R1:  31\n",
      "R1:  32\n",
      "R1:  33\n",
      "R1:  34\n",
      "R1:  35\n",
      "R1:  36\n",
      "R1:  37\n",
      "R1:  38\n",
      "R1:  39\n",
      "R1:  40\n",
      "R1:  41\n",
      "R1:  42\n",
      "R1:  43\n",
      "R1:  44\n",
      "R1:  45\n",
      "R1:  46\n",
      "R1:  47\n",
      "R1:  48\n",
      "R1:  49\n",
      "R1:  50\n",
      "R1:  51\n",
      "R1:  52\n",
      "R1:  53\n",
      "R1:  54\n",
      "R1:  55\n",
      "R1:  56\n",
      "R1:  57\n",
      "R1:  58\n",
      "R1:  59\n",
      "R1:  60\n",
      "R1:  61\n",
      "R1:  62\n",
      "R1:  63\n",
      "R1:  64\n",
      "R1:  65\n",
      "R1:  66\n",
      "R1:  67\n",
      "R1:  68\n",
      "R1:  69\n",
      "R1:  70\n",
      "R1:  71\n",
      "R1:  72\n",
      "R1:  73\n",
      "R1:  74\n",
      "R1:  75\n",
      "R1:  76\n",
      "R1:  77\n",
      "R1:  78\n",
      "R1:  79\n",
      "R1:  80\n",
      "R1:  81\n",
      "R1:  82\n",
      "R1:  83\n",
      "R1:  84\n",
      "R1:  85\n",
      "R1:  86\n",
      "R1:  87\n",
      "R1:  88\n",
      "R1:  89\n",
      "R1:  90\n",
      "R1:  91\n",
      "R1:  92\n",
      "R1:  93\n",
      "R1:  94\n",
      "R1:  95\n",
      "R1:  96\n",
      "R1:  97\n",
      "R1:  98\n",
      "R1:  99\n",
      "R1:  100\n",
      "R1:  101\n",
      "R1:  102\n",
      "R1:  103\n",
      "R1:  104\n",
      "R1:  105\n",
      "R1:  106\n",
      "R1:  107\n",
      "R1:  108\n",
      "R1:  109\n",
      "R1:  110\n",
      "R1:  111\n",
      "R1:  112\n",
      "R1:  113\n",
      "R1:  114\n",
      "R1:  115\n",
      "R1:  116\n",
      "R1:  117\n",
      "R1:  118\n",
      "R1:  119\n",
      "R1:  120\n",
      "R1:  121\n",
      "R1:  122\n",
      "R1:  123\n",
      "R1:  124\n",
      "R1:  125\n",
      "R1:  126\n",
      "R1:  127\n",
      "R1:  128\n",
      "R1:  129\n",
      "R1:  130\n",
      "R1:  131\n",
      "R1:  132\n",
      "R1:  133\n",
      "R1:  134\n",
      "R1:  135\n",
      "R1:  136\n",
      "R1:  137\n",
      "R1:  138\n",
      "R1:  139\n",
      "R1:  140\n",
      "R1:  141\n",
      "R1:  142\n",
      "R1:  143\n",
      "R1:  144\n",
      "R1:  145\n",
      "R1:  146\n",
      "R1:  147\n",
      "R1:  148\n",
      "R1:  149\n",
      "R1:  150\n",
      "R1:  151\n",
      "R1:  152\n",
      "R1:  153\n",
      "R1:  154\n",
      "R1:  155\n",
      "R1:  156\n",
      "R1:  157\n",
      "R1:  158\n",
      "R1:  159\n",
      "R1:  160\n",
      "R1:  161\n",
      "R1:  162\n",
      "R1:  163\n",
      "R1:  164\n",
      "R1:  165\n",
      "R1:  166\n",
      "R1:  167\n",
      "R1:  168\n",
      "R1:  169\n",
      "R1:  170\n",
      "R1:  171\n",
      "R1:  172\n",
      "R1:  173\n",
      "R1:  174\n",
      "R1:  175\n",
      "R1:  176\n",
      "R1:  177\n",
      "R1:  178\n",
      "R1:  179\n",
      "R1:  180\n",
      "R1:  181\n",
      "R1:  182\n",
      "R1:  183\n",
      "R1:  184\n",
      "R1:  185\n",
      "R1:  186\n",
      "R1:  187\n",
      "R1:  188\n",
      "R1:  189\n",
      "R1:  190\n",
      "R1:  191\n",
      "R1:  192\n",
      "R1:  193\n",
      "R1:  194\n",
      "R1:  195\n",
      "R1:  196\n",
      "R1:  197\n",
      "R1:  198\n",
      "R1:  199\n",
      "R2:  0\n",
      "R2:  1\n",
      "R2:  2\n",
      "R2:  3\n",
      "R2:  4\n",
      "R2:  5\n",
      "R2:  6\n",
      "R2:  7\n",
      "R2:  8\n",
      "R2:  9\n",
      "R2:  10\n",
      "R2:  11\n",
      "R2:  12\n",
      "R2:  13\n",
      "R2:  14\n",
      "R2:  15\n",
      "R2:  16\n",
      "R2:  17\n",
      "R2:  18\n",
      "R2:  19\n",
      "R2:  20\n",
      "R2:  21\n",
      "R2:  22\n",
      "R2:  23\n",
      "R2:  24\n",
      "R2:  25\n",
      "R2:  26\n",
      "R2:  27\n",
      "R2:  28\n",
      "R2:  29\n",
      "R2:  30\n",
      "R2:  31\n",
      "R2:  32\n",
      "R2:  33\n",
      "R2:  34\n",
      "R2:  35\n",
      "R2:  36\n",
      "R2:  37\n",
      "R2:  38\n",
      "R2:  39\n",
      "R2:  40\n",
      "R2:  41\n",
      "R2:  42\n",
      "R2:  43\n",
      "R2:  44\n",
      "R2:  45\n",
      "R2:  46\n",
      "R2:  47\n",
      "R2:  48\n",
      "R2:  49\n",
      "R2:  50\n",
      "R2:  51\n",
      "R2:  52\n",
      "R2:  53\n",
      "R2:  54\n",
      "R2:  55\n",
      "R2:  56\n",
      "R2:  57\n",
      "R2:  58\n",
      "R2:  59\n",
      "R2:  60\n",
      "R2:  61\n",
      "R2:  62\n",
      "R2:  63\n",
      "R2:  64\n",
      "R2:  65\n",
      "R2:  66\n",
      "R2:  67\n",
      "R2:  68\n",
      "R2:  69\n",
      "R2:  70\n",
      "R2:  71\n",
      "R2:  72\n",
      "R2:  73\n",
      "R2:  74\n",
      "R2:  75\n",
      "R2:  76\n",
      "R2:  77\n",
      "R2:  78\n",
      "R2:  79\n",
      "R2:  80\n",
      "R2:  81\n",
      "R2:  82\n",
      "R2:  83\n",
      "R2:  84\n",
      "R2:  85\n",
      "R2:  86\n",
      "R2:  87\n",
      "R2:  88\n",
      "R2:  89\n",
      "R2:  90\n",
      "R2:  91\n",
      "R2:  92\n",
      "R2:  93\n",
      "R2:  94\n",
      "R2:  95\n",
      "R2:  96\n",
      "R2:  97\n",
      "R2:  98\n",
      "R2:  99\n",
      "R2:  100\n",
      "R2:  101\n",
      "R2:  102\n",
      "R2:  103\n",
      "R2:  104\n",
      "R2:  105\n",
      "R2:  106\n",
      "R2:  107\n",
      "R2:  108\n",
      "R2:  109\n",
      "R2:  110\n",
      "R2:  111\n",
      "R2:  112\n",
      "R2:  113\n",
      "R2:  114\n",
      "R2:  115\n",
      "R2:  116\n",
      "R2:  117\n",
      "R2:  118\n",
      "R2:  119\n",
      "R2:  120\n",
      "R2:  121\n",
      "R2:  122\n",
      "R2:  123\n",
      "R2:  124\n",
      "R2:  125\n",
      "R2:  126\n",
      "R2:  127\n",
      "R2:  128\n",
      "R2:  129\n",
      "R2:  130\n",
      "R2:  131\n",
      "R2:  132\n",
      "R2:  133\n",
      "R2:  134\n",
      "R2:  135\n",
      "R2:  136\n",
      "R2:  137\n",
      "R2:  138\n",
      "R2:  139\n",
      "R2:  140\n",
      "R2:  141\n",
      "R2:  142\n",
      "R2:  143\n",
      "R2:  144\n",
      "R2:  145\n",
      "R2:  146\n",
      "R2:  147\n",
      "R2:  148\n",
      "R2:  149\n",
      "R2:  150\n",
      "R2:  151\n",
      "R2:  152\n",
      "R2:  153\n",
      "R2:  154\n",
      "R2:  155\n",
      "R2:  156\n",
      "R2:  157\n",
      "R2:  158\n",
      "R2:  159\n",
      "R2:  160\n",
      "R2:  161\n",
      "R2:  162\n",
      "R2:  163\n",
      "R2:  164\n",
      "R2:  165\n",
      "R2:  166\n",
      "R2:  167\n",
      "R2:  168\n",
      "R2:  169\n",
      "R2:  170\n",
      "R2:  171\n",
      "R2:  172\n",
      "R2:  173\n",
      "R2:  174\n",
      "R2:  175\n",
      "R2:  176\n",
      "R2:  177\n",
      "R2:  178\n",
      "R2:  179\n",
      "R2:  180\n",
      "R2:  181\n",
      "R2:  182\n",
      "R2:  183\n",
      "R2:  184\n",
      "R2:  185\n",
      "R2:  186\n",
      "R2:  187\n",
      "R2:  188\n",
      "R2:  189\n",
      "R2:  190\n",
      "R2:  191\n",
      "R2:  192\n",
      "R2:  193\n",
      "R2:  194\n",
      "R2:  195\n",
      "R2:  196\n",
      "R2:  197\n",
      "R2:  198\n",
      "R2:  199\n",
      "R3:  0\n",
      "R3:  1\n",
      "R3:  2\n",
      "R3:  3\n",
      "R3:  4\n",
      "R3:  5\n",
      "R3:  6\n",
      "R3:  7\n",
      "R3:  8\n",
      "R3:  9\n",
      "R3:  10\n",
      "R3:  11\n",
      "R3:  12\n",
      "R3:  13\n",
      "R3:  14\n",
      "R3:  15\n",
      "R3:  16\n",
      "R3:  17\n",
      "R3:  18\n",
      "R3:  19\n",
      "R3:  20\n",
      "R3:  21\n",
      "R3:  22\n",
      "R3:  23\n",
      "R3:  24\n",
      "R3:  25\n",
      "R3:  26\n",
      "R3:  27\n",
      "R3:  28\n",
      "R3:  29\n",
      "R3:  30\n",
      "R3:  31\n",
      "R3:  32\n",
      "R3:  33\n",
      "R3:  34\n",
      "R3:  35\n",
      "R3:  36\n",
      "R3:  37\n",
      "R3:  38\n",
      "R3:  39\n",
      "R3:  40\n",
      "R3:  41\n",
      "R3:  42\n",
      "R3:  43\n",
      "R3:  44\n",
      "R3:  45\n",
      "R3:  46\n",
      "R3:  47\n",
      "R3:  48\n",
      "R3:  49\n",
      "R3:  50\n",
      "R3:  51\n",
      "R3:  52\n",
      "R3:  53\n",
      "R3:  54\n",
      "R3:  55\n",
      "R3:  56\n",
      "R3:  57\n",
      "R3:  58\n",
      "R3:  59\n",
      "R3:  60\n",
      "R3:  61\n",
      "R3:  62\n",
      "R3:  63\n",
      "R3:  64\n",
      "R3:  65\n",
      "R3:  66\n",
      "R3:  67\n",
      "R3:  68\n",
      "R3:  69\n",
      "R3:  70\n",
      "R3:  71\n",
      "R3:  72\n",
      "R3:  73\n",
      "R3:  74\n",
      "R3:  75\n",
      "R3:  76\n",
      "R3:  77\n",
      "R3:  78\n",
      "R3:  79\n",
      "R3:  80\n",
      "R3:  81\n",
      "R3:  82\n",
      "R3:  83\n",
      "R3:  84\n",
      "R3:  85\n",
      "R3:  86\n",
      "R3:  87\n",
      "R3:  88\n",
      "R3:  89\n",
      "R3:  90\n",
      "R3:  91\n",
      "R3:  92\n",
      "R3:  93\n",
      "R3:  94\n",
      "R3:  95\n",
      "R3:  96\n",
      "R3:  97\n",
      "R3:  98\n",
      "R3:  99\n",
      "R3:  100\n",
      "R3:  101\n",
      "R3:  102\n",
      "R3:  103\n",
      "R3:  104\n",
      "R3:  105\n",
      "R3:  106\n",
      "R3:  107\n",
      "R3:  108\n",
      "R3:  109\n",
      "R3:  110\n",
      "R3:  111\n",
      "R3:  112\n",
      "R3:  113\n",
      "R3:  114\n",
      "R3:  115\n",
      "R3:  116\n",
      "R3:  117\n",
      "R3:  118\n",
      "R3:  119\n",
      "R3:  120\n",
      "R3:  121\n",
      "R3:  122\n",
      "R3:  123\n",
      "R3:  124\n",
      "R3:  125\n",
      "R3:  126\n",
      "R3:  127\n",
      "R3:  128\n",
      "R3:  129\n",
      "R3:  130\n",
      "R3:  131\n",
      "R3:  132\n",
      "R3:  133\n",
      "R3:  134\n",
      "R3:  135\n",
      "R3:  136\n",
      "R3:  137\n",
      "R3:  138\n",
      "R3:  139\n",
      "R3:  140\n",
      "R3:  141\n",
      "R3:  142\n",
      "R3:  143\n",
      "R3:  144\n",
      "R3:  145\n",
      "R3:  146\n",
      "R3:  147\n",
      "R3:  148\n",
      "R3:  149\n",
      "R3:  150\n",
      "R3:  151\n",
      "R3:  152\n",
      "R3:  153\n",
      "R3:  154\n",
      "R3:  155\n",
      "R3:  156\n",
      "R3:  157\n",
      "R3:  158\n",
      "R3:  159\n",
      "R3:  160\n",
      "R3:  161\n",
      "R3:  162\n",
      "R3:  163\n",
      "R3:  164\n",
      "R3:  165\n",
      "R3:  166\n",
      "R3:  167\n",
      "R3:  168\n",
      "R3:  169\n",
      "R3:  170\n",
      "R3:  171\n",
      "R3:  172\n",
      "R3:  173\n",
      "R3:  174\n",
      "R3:  175\n",
      "R3:  176\n",
      "R3:  177\n",
      "R3:  178\n",
      "R3:  179\n",
      "R3:  180\n",
      "R3:  181\n",
      "R3:  182\n",
      "R3:  183\n",
      "R3:  184\n",
      "R3:  185\n",
      "R3:  186\n",
      "R3:  187\n",
      "R3:  188\n",
      "R3:  189\n",
      "R3:  190\n",
      "R3:  191\n",
      "R3:  192\n",
      "R3:  193\n",
      "R3:  194\n",
      "R3:  195\n",
      "R3:  196\n",
      "R3:  197\n",
      "R3:  198\n",
      "R3:  199\n",
      "R4:  0\n",
      "R4:  1\n",
      "R4:  2\n",
      "R4:  3\n",
      "R4:  4\n",
      "R4:  5\n",
      "R4:  6\n",
      "R4:  7\n",
      "R4:  8\n",
      "R4:  9\n",
      "R4:  10\n",
      "R4:  11\n",
      "R4:  12\n",
      "R4:  13\n",
      "R4:  14\n",
      "R4:  15\n",
      "R4:  16\n",
      "R4:  17\n",
      "R4:  18\n",
      "R4:  19\n",
      "R4:  20\n",
      "R4:  21\n",
      "R4:  22\n",
      "R4:  23\n",
      "R4:  24\n",
      "R4:  25\n",
      "R4:  26\n",
      "R4:  27\n",
      "R4:  28\n",
      "R4:  29\n",
      "R4:  30\n",
      "R4:  31\n",
      "R4:  32\n",
      "R4:  33\n",
      "R4:  34\n",
      "R4:  35\n",
      "R4:  36\n",
      "R4:  37\n",
      "R4:  38\n",
      "R4:  39\n",
      "R4:  40\n",
      "R4:  41\n",
      "R4:  42\n",
      "R4:  43\n",
      "R4:  44\n",
      "R4:  45\n",
      "R4:  46\n",
      "R4:  47\n",
      "R4:  48\n",
      "R4:  49\n",
      "R4:  50\n",
      "R4:  51\n",
      "R4:  52\n",
      "R4:  53\n",
      "R4:  54\n",
      "R4:  55\n",
      "R4:  56\n",
      "R4:  57\n",
      "R4:  58\n",
      "R4:  59\n",
      "R4:  60\n",
      "R4:  61\n",
      "R4:  62\n",
      "R4:  63\n",
      "R4:  64\n",
      "R4:  65\n",
      "R4:  66\n",
      "R4:  67\n",
      "R4:  68\n",
      "R4:  69\n",
      "R4:  70\n",
      "R4:  71\n",
      "R4:  72\n",
      "R4:  73\n",
      "R4:  74\n",
      "R4:  75\n",
      "R4:  76\n",
      "R4:  77\n",
      "R4:  78\n",
      "R4:  79\n",
      "R4:  80\n",
      "R4:  81\n",
      "R4:  82\n",
      "R4:  83\n",
      "R4:  84\n",
      "R4:  85\n",
      "R4:  86\n",
      "R4:  87\n",
      "R4:  88\n",
      "R4:  89\n",
      "R4:  90\n",
      "R4:  91\n",
      "R4:  92\n",
      "R4:  93\n",
      "R4:  94\n",
      "R4:  95\n",
      "R4:  96\n",
      "R4:  97\n",
      "R4:  98\n",
      "R4:  99\n",
      "R4:  100\n",
      "R4:  101\n",
      "R4:  102\n",
      "R4:  103\n",
      "R4:  104\n",
      "R4:  105\n",
      "R4:  106\n",
      "R4:  107\n",
      "R4:  108\n",
      "R4:  109\n",
      "R4:  110\n",
      "R4:  111\n",
      "R4:  112\n",
      "R4:  113\n",
      "R4:  114\n",
      "R4:  115\n",
      "R4:  116\n",
      "R4:  117\n",
      "R4:  118\n",
      "R4:  119\n",
      "R4:  120\n",
      "R4:  121\n",
      "R4:  122\n",
      "R4:  123\n",
      "R4:  124\n",
      "R4:  125\n",
      "R4:  126\n",
      "R4:  127\n",
      "R4:  128\n",
      "R4:  129\n",
      "R4:  130\n",
      "R4:  131\n",
      "R4:  132\n",
      "R4:  133\n",
      "R4:  134\n",
      "R4:  135\n",
      "R4:  136\n",
      "R4:  137\n",
      "R4:  138\n",
      "R4:  139\n",
      "R4:  140\n",
      "R4:  141\n",
      "R4:  142\n",
      "R4:  143\n",
      "R4:  144\n",
      "R4:  145\n",
      "R4:  146\n",
      "R4:  147\n",
      "R4:  148\n",
      "R4:  149\n",
      "R4:  150\n",
      "R4:  151\n",
      "R4:  152\n",
      "R4:  153\n",
      "R4:  154\n",
      "R4:  155\n",
      "R4:  156\n",
      "R4:  157\n",
      "R4:  158\n",
      "R4:  159\n",
      "R4:  160\n",
      "R4:  161\n",
      "R4:  162\n",
      "R4:  163\n",
      "R4:  164\n",
      "R4:  165\n",
      "R4:  166\n",
      "R4:  167\n",
      "R4:  168\n",
      "R4:  169\n",
      "R4:  170\n",
      "R4:  171\n",
      "R4:  172\n",
      "R4:  173\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "R4:  174\n",
      "R4:  175\n",
      "R4:  176\n",
      "R4:  177\n",
      "R4:  178\n",
      "R4:  179\n",
      "R4:  180\n",
      "R4:  181\n",
      "R4:  182\n",
      "R4:  183\n",
      "R4:  184\n",
      "R4:  185\n",
      "R4:  186\n",
      "R4:  187\n",
      "R4:  188\n",
      "R4:  189\n",
      "R4:  190\n",
      "R4:  191\n",
      "R4:  192\n",
      "R4:  193\n",
      "R4:  194\n",
      "R4:  195\n",
      "R4:  196\n",
      "R4:  197\n",
      "R4:  198\n",
      "R4:  199\n",
      "R5:  0\n",
      "R5:  1\n",
      "R5:  2\n",
      "R5:  3\n",
      "R5:  4\n",
      "R5:  5\n",
      "R5:  6\n",
      "R5:  7\n",
      "R5:  8\n",
      "R5:  9\n",
      "R5:  10\n",
      "R5:  11\n",
      "R5:  12\n",
      "R5:  13\n",
      "R5:  14\n",
      "R5:  15\n",
      "R5:  16\n",
      "R5:  17\n",
      "R5:  18\n",
      "R5:  19\n",
      "R5:  20\n",
      "R5:  21\n",
      "R5:  22\n",
      "R5:  23\n",
      "R5:  24\n",
      "R5:  25\n",
      "R5:  26\n",
      "R5:  27\n",
      "R5:  28\n",
      "R5:  29\n",
      "R5:  30\n",
      "R5:  31\n",
      "R5:  32\n",
      "R5:  33\n",
      "R5:  34\n",
      "R5:  35\n",
      "R5:  36\n",
      "R5:  37\n",
      "R5:  38\n",
      "R5:  39\n",
      "R5:  40\n",
      "R5:  41\n",
      "R5:  42\n",
      "R5:  43\n",
      "R5:  44\n",
      "R5:  45\n",
      "R5:  46\n",
      "R5:  47\n",
      "R5:  48\n",
      "R5:  49\n",
      "R5:  50\n",
      "R5:  51\n",
      "R5:  52\n",
      "R5:  53\n",
      "R5:  54\n",
      "R5:  55\n",
      "R5:  56\n",
      "R5:  57\n",
      "R5:  58\n",
      "R5:  59\n",
      "R5:  60\n",
      "R5:  61\n",
      "R5:  62\n",
      "R5:  63\n",
      "R5:  64\n",
      "R5:  65\n",
      "R5:  66\n",
      "R5:  67\n",
      "R5:  68\n",
      "R5:  69\n",
      "R5:  70\n",
      "R5:  71\n",
      "R5:  72\n",
      "R5:  73\n",
      "R5:  74\n",
      "R5:  75\n",
      "R5:  76\n",
      "R5:  77\n",
      "R5:  78\n",
      "R5:  79\n",
      "R5:  80\n",
      "R5:  81\n",
      "R5:  82\n",
      "R5:  83\n",
      "R5:  84\n",
      "R5:  85\n",
      "R5:  86\n",
      "R5:  87\n",
      "R5:  88\n",
      "R5:  89\n",
      "R5:  90\n",
      "R5:  91\n",
      "R5:  92\n",
      "R5:  93\n",
      "R5:  94\n",
      "R5:  95\n",
      "R5:  96\n",
      "R5:  97\n",
      "R5:  98\n",
      "R5:  99\n",
      "R5:  100\n",
      "R5:  101\n",
      "R5:  102\n",
      "R5:  103\n",
      "R5:  104\n",
      "R5:  105\n",
      "R5:  106\n",
      "R5:  107\n",
      "R5:  108\n",
      "R5:  109\n",
      "R5:  110\n",
      "R5:  111\n",
      "R5:  112\n",
      "R5:  113\n",
      "R5:  114\n",
      "R5:  115\n",
      "R5:  116\n",
      "R5:  117\n",
      "R5:  118\n",
      "R5:  119\n",
      "R5:  120\n",
      "R5:  121\n",
      "R5:  122\n",
      "R5:  123\n",
      "R5:  124\n",
      "R5:  125\n",
      "R5:  126\n",
      "R5:  127\n",
      "R5:  128\n",
      "R5:  129\n",
      "R5:  130\n",
      "R5:  131\n",
      "R5:  132\n",
      "R5:  133\n",
      "R5:  134\n",
      "R5:  135\n",
      "R5:  136\n",
      "R5:  137\n",
      "R5:  138\n",
      "R5:  139\n",
      "R5:  140\n",
      "R5:  141\n",
      "R5:  142\n",
      "R5:  143\n",
      "R5:  144\n",
      "R5:  145\n",
      "R5:  146\n",
      "R5:  147\n",
      "R5:  148\n",
      "R5:  149\n",
      "R5:  150\n",
      "R5:  151\n",
      "R5:  152\n",
      "R5:  153\n",
      "R5:  154\n",
      "R5:  155\n",
      "R5:  156\n",
      "R5:  157\n",
      "R5:  158\n",
      "R5:  159\n",
      "R5:  160\n",
      "R5:  161\n",
      "R5:  162\n",
      "R5:  163\n",
      "R5:  164\n",
      "R5:  165\n",
      "R5:  166\n",
      "R5:  167\n",
      "R5:  168\n",
      "R5:  169\n",
      "R5:  170\n",
      "R5:  171\n",
      "R5:  172\n",
      "R5:  173\n",
      "R5:  174\n",
      "R5:  175\n",
      "R5:  176\n",
      "R5:  177\n",
      "R5:  178\n",
      "R5:  179\n",
      "R5:  180\n",
      "R5:  181\n",
      "R5:  182\n",
      "R5:  183\n",
      "R5:  184\n",
      "R5:  185\n",
      "R5:  186\n",
      "R5:  187\n",
      "R5:  188\n",
      "R5:  189\n",
      "R5:  190\n",
      "R5:  191\n",
      "R5:  192\n",
      "R5:  193\n",
      "R5:  194\n",
      "R5:  195\n",
      "R5:  196\n",
      "R5:  197\n",
      "R5:  198\n",
      "R5:  199\n"
     ]
    }
   ],
   "source": [
    "# compute cumulative probability distributions\n",
    "cdfnum = 1000\n",
    "cdfstep = int(len(SL_wTd_nos_base_RCP19[:,0])/cdfnum)\n",
    "print(cdfstep)\n",
    "\n",
    "SL_wTd_nos_base_R0_RCP19_cdf = [0] * (cdfnum+1)\n",
    "for t in range(len(SL_wTd_nos_base_RCP19[1,:])):\n",
    "    print(\"R0: \",t)\n",
    "    sortind = np.argsort(SL_wTd_nos_base_RCP19[:,t])\n",
    "\n",
    "    slcdf = []\n",
    "    slcdf.append(0)\n",
    "    for i in range(1,cdfnum+1):\n",
    "        cdfval = float(i/cdfnum)\n",
    "        slval = SL_wTd_nos_base_RCP19[sortind[i*cdfstep],t]\n",
    "        slcdf.append(slval)\n",
    "    SL_wTd_nos_base_R0_RCP19_cdf=np.vstack([SL_wTd_nos_base_R0_RCP19_cdf, slcdf])\n",
    "\n",
    "\n",
    "SL_wTd_nos_base_R1_RCP19_cdf = [0] * (cdfnum+1)\n",
    "for t in range(len(SL_wTd_nos_base_R1_RCP19[1,:])):\n",
    "    print(\"R1: \",t)\n",
    "    sortind = np.argsort(SL_wTd_nos_base_R1_RCP19[:,t])\n",
    "\n",
    "    slcdf = []\n",
    "    slcdf.append(0)\n",
    "    for i in range(1,cdfnum+1):\n",
    "        cdfval = float(i/cdfnum)\n",
    "        slval = SL_wTd_nos_base_R1_RCP19[sortind[i*cdfstep],t]\n",
    "        slcdf.append(slval)\n",
    "    SL_wTd_nos_base_R1_RCP19_cdf=np.vstack([SL_wTd_nos_base_R1_RCP19_cdf, slcdf])\n",
    "\n",
    "SL_wTd_nos_base_R2_RCP19_cdf = [0] * (cdfnum+1)\n",
    "for t in range(len(SL_wTd_nos_base_R2_RCP19[1,:])):\n",
    "    print(\"R2: \",t)\n",
    "    sortind = np.argsort(SL_wTd_nos_base_R2_RCP19[:,t])\n",
    "\n",
    "    slcdf = []\n",
    "    slcdf.append(0)\n",
    "    for i in range(1,cdfnum+1):\n",
    "        cdfval = float(i/cdfnum)\n",
    "        slval = SL_wTd_nos_base_R2_RCP19[sortind[i*cdfstep],t]\n",
    "        slcdf.append(slval)\n",
    "    SL_wTd_nos_base_R2_RCP19_cdf=np.vstack([SL_wTd_nos_base_R2_RCP19_cdf, slcdf])\n",
    "\n",
    "SL_wTd_nos_base_R3_RCP19_cdf = [0] * (cdfnum+1)\n",
    "for t in range(len(SL_wTd_nos_base_R3_RCP19[1,:])):\n",
    "    print(\"R3: \",t)\n",
    "    sortind = np.argsort(SL_wTd_nos_base_R3_RCP19[:,t])\n",
    "\n",
    "    slcdf = []\n",
    "    slcdf.append(0)\n",
    "    for i in range(1,cdfnum+1):\n",
    "        cdfval = float(i/cdfnum)\n",
    "        slval = SL_wTd_nos_base_R3_RCP19[sortind[i*cdfstep],t]\n",
    "        slcdf.append(slval)\n",
    "    SL_wTd_nos_base_R3_RCP19_cdf=np.vstack([SL_wTd_nos_base_R3_RCP19_cdf, slcdf])\n",
    "\n",
    "SL_wTd_nos_base_R4_RCP19_cdf = [0] * (cdfnum+1)\n",
    "for t in range(len(SL_wTd_nos_base_R4_RCP19[1,:])):\n",
    "    print(\"R4: \",t)\n",
    "    sortind = np.argsort(SL_wTd_nos_base_R4_RCP19[:,t])\n",
    "\n",
    "    slcdf = []\n",
    "    slcdf.append(0)\n",
    "    for i in range(1,cdfnum+1):\n",
    "        cdfval = float(i/cdfnum)\n",
    "        slval = SL_wTd_nos_base_R4_RCP19[sortind[i*cdfstep],t]\n",
    "        slcdf.append(slval)\n",
    "    SL_wTd_nos_base_R4_RCP19_cdf=np.vstack([SL_wTd_nos_base_R4_RCP19_cdf, slcdf])\n",
    "\n",
    "SL_wTd_nos_base_R5_RCP19_cdf = [0] * (cdfnum+1)\n",
    "for t in range(len(SL_wTd_nos_base_R5_RCP19[1,:])):\n",
    "    print(\"R5: \",t)\n",
    "    sortind = np.argsort(SL_wTd_nos_base_R5_RCP19[:,t])\n",
    "\n",
    "    slcdf = []\n",
    "    slcdf.append(0)\n",
    "    for i in range(1,cdfnum+1):\n",
    "        cdfval = float(i/cdfnum)\n",
    "        slval = SL_wTd_nos_base_R5_RCP19[sortind[i*cdfstep],t]\n",
    "        slcdf.append(slval)\n",
    "    SL_wTd_nos_base_R5_RCP19_cdf=np.vstack([SL_wTd_nos_base_R5_RCP19_cdf, slcdf])\n",
    "\n",
    "\n",
    "Percentile = np.arange(0,float((cdfnum+1)/cdfnum),float(1/cdfnum))\n",
    "\n",
    "# write cdfs\n",
    "ncfile = nc.Dataset('Cdfs/SL_wTd_nos_base_RCP19_cdf.nc','w', format='NETCDF4')\n",
    "ncfile.createDimension('Time', None)\n",
    "ncfile.createDimension('Percentile', None)\n",
    "\n",
    "SL_wTd_weighted_base_R0 = ncfile.createVariable('Antarctica', 'f4', ('Time','Percentile'))\n",
    "SL_wTd_weighted_base_R1 = ncfile.createVariable('EAIS', 'f4', ('Time','Percentile'))\n",
    "SL_wTd_weighted_base_R2 = ncfile.createVariable('Ross', 'f4', ('Time','Percentile'))\n",
    "SL_wTd_weighted_base_R3 = ncfile.createVariable('Amundsen', 'f4', ('Time','Percentile'))\n",
    "SL_wTd_weighted_base_R4 = ncfile.createVariable('Weddell', 'f4', ('Time','Percentile'))\n",
    "SL_wTd_weighted_base_R5 = ncfile.createVariable('Peninsula', 'f4', ('Time','Percentile'))\n",
    "p = ncfile.createVariable('Percentile', 'f4', 'Percentile')\n",
    "t = ncfile.createVariable('Time', 'f4', 'Time')\n",
    "\n",
    "t[:] = Time\n",
    "t.units = 'years'\n",
    "SL_wTd_weighted_base_R0[:,:] = SL_wTd_nos_base_R0_RCP19_cdf\n",
    "SL_wTd_weighted_base_R1[:,:] = SL_wTd_nos_base_R1_RCP19_cdf\n",
    "SL_wTd_weighted_base_R2[:,:] = SL_wTd_nos_base_R2_RCP19_cdf\n",
    "SL_wTd_weighted_base_R3[:,:] = SL_wTd_nos_base_R3_RCP19_cdf\n",
    "SL_wTd_weighted_base_R4[:,:] = SL_wTd_nos_base_R4_RCP19_cdf\n",
    "SL_wTd_weighted_base_R5[:,:] = SL_wTd_nos_base_R5_RCP19_cdf\n",
    "p[:] = Percentile\n",
    "\n",
    "SL_wTd_weighted_base_R0.units = 'meter'\n",
    "SL_wTd_weighted_base_R1.units = 'meter'\n",
    "SL_wTd_weighted_base_R2.units = 'meter'\n",
    "SL_wTd_weighted_base_R3.units = 'meter'\n",
    "SL_wTd_weighted_base_R4.units = 'meter'\n",
    "SL_wTd_weighted_base_R5.units = 'meter'\n",
    "\n",
    "p.units = 'percent'\n",
    "\n",
    "ncfile.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "200\n",
      "200\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x24e03d9ebe0>]"
      ]
     },
     "execution_count": 24,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl8XNV9///XubPPaF8tS7bkfcfYmMUQ9h0CDhACZC8ktM1WkjTfpE2b9pv+0rRJm6TZQ9YvSQMlCSFmC5BiFhPb2Abvq7zLkq1dmn3mzj2/P+bKHgnZlu1ZJPnzfDyu7zJ35n58NXrP1bl3zlVaa4QQQowvRqELEEIIkX0S7kIIMQ5JuAshxDgk4S6EEOOQhLsQQoxDEu5CCDEOSbgLIcQ4JOEuhBDjkIS7EEKMQ85Cbbiqqko3NTUVavNCCDEmrV+/vlNrXX2q9QoW7k1NTaxbt65QmxdCiDFJKXVgJOtJs4wQQoxDEu5CCDEOSbgLIcQ4JOEuhBDjkIS7EEKMQxLuQggxDkm4CyHEOCThLoQQeaItTe8ze0kcDuV8WxLuQgiRJ4mWIKHXDpNsj+R8WxLuQgiRJ9EtneBQ+GZX5HxbEu5CCJEHWmuimzvxTi/D8OW+5xcJdyGEyINka5hUTxzf/Kq8bE/CXQgh8iC6pRMM8M6tzMv2JNyFECLHBppkPFPLcARcedmmhLsQQuRYsi2M2RnFtyA/TTIg4S6EEDkX3ZRukvHNy0+TDEi4CyFETmmtiWzuwDOtDEeRO2/blXAXQogcSraGSXXF8C845Z3xskrCXQghcii6qSN9lUwem2RAwl0IIXIm3STTiWd6ed6ukhlwynBXSv1MKdWulNpygseVUurbSqlmpdQmpdTi7JcphBBjT/JwiFR3DH8er5IZMJIj918AN53k8ZuBGfbwIPCDsy9LCCHGvsimTjBUXq+SGXDKcNdavwp0n2SVZcAjOm01UKaUqstWgUIIMRalv7jUgXdGGYY/v00ykJ0293rgUMZ8i71MCCHOWcmWULovmQI0yUB2wl0Ns0wPu6JSDyql1iml1nV0dGRh00IIMTpFNneku/fNU18yQ2Uj3FuASRnzDUDrcCtqrR/WWi/RWi+prs7vNZ9CCJEvWmuim+zufQvQJAPZCfflwAftq2YuAfq01m1ZeF0hhBiTEoeCpHrj+M4r3EHsKXuMV0o9ClwFVCmlWoB/AlwAWusfAs8CtwDNQAT4i1wVK4QQY0F0U2dBm2RgBOGutb7vFI9r4ONZq0gIIcYwbdl3XJpRnpc7Lp2IfENVCCGyKHEoSKovju+8wlwlM0DCXQghsii6qbBXyQyQcBdCiCzRKU1kUwfemeUY3sI1yYCEuxBCZE18Ty9WMIl/cW2hS5FwF0KIbAm/eRTldeKbU1HoUiTchRAiG6yYSWxrF/6FVShn4aO18BUIIcQ4EN3SiU5ao6JJBiTchRAiKyJvtuOs9OKeXFzoUgAJdyGEOGtmT4z43j78i2tRari+FPNPwl0IIc5SZEM7AP5FNQWu5DgJdyGEOAtaayJvtuNuKsFZ4S10OcdIuAshxFlItoQwO6IERsmJ1AES7kIIcRbCbx4Fpyp4XzJDSbgLIcQZ0qZFdGMHvrmVBe9uYCgJdyGEOEOxnd1YEXPUXNueScJdCCHOUPjNdowiF94Z5YUu5W0k3IUQ4gxYkSSxHd34z69BOUbHte2ZJNyFEOIMRDZ1QErjXzx6rm3PJOEuhBBnIPJmO64Jflx1gUKXMiwJdyGEOE3JjgiJg8FR1d3AUBLuQghxmiJvtYMC//nVhS7lhCTchRDiNGgr3d2AZ0Y5jhJPocs5IQl3IYQ4DYn9faR64wRG6YnUARLuQghxGkJvHEF5HXjnVha6lJOScBdCiBFKhRJEN3cSWFyL4XYUupyTknAXQogRCq87CilN4OIJhS7llCTchRBiBLSlCb9xBPeUUly1o/Pa9kwS7kIIMQLx3T2kumMUXVJX6FJGZEThrpS6SSm1UynVrJT6wjCPT1ZKrVBKvaWU2qSUuiX7pQohROGEVrdhFLnwzRvdJ1IHnDLclVIO4HvAzcBc4D6l1Nwhq/0D8LjWehFwL/D9bBcqhBCFYvbGiO3oJrBkAso5Nho8RlLlRUCz1nqv1joBPAYsG7KOBkrs6VKgNXslCiFEYYXfOAJA4KLRfyJ1wEjCvR44lDHfYi/L9M/A+5VSLcCzwCeHeyGl1INKqXVKqXUdHR1nUK4QQuSXTlmE1x7BO6tiVN0A+1RGEu7D9Yqjh8zfB/xCa90A3AL8Uin1ttfWWj+stV6itV5SXT16+2QQQogB0W1dWMEkgTFyInXASMK9BZiUMd/A25tdHgAeB9BarwK8wOi6W6wQQpyB8Oo2HGUevDNH392WTmYk4b4WmKGUmqKUcpM+Ybp8yDoHgWsBlFJzSIe7tLsIIca0ZHuE+J4+AhfXoYzR2bXviZwy3LXWJvAJ4HlgO+mrYrYqpb6slLrdXu2zwEeVUhuBR4EPa62HNt0IIcSYElrVCk5F4MLRdwPsU3GOZCWt9bOkT5RmLvtSxvQ24LLsliaEEIVjxUwi69vxn1eNo8hd6HJO29i4YFMIIfIssv4oOpGi6NKJhS7ljEi4CyHEENrShFa14Z5cjLuhuNDlnBEJdyGEGCLe3IvZGaVo6dg8agcJdyGEeJvQn1vT/cgsGLtXdEu4CyFEBrMrSmxnN4GLxk4/MsMZu5ULIUQOhFa3gVJjpmvfE5FwF0IIm5VIEV57FN/8ShwlnkKXc1Yk3IUQwhbZ0I6OmWP28sdMEu5CCIF9+ePKw7jqArgbS079hFFOwl0IIYDYrh7M9ijFVzSg1NjqR2Y4Eu5CCAGEXm3BUerGd97Yvfwxk4S7EOKcl2gJEt/bR9Fl9SjH+IjF8fG/EEKIsxB87TDK4xhTt9E7FQl3IcQ5zeyJEd3cQeDiCRjeEXWUOyZIuAshzmmhlYcBRdGlQ28NPbZJuAshzlmpUILwG0fwn1+Ns2xsf2lpKAl3IcQ5K7SyFW1aFF816dQrjzES7kKIc5IVSRJa1YpvQRWuGn+hy8k6CXchxDkp9OdWdDxF8dWTC11KTki4CyHOOVbcJPh6K945FbjrAoUuJyck3IUQ55zw6jZ01KTkmvF51A4S7kKIc4yVSBF87TCeGWW4J43N+6OOhIS7EOKcEl57BCuUHNdH7SDhLoQ4h2jTIvRKC+4pJXimlBa6nJyScBdCnDPC646S6k9QMk6vkMkk4S6EOCdo0yK44hDuycV4ZpQVupyck3AXQpwTwuuOkuqLU3Jd47i4GcepjCjclVI3KaV2KqWalVJfOME671FKbVNKbVVK/Tq7ZQohxJk7147aAU7Zv6VSygF8D7geaAHWKqWWa623ZawzA/g74DKtdY9SqiZXBQshxOkKr08ftZffNeOcOGqHkR25XwQ0a633aq0TwGPAsiHrfBT4nta6B0Br3Z7dMoUQ4sxo0yL40rl11A4jC/d64FDGfIu9LNNMYKZS6nWl1Gql1E3ZKlAIIc5GeN2RdFv7tZPPmaN2GFm4D7c39JB5JzADuAq4D/iJUuptH5FKqQeVUuuUUus6OjpOt1YhhDgtViJF//8ewt1UgmdmeaHLQWvNn3/z3/S1H835tkYS7i1AZmfHDUDrMOv8QWud1FrvA3aSDvtBtNYPa62XaK2XVFdXn2nNQggxIuFVrVjBBKU3No2Ko/Zdq1ey6rePsn/j+pxvayThvhaYoZSaopRyA/cCy4es8yRwNYBSqop0M83ebBYqhBCnw4qZ9L/cgndW+aj4NmoyHuOVX/6M6qapLLj2xpxv75ThrrU2gU8AzwPbgce11luVUl9WSt1ur/Y80KWU2gasAD6nte7KVdFCCHEqwVdb0j0/3tBU6FIAeOMPvyXY1cE1H34Qw3DkfHsjutW31vpZ4Nkhy76UMa2Bz9iDEEIUVCqUILTyML7zqnDXFxW6HHqOtLJ2+e+YfdmVNMyZn5dtyjdUhRDjTnDFIXTSouT6xkKXgtaal37+IxxOJ1d+4IG8bVfCXQgxrpi9MUKr2/BfUIuruvD3Rm1+YxX7N6zn0rvfT1F5Rd62K+EuhBhX+v90EICS6wrf82MyFmPF//sx1ZObWHTTO/O6bQl3IcS4kTgcIrL+KEVLJ+Is8xa6HFY98RjBrg6ufeBjGI7cn0TNJOEuhBgXtKXp/UMzRsBFybWFP2rvOLif9U//nnlXXUf97Ll5376EuxBiXIi81U7iYJDSm6Zg+EZ0IWDOaMvixYe/g8cf4Mr331+QGiTchRBjnhUz6XtuH+7JxfgXF75T2o1/+iNtu3dy1Qc/gq+4pCA1SLgLIca8/hcPYIWTlN0+DWUUtpuBUE83r/36F0yev5A5l19dsDok3IUQY1ryaJjQqlYCF07A3VBc6HJY8YuHSZlJrvvIxwran42EuxBizNJa0/vMPpTbQckNhf/C0t4317Jr9UouufNeyuuG9oyeXxLuQogxK7azh/iuHkqunYyjyF3QWpKxGH/66fepbJjMhbffWdBaQMJdCDFG6ZRF3zN7cVb5KFo6sdDl8Oqvf0Gws4PrPvpxHE5XocuRcBdCjE2hVW2YHVFK3zkV5SxslB3auokNzz/N4ptvp2H2vILWMkDCXQgx5qTCSfr/dBDPzHK8swp7h6VELMoff/BflE2o4x33fbCgtWSScBdCjDn9Lx5AJ0zKbp1S8Dssvfqrn9Pf2c5Nf/1pXJ7Cd3kwQMJdCDGmJI+ECa9po+iSibhqAwWt5cCmDWx88VkuuGVZQboYOBkJdyHEmKEtTc/vmzF8zoL3+hiPRHj+R/9FeV09l937gYLWMhwJdyHEmBFe3UbiQD+l75yK4S/sFSmv/PInhLq6uOljn8bl9hS0luFIuAshxgSzJ0bfH/fjmVmOf1Fh+4/ZvXYVm196gSW33cHEmbMLWsuJSLgLIUY9rdPNMaApv2N6QU+ihrq7eOFH36FmyjQuu+f9BavjVCTchRCjXmRDB/FdPZTe2ISzvHBXpGjL4rnvfQMzEefWT31uVHxZ6UQk3IUQo1oqlKDvqT24G0sIFPibqOueeZKDWzZy9Yc+SsXEhoLWcioS7kKIUa33qb1Y8RTld80oaHe+R/c2s/LRR5h+4VIWXHNjweoYKQl3IcSoFdncSXRjByXXTMZV4y9YHclYjGe+/XX8paXc8JefLPgXp0ZCwl0IMSqlggl6f78bV0MRxVcVrglEa83//uyH9Bxp5eaPf7Zgd1Y6XRLuQohRR2tNz+92YyUsKt4zC+UoXFRtfukFtr7yJy65814mzz+vYHWcLgl3IcSoE157hNiObkpvbipoc8zRfXt46ec/pPG8RSx9970Fq+NMjCjclVI3KaV2KqWalVJfOMl671ZKaaXUkuyVKIQ4l5idUfqe3otnellB+2mPhUM89c2v4isp5ZZP/i2G4ShYLWfilOGulHIA3wNuBuYC9yml3tZDjlKqGPgUsCbbRQohzg06ZdH12A4wDMrfPbNgV8dorfnj979JsLOD2x76PP6S0oLUcTZGcuR+EdCstd6rtU4AjwHLhlnvX4CvAbEs1ieEOIf0v3iQZEuI8rum4ywrXH8ta5f/jj3r1nDl++9n4sw5BavjbIwk3OuBQxnzLfayY5RSi4BJWuuns1ibEOIcEtvTS/CVQwQunIB/QXXB6ji0bTMrH32EmUsvZ9HNtxesjrM1knAf7u8ifexBpQzgm8BnT/lCSj2olFqnlFrX0dEx8iqFEONaKpyk53924qz0UXrb1ILVEerp5ulv/TtldRO5cYxcz34iIwn3FmBSxnwD0JoxXwzMB15WSu0HLgGWD3dSVWv9sNZ6idZ6SXV14T6ZhRCjh7Y0PY/vJBVOUnHfbAx3YU5cmokET33jqySiUW7/9Bdw+wp3lU42jCTc1wIzlFJTlFJu4F5g+cCDWus+rXWV1rpJa90ErAZu11qvy0nFQohxJfhqC7GdPZS9cyru+qKC1KC15oWHv0Prru3c/PFPUzW5qSB1ZNMpw11rbQKfAJ4HtgOPa623KqW+rJQauw1SQoiCi+/ro/+F/fgWVBG4pK5gdbzx5G/Y/toKLnvP+5l5yTsKVkc2OUeyktb6WeDZIcu+dIJ1rzr7soQQ410qlKDr0R04y73pTsEK1L69a83rrHzsEea84youvvOegtSQC/INVSFE3mlL0/0/O7EiSSreNwfDO6LjzKw7ureZ5777DepmzOKGv/xUXj5gutvCaK1PveJZknAXQuRdcMUh4rt7KbttGu6JhWln7+/s4MmvfRlfSQnL/vYfcLrdOd/moR3dPP6VtWz830OnXvksSbgLIfIquq2L/j8dwH9+NYGLJhSkhlgoxBNf/ScSsRh3/J8vESgrz/k2j+zt49kfbKa0xsfsPJxfkHAXQuRN8kiY7sd24qovKlg7ezIR58mv/wu9R1pZ9rf/QHXjlJxvs+NQkKe+s5FAiZvb/+Z8vEW5vz2fhLsQIi9S4SSdj2xDeRxUfWAuypX/69ktK8Wz3/4PDu/cxs2f+GxeuvDtbg3z1Lc34PY6uP2h8wmU5qdbBQl3IUTO6ZRF939vJ9Ufp+qDc3HkKeAG1aA1L/38YZrXruLqD36EWUsvz/k2e46EefJbb6EMxbKHFlFS6cv5NgdIuAshcq53+R7ie/uouGsm7knFBalhzRP/w8YXnuHC2+9i8S3D9X2YXT1Hwjz5jbcAeNenF1FWm99vvEq4CyFyKrSqlfCaIxRf2YB/UU1Banjzuad4/fFfMffyq7n8vg/lfHu9RyM8+c230FrzrocWUT4hkPNtDiXhLoTImVhzL71P7cE7p4KSG5sKUsOWFS+y4hc/YvqFS7nxrx9CGbmNvb6OdLBbKc2yhxZRMTH/wQ4j/IaqEEKcrkRriK5fbcdZ7afi3lkFufHGzlUreeFH36HxvEXc+jf/B8OR25O4PUfC/OFbG0glLd71mUVUFqivHJBwF0LkQLI9QudPt2B4HFR9eB6GJ/9Rs/ettTz7na8zcdZsln32izhdub38sONQkKe+vQGUKniwg4S7ECLLkh0ROn68GRRUfWQ+znJv3ms4sHkDT/3nV6lunMIdn/8nXN7c1nBkbx9Pf3cjLo+DZQ/l/+TpcCTchRBZY3ZG08FuaaofXICrOv8ht3/Dev7wH1+hbEIdd/7d/8Xjz22b9+GdPTz9/U34S9wse+j8vF7ueDIS7kKIrDC7onT8eBOkLKo/eh6u2vyfSNz71lqW/8dXqGiYzLu/+C85v7H1vk2dPP/jLZRU+ViWxy8ojYSEuxDirJndMTp+vBmdtKj6yAJcBbj0b8/6NSz/z69SNbmRd//D/4evKLfX02997TCv/Hon1ZOLeecnF+Iryn3HY6dDwl0IcVbMnhgdP96EFU9R/ZEFBenlcfcbf+bpb32NmqYp3PX3/4K3KHc1aK1Z+/Q+1j6zn8nzKrnxo/NwF6jL4pMZfRUJIcYMszdOx483Y0XNdLAX4AqRLSte5IWHv8OEaTO46++/nNM2ditl8cqju9i2spXZl9Zx1ftm4XCMzq8LSbgLIc5Iqi+ePmIPJ9PB3pDfbgW01rzx5G9Y+dgjNJ63iNs/+/e4vbk7mZmImbz4063s39zFBTc3cvHtUwt296iRkHAXQpy2VH8ifcQeSlL1wPy89xejLYuXH/kJbz63nNmXXclNH3sIhzN317H3d0V59vub6W4Lc+V9M5l/ZUPOtpUtEu5CiNOSCibo+PEmUv0Jqh6Yj2dySX63byb54/e/xY7XX2HxLcu46gMP5LRLgfRNNjaRMjXv/MR5TJ5bmbNtZZOEuxBixJLtETp/sRUrlKDqL+bjacxvsEdDQZ76xlc5tHUTl7/3w1x4+105bRrZueYIL/1yO0XlXu74+HkF6QDsTEm4CyFGJLanl65fbkc5FVUfWZD3I/bu1sM8+bX/S39HOzd/4rPMvfzqnG3LSlmsWb6XN58/SP3MMm56cEFe7p6UTRLuQohTCq8/Ss8Tu3FWeqn68HycFfntUuDglk089Y1/RRkGd//jv1I/e27OthUNJnjhp1tp2dHDvMsncvk9M3E4R+cVMScj4S6EOCFtafpfPEBwxSE808uofN8cDF9+Y2Pzihf404+/R9mEidzx+X+irDZ3N9VuP9DPcz/cTDSY5JoPzmbOpRNztq1ck3AXQgxLJy26f7uL6MYO/EtqKb9jOiqP13SnzCQr/t9P2PjCMzSet4h3PvR5vIHcXUe/7fVWXn10F/4SN3d+bjE1eT6fkG0S7kKIt0mFEnT9cjuJA/2U3NRE8ZUNeb2mO9TdxfJvfpW2XTu44J13cMV7P5yzvtgTMZNXHt3JrjVHaZhdzg0fmTfquhI4ExLuQohBBq6ISfUnqHjfbPwLqvO6/ZZtW3jqW/9GMhbjnQ99Pqc3sm4/0M8LP9lKf2eUi26bwgU3N2EU4KYiuSDhLoQ4JvOKmOoH83tFjNaa9c88yav//XPKaidw9z9+hapJjTnb1sb/PcSq3+/BX+LmXZ9ZzMQZZTnZVqGMKNyVUjcB/wU4gJ9orf9tyOOfAT4CmEAHcL/W+kCWaxVC5Ii2NMFXW+h/YT/OKl/er4iJ9Pfxx+9/k31vrWP6hZdw08c+nbM+YsK9cV765XYObu1mysIqrvnAnDF3meNInDLclVIO4HvA9UALsFYptVxrvS1jtbeAJVrriFLqr4GvAffkomAhRHalwkl6Ht9JbGcPvvOqKL9zBkYeezk8uGUTz373P4iFglxz/19x/g235qx9f/fao7zy6E5SSYsr7p3J/CvrR3X/MGdjJD/Bi4BmrfVeAKXUY8Ay4Fi4a61XZKy/Gnh/NosUQuRG/EA/3b/eQSqUoGzZNAKX1OUt7FKmyarfPsqaJx+nvK6eO7/wz9Q0Tc3JtmKhJK88upPm9e3UTinhug/PHRW3wsulkYR7PXAoY74FuPgk6z8APHc2RQkhcktrTWhlK33P7cNR5qHmrxfmtVfHzoP7+eMPvsXRvc3Mv/p6rvnwX+bkPqdaa/Zu6ODVR3cRCye55F1TWXT9ZIxR2k1vNo0k3If7GNfDrqjU+4ElwJUnePxB4EGAyZMnj7BEIUQ2pYIJep7YTWx7N965lVTcPTNvX0yyUinWPvUEq37z37j9AW77zN8x8+LLcrKtUE+MVx/bxb6NnVRNKuK2Ty2kKs/dEhfSSH6iLcCkjPkGoHXoSkqp64AvAldqrePDvZDW+mHgYYAlS5YM+wEhhMgNrTWR9e30Pr0XbaYofedUii6bmLdmmK7Dh3j++9+irXknMy6+lOs+8vGc3OPUsjRbXmlh9ZN70Zbm0juns/DahnPiaD3TSMJ9LTBDKTUFOAzcC7w3cwWl1CLgR8BNWuv2rFcphDgrqb443b/dRXx3L+6mEsrvmoGrOj9tzmYyyRtP/oY3nnwcl9fHrZ/6HLMuvSInHyqdLSFW/GoH7fv7mTy3givfO4uSqtzdwGM0O2W4a61NpdQngOdJXwr5M631VqXUl4F1WuvlwNeBIuA39g/soNb69hzWLYQYocjmDnqeaAbTSp80vbgOlacv6hzcsok//eR79LQdZtalV3D1hz5KoKw869uJR5KsfWY/m1e04Ak4uf7+ucy4sHZUXgljxWIojyfntY2ooU1r/Szw7JBlX8qYvi7LdQkhzlIqnKTvmb1E3mzH1VBExb2zceXpKDbc28Orv/oZ215bQWntBO76+y/TtHBx1rdjWZrtr7eyZvleoqEkcy+tY+kd00fldes6maT3d7+j8/s/oPaLX6Tkxhtyuj35hqoQ44y2NJH1R+l7bh9WzKT4mkmUXDs5L51+JeMx1j/9JG8s/x2pZJKL77iHi+98Dy63J+vbat3dw2uP76bzUIi66aXc9smZVE8efSdMdTJJ3/Kn6PzhD0keOoRv8WJcE2pzvl0JdyHGkURLkN6n9pI40I+7sYTyO6bjysPdg7Rlse21Fax87BFC3V1Mv3Apl7/3w1RMrM/6tjpbgqz+w14ObO6iqNzDDR+Zx/QLakZdE4w2zeOhfvAg3nnzqP3hDyi68sq81CrhLsQ4YPbF6X9+P5E32zECLsrvmoH/gtq8tK0f3LKRl3/5Uzr276V26gxu/eTnaJg7P+vb6euIsGb5PnavO4rH52TpHdNYcHUDLndueos8U1Y8Tt8f/kDXT39K8sBBPHPn0PD971N09VV5/QCScBdiDLPiKYKvthB6tQWtNcVXNVB81aS8dB9wZM9uXn/8V+zfsJ7iqmpu+eTfMvvSK7J+s+pwX5x1z+xn28pWDIdi8Y2NLLp+Mt7A6GpXTwWD9Dz6GN2/fIRUR2f6SP1736XommsK8leFhLsQY5CVSBFe1Ubw1RascBLfwmpKb2zKS2dfHQf38+fHf0Xz2tV4i4q5/L0fZtHNt2W9XT3YHWPDiwfZtrIVK6WZe/lEltzSRKA0++33ZyN59CjdjzxC72P/gxUOE7jsMiq/9jX8l1xS0KYiCXchxhArZhJa3UbotRassIlnZjkl103OS9e87fv38saTv2Hn6pW4vT4uvft9LL5lGR5/dq+X722P8ObzB9i5+ghomHlxLUtuaaI0T9flj1R8zx66fvYz+pY/BakUJTffTOUD9+Odm7v7u54OCXchxoBUKEHo9VZCq1rRsVTeQl1rzYHNG1j31BMc2PQWLq+Pi991Nxe88w58Rdm9MqXrcIj1z+2neX07hsNg3jsmcv4NkympHD1fQtKmSXDFCnp+/Wsiq1ajvF7K776bivv/AndDQ6HLG0TCXYhRzOyLE3qlhfDaI2jTwje/iuIrG3LeyVfKNNm16jXWPv17OvbvJVBWzjvu+xALr7sZb1H27mNqWZr9mzrZ/HILLTt6cHkcnH/9ZBZeO2lUNb+YXV30/uY39PzP45htbTjr6qj+9Kcpu/vdOCsqCl3esCTchRiFUv1xgi+3EFrTBhr8i2sovrIh510GJKIRNr/0IuuffZJgZwcV9ZO44a8+xZx3XI3Tlb0TmLFwku2vt7H5lRaCXTGKyj1cvGwq86+oHzUnSrVlEVmzht7fPUH/889DMkng0qVM+OLfU3TVVSjn6I6pX71aAAAeeklEQVTP0V2dEOeY5NEwoddbCb/ZDpYmsKSW4qsn4SzP7YnS9v172fSnP7J95QoS0SgNc+Zz7f1/zdRFS7J29YvWmo6DQba+1squNUcwkxYTZ5Rx6Z3TmXp+1ajp2CvRcpi+J5+k74knSLa2YhQXU37PPZS/9z48U3PT33wuSLgLUWBWzCS6qZPwuiMkDgbBqQgsqqX4qgacOWxvTsZj7Fy1kk0vPkdb806cLjczl76D82+4lboZs7K2nVgoyc43jrD99Ta6DodwuAxmXlTLeVc3jJoueK1wmOBLL9H7xBNEVq0GpQgsXUr1Zz5D8XXXYuSgr/lck3AXogC01iT29xNed5Topg500sJZ46P0lin4F9fgKHLnbLttu3ewfeXLbH/tZeKRMBUTG7j6Qx9lzhXXZO0kqWVpWnZ0s/31NvZu7MAyNTWNxVx530xmXFiLx1/4phcrFiP08iv0P/ccoVdeQcdiuBoaqPrUJyl717twTZxY6BLPioS7EHmitSbZFia6uZPopg7MrhjK7cB/fg3+C2txTyrO2XXRnYcOsOP1V9jx+iv0tR/F6XIz/aKlLLzuZurnzMvKdi1L07a7l+Y329nzVgfR/gSegJP5V9Qz59K6UXGUbiUShFeupP/Z5wi99BJWJIKjspKyO++k5Jab8S1enPUvYRWKhLsQOWZ2RYm81U5kQwdmZxQUeKaWUnz1ZHznVWHk6Ovz/R3t7Pjzq+xY+TIdB/ejDIPGBeez9N3vZfqFS7Nyfbpladqae2lefzzQnW6DxvlVTL+ghinnVeFwFTYsU6EQ4ZUrCa1YQfClFVjBII7SUkpuvZWSW2/Bf+GFKMfo6sIgGyTchciBVDhJdEsnkTfbSRzoTwf6lFKKLq/HN68yJ80uWmu6Dh1gz/o3aF63miPNuwComzmba/7iL5l5yTuy0pe6ZWmO7OmleV060CP9CZwug8YFlUy/oJbG+ZW4PIUNy0RLC6GXVhBc8RKRdeshmcRRWkrxtddScsvNBJYuRWXx6p+R0lpzMHiQUncpZd6ynG5Lwl2ILNCWJtkaIrajm9iuHhKHgqDBWeOj5KYm/OfX4CzL/nXbKdPk8I5t7Fm/hj3rVtPXfhSACdNm8I57P8isS6+grHbCWW8nFk5ycFsXB7Z0cXBrN7FQ8ligT1tcQ9OCqoIGupVIEH1rQ/oI/eUVxHc3A+CeOpWKD36A4quvxnf++QW5fLEt1Mbao2tZe2Qta9rW0BZu4x8v+UfeM+s9Od2uhLsQZ0BbGrM9QnxfH/G96cEKJ0GBq6GY4msm45tbiWtiIKvt6Nqy6Dx0gINbNnJwy0YObdtCMhbF4XIxef5CLlp2N1MXX0hRReVZbceyNJ2Hghzc1s3BLV0c2duH1uAtctE4r5LGBZU0zq/EnYcOyoajLYv4jh2EV60ivGo1kXXr0LEYOJ34L7iAmi/cRfHVV+NubMx7bZlhvvbIWg6HDgNQ6illSe0SHpj/AJfXX57zOiTchRgBbaVPhsb39hHf10difx9WxATAUerBO7Mcz8xyvDPKst7k0td+hAObN3Bw80YObt1EtL8PgPK6icy9/CoaFyyiceEi3N4zv2xSa013W5jDO3to2dFD6+5e4vb/r6axmAtuaaJxfiU1jSUYebpF36D6LIvEnj1E1r9JeM1qIqtWk+rtBcA9fRpl7343gUuX4r/wQhzF+Ttxa1omu3t2s7FjIxs7NvJW+1tvC/MPzP0AS2qXMKN8BobK3/kHCXchhqFTFonDIRIDR+b7+9HxFACOCi/eOZV4ppbimVKKozx798PUWtPT1srhnVtp3bmdQ1s3HWtqCZRX0LRwMZPnL2Ty/PMoqao58+1Ymp6jEdqae9OBvrOHaDAJQEmVl6mLqmmYVU79rPKCdANgxWLENm8m8uZbRN98k8iGDVh96Q81Z00NRVdemQ7zS5biqj3z/XC6emO9bOrcxIb2DWzs2Mjmzs1EzSgAVb4qFlYvLFiYDyXhLs55WmtSfXGSbWGSrWHi+/tIHOhHJywAnNU+/Aur8UwtxT2lFGcWwy7S18vRfXto37eHtuZdtO7afuzI3FtUTMOceVxw67uYPP98KuobzvhDJBZO0nEoyNG9fbTt6efovr5jR+b+UjeT5lRQP6uchlnllOTpPqsDtGWR2H+A2NYtxLZsIbphI9Ft2yCZ/rBxT51K8fXX4V+0GN/iRbibmvLSlW5ntJNtXdvY3rWd7d3b2d61ndZwKwAO5WBWxSzeNf1dLKxeyPk15zMxMHFU3Q1Kwl2cU6y4SfJIhOSRcDrMj6QHHUsdW8dZ68e/uPb4kXlxdppZQt1dHN23h6N7m2nfv4ej+/YQ6uo89njZhDqmLlrCxFlzqZ81l4qJ9Wd0zXU8atJxMEj7gX57HKS/I3rs8YqJAaYtqmbCtFImTC2lrNaft1DSlkXy4EGiW7YS27qV2JYtxLZtwwqHAVAeD965c6n80AfxLV6Mb9EinOVnf4XPyaSsFIdDh9ndu5sd3TvSYd61nfZo+7F1GksaWVi9kHtm38OCqgXMq5yH33WGl5LG+kEZ4MleB2zDkXAX45K2NGZ37HiA2+NUd+zYOsrjwDUhgP/8GlwTArjqArhq/Wd9F6NkIk5P62G6Dh+i69BB2venj8zDvT32hhUVdfU0zJ5H7dTp1E6ZRnXTVLyB0/tlt1IWfR1Rug6H6W4L090aorMlRF/78SAvrvBS01jM3MvqqJlcQk1TcV6+Haq1xmxvJ75rN/HdGcOePehouj7lduOZPZvSZbfjnTcf7/x5eKZNy9kVLVpr2sJtNPc209zbzJ7ePezu2c2+vn3EUun3haEMppRM4eK6i5lTOYc5FXOYXTGbIvcZBHG4Ezp2QufO9LhjJ3Tugv7DcPt3YPEHs/w/HEzCXYxZ2tKkgglSXVHM7tjxoTOKeTSCTqabVVDgrPLhri/CdUFtOsQnBM66rTweidB9+BBdLQfpOnwoPX34ULqNXOv0pg2DyvpJNC1cTM2UaemhaeppnfyMhZL0tkfobY/Q1x6ltz1CT1uEnqNhLFMf+z+WVPmonBhg9iV11DQWU91YjC9H3RgM0KZJsrWVxP79JPYfIL5vrx3kzcfayAEc1VV4Z8yg/D1345kxA++8eXimT8/Jteb9iX4O9R/iQP8BDgQPHJve07eHcDJ8bL0aXw3TyqZx96y7mV42nWll05hRNuP0jsiTMejZB91700NXM3TsSgd6pOv4eq4AVM+EpsvT4/oLsvg/Hp7S9psw35YsWaLXrVtXkG2LscOKm6R645i9cVK9cVJ2eCc7o6S6Y8cDHECBo8yDs9KHq9Z/LMRdtX6U6/SvwU6ZJsGuTvqOHqGv40h63H6Uvo6j9B09QjTYf2xdh9NJ+cQGKuonUVk/icqG9Lisrn5EXeXGoyZ9doD3Ho3a0+nxQNs4gFJQXOmlrDZA5cQAFfUBKuoClNcFcnajaCsWI9naSvJwK8nDLSQOHLTDfD+JlpZjbeMARkkJnhkz8MyYbo/TQzabVrTWdMW6aAu1cSh46HiA2+OeeM+g9Wv9tTSWNDKtbBrTy6YfC/JST+mpN5YyIXQE+lrs4RD07IeuPdC9L30UTkaG+iqgehZUzUyPq2dB1SwoqYcsdWuglFqvtV5yqvXkyF0UjLY0ViiB2WMHd28cszeWMR1HR83BT3IonBVenJU+vDPKcValp50VXhxlHtQIu41NmUnCvT2EursJ93YT6ukm3NNDqKeL/o52+tqPEuzsQOvjHx6Gw0FJVQ2ltROYcdGllNZOsMO8gdKaCRgn+Aq7ZWkifXGC3XFCPTGC3TFCPXFC9jjYHSMWSg56TlGFh7IaP9OX1FJW46O0xk9ZjY+SKh8OZ3avwEiFwphtrekj8MOHSR4+fDzMW1tJdXYOWl95PLgnT8YzfTrF112Hu6kJd1Mj7qYmHBUVZ91+n0glOBI+Qlu4jdZQ6/HpsD0daiNhJQY9Z0JgAo3FjVzbeC2NxY1MKplEY3EjDcUNeJ0n6NFRa4j1Qt/h48Hd15IO7IEw728FnRr8PH8lVEyFpnekx5XToGJKetp38g+xSMKkIxin1OeizJ/bv6rkyF1klTYtrHCSVDiJFUqmp0NJrHDCHtvLgglS/QlIDX7/Ka8DZ1k6qAcGZ7kHx8CyYjfqBNdZa8siFgkT7e8j2t9PuK+HcM/x4D4e4t2DjrqPbVsZ+MvKKKmuobS6lrLaCZTU1FJWM4HSmgkUVVQOCnArZRENJon0J+whnh73pefDvXGCPTHCvQm0Nfj/6fY6KKrwUlTupajCQ2mVj7IaP6U1PkqrfTjP8ihca40VDmO2d2C2t2N2nHhsRSKD94PLhXNiHe76elz19bgmTkyP7Wlnbe0ZneiNmlE6I510RDvoiHbQGe2kM9pJRyQ9PbCsO9b9tudW+6qpK6qjLlDHxMBEJgQmUBeoY1LxpLcHeMqESCcEj0DoqD1uTx+BZ06H2sGMDd6Q4YLSeihpgNLMYZI9rgfP4OvoLUvTE0nQHozTEYzTHozTHowdm+7IGELx9MHKV+6Yz/suPrMvWI30yF3CXZyUTmmsyEBIJ46H9aDgPj6tY+bwL2QojIALR5ELo8iFI+DKCHAvTnt64GSm1hozEScaDBIN9qcDO2McGZgP9hPt7z82rS3r7Zt2OPCXlVNUVk6gvJKi8nICZRUEyisoKk+P/SVlGE4/iahFLJQkFk4P0VCSeDhpLzOPLw8miIaSg/4iH+D2OvCXevCXuCmuSId3Ubk3PV3uoajCi8c38j+atdboSASzp5dUby+pnh5SvT2kenrT495ezJ6Befvxnh50IvG211JeL86aGpw11Tirq3HV1OCsrsY5oQ5X/URcE+txVledMryTVpK+eB+9sV564j30xnvTgz3fF++jJ2aP4z30xHoIJUNvex2nclLpq6TKV0W1r5oqfxU1vhrqitIhXheYQK3DjzsehGg3RLrTbdnHxvYQ7UmPw53pYNdvfx/gK4ei2vRQPAGKaqBoQjqwSyeRLJpIv6OcvliKvmiSvmiS/piZHtvzfZGB5elxVyhBZyiOab39jRBwO6gp8VJd5KG6xEN1kYcae3xhUwVNVYERvwcG/QyzGe5KqZuA/wIcwE+01v825HEP8AhwAdAF3KO13n+y15RwLwxtZYb14GC2wkmsUGLQUbcVOUFYKzACruOBHXDhKHKj/E6U34HlsjCNJKZKkiRO3IyQiEWJR8IkolHi0QiJSJh4JEIiGjk2zpy2UqnhN60MvMXF+EtK8RYV4w2U4PIV4fYW4XQHcLj8OFwBDEcAw1GMVh7MmCYRM0nETJKxlD1tj6MpEkObfzIYhsJT5MIbcOENOPEGXPhL3Omh1IO/2I2/ND3vK3EPavvWWqOjUVLBEFYoiBUKHZtOBYNYwVB6WWhgOmg/HsIKBknZ4+GC2t4ZOEpLcZSV4SgvPz4uL8NZUZEO7oEAr6nBKCrC0haxVIxIMkLEjBBKhAgmgwQTwfR0IkgwmZ7uT/QTSoQIJe3liSB98T6CyeAJ95ff6afMU0aZp5QydzFlzgDlTj9VDh/VhocqHFRpRXVKU2YmMOJBiPenh9iQcbQXrOTwG1IO8Fekm0l8FaR8FSQ95UQ9VYRdlQRdlfQalXSrMjoooy9hHAvlY+GdEdzhxPDvtwEep0Gpz3VsKPG5qAy4qS72UFPsobrYeyy8q4s9BDy5afXOWrgrpRzALuB6oAVYC9yntd6Wsc7HgPO01n+llLoXuENrfc/JXlfC/cxprdEJCx0zsWImViyFFTUHzeuoPR01sUJ2M4k9DHe0CYBHoT1guXQ6nB1mOpxVnARx4laUuBkiaoaJJUIkEzGSsTjJeJRkLEYyHicZj50wlDMpw4HL48Ph8uF0eXG4vBhOD4bDi+HwoAwPynBjGH4wfCjlA3xY2oOZdGPGUySiKVLmMEdob9sYuDwO3F4nbq8Dt9eBy23gcilcbnA5we0Cj9vC40wPbsPEZSRx6ziOZAwdi6CjMaxoFB2LYmVOR6JYsRhW9Pg6ViyKtpczgv1hFBWhAgFUUQCK/OiADx3wYQW8pPxezBIfZpGPZLGXWJGbeJGbWMBFyANRHSdiRoiaUaJmlEjy+PTQ+YgZIZ6Kn3qfAUUOD0WGh2LDTbHhpBgnRSjKMCizoNzSlKZSlJtJysw4ZYkYZfEonmQYEmFIneADaQjTGSDpKibhLCLuKCLuCBA1AkRUgJAK0GeU0kcxPbqYLl1Eh1VMV8pPl+klYmqiiRT9MZPECN4LPpfjbQFdOmhwUup3UeJ1vW097xmclM+FbJ5QvQho1lrvtV/4MWAZsC1jnWXAP9vTvwW+q5RSulBtPnmitYaUTrenmhba0uiUvSxlQUpjJVNYppkeJ1JYCRMrbmIlUuiEiZWw0PZynbCwkql0cJsakhbatCCZfl1lalQKlKlQnPyklYWFSZKkTpCwYsStCFEzTNwMEUmGiJkh4qkw8VSEWCpCwoqiT5j6oAwnynChlBulXCjlBOUm/RYqRlOO1u50e63LBcqNUp70OhnTx8d28wuQtCAZB+JgKAuHsjLGKQwsHKQw6MepTbwkceoEDp3AoeI4UgmcVgxHMorTjGIkIjgTYZzxCEYihCMWQSUT6as6EknUMH9CZzLt4URSToOU24HpdmC6DUy3QdJlkHQrTLdBoggSLkXS6SXu9hL1KCJuCLstQm5NyGMRdFn0uVP0uy363SamigEx0n/4nsTAaoPPceLQ4EPh0wqvBp89+LVFlWXht1L4rRS+lEmRZeKzND6t8WuLIktTbFnHhiLLImBphosyEydx5SWqvMSUlyheonjowUuLLiasPUS0m6DlJWS5CWkPETxEtIcgfoLab499BPETwofF8E1ALofC63LgczmOj90OfC4Dn9/B1IxlxV4nJV4XxV4nRR4nxfZ0sddJscde7nXiGiX3ac2HkYR7PXAoY74FuPhE62itTaVUH1DJ296CZ+/ZT36dKe7Zx+YHh5wifaJeZSwZ/l9U5nOHRqU6vq4a7tUUhjIwVPY+yVOWiamTpLRJSicz5pOY2iRlmfZ0goQVJ3lsSJC0kiQsk6Q2Ma0USZ0ihQIcdog6QLlQygXKCbhRqhxUDbhcKJcLFw4UBgYGyjIwUBjawKEVytI40CjLxNApDCuZHlLpscMyMayEPYQwLNNePng9wzJxWAn78cSx9Y4P5qCfg2mA6QDLgJSClGFPDxlMA+IGJB1gOhVJBySdkPSBWWRPO9KvlZ42hlmWnk44B5alXyfhgrgT4m5IOTQpp0YZ4NQmTkycOh2CDq1xanCicQwZOzU4tcZtD2VArda4tMYT07ijxx/zaI1Lg0drDEvh0AqH/XNwaCP9M7EMlDZQ2oFLO3BYBuDExIGpHemxPcRwE9cu4rhIkB7HcdGv3cem47iOrRPHTRInlsOD5fCQcngxHT5STj8phw/D5cHtNHA5DDxOA7cjPe12GoOXOw1cDkWJw0GVPT2w3O00jgX2QGj73I6MZQZel+OcCuJcGEm4D3eIOPTQZyTroJR6EHgQYPLkySPY9Nul3Ba9iW7IPM60/0DQdiGZR6CDj0btOT3co0OPW/Wx0XCvYWkLCwtLW2idQqOxdOr4MrT9mMYiPU5pC4sUKZ3C0ik7yNPT6e1pUBqlQQ1s0/5wUfa20xeKaHveQimNQmMoCzcWHodGYWGpFKgUkB5rZaGVCVjp5Splr2OhlQVKo5VC2xvTCkylSNrz1qDHFNoA7GV6YJk9zbFlRvq5hkI7FMoAbRhYSqEMF5ZyoYwA2l6OocBIv3a6w6X0h6xhj9VwY22P1eB1wTg251AO+8NLYeDAUA4UDvujzIFSjhOOFU577ABloJWBxh6UQiuHvUzZy9KDUgYoA2U40tOGA2U40Q4nGC6U4QSHC204MRxOcLjBcKIc6eWmcuBwGGhDYdn7P2UoDKVwGGCo9LS2lxkKHIbCO7COUhj2eg5D2bt2YFphGPY6Kn1OwWUcD15HAXp9FNk3knBvASZlzDcArSdYp0WlDxVLgbddz6S1fhh4GNJt7mdS8G3/+fkzeZoQQpxTRvJ3z1pghlJqilLKDdwLLB+yznLgQ/b0u4GXxnt7uxBCjGanPHK329A/ATxP+lLIn2mttyqlvgys01ovB34K/FIp1Uz6iP3eXBYthBDi5EZ0IabW+lng2SHLvpQxHQPuzm5pQgghzpScjhZCiHFIwl0IIcYhCXchhBiHJNyFEGIcknAXQohxqGBd/iqlOoADZ/j0KnLQtUGWjNbapK7TI3WdvtFa23irq1FrXX2qlQoW7mdDKbVuJL2iFcJorU3qOj1S1+kbrbWdq3VJs4wQQoxDEu5CCDEOjdVwf7jQBZzEaK1N6jo9UtfpG621nZN1jck2dyGEECc3Vo/chRBCnMSoCXel1M+UUu1KqS0ZyxYqpVYppTYrpZ5SSpVkPPZ3SqlmpdROpdSNGctvspc1K6W+kM+6lFLXK6XW28vXK6WuyXjOy3ZdG+yhJo91NSmlohnb/mHGcy6w129WSn1bKXVWd2o4zbrel1HTBqWUpZQ6334s2/trklJqhVJqu1Jqq1Lqb+zlFUqpF5VSu+1xub1c2fujWSm1SSm1OOO1PmSvv1sp9aETbTOHtb3PrmmTUurPSqmFGa+1397PG5RSZ3WT4jOo6yqlVF/Gz+xLGa+Vtd/LM6jrcxk1bVFKpZRSFfZj+dhfd9vzllJqyZDn5C7HtNajYgCuABYDWzKWrQWutKfvB/7Fnp4LbAQ8wBRgD+nuiB329FTAba8zN491LQIm2tPzgcMZz3kZWFKg/dWUud6Q13kDWEr6Zk/PATfnq64hz1sA7M3h/qoDFtvTxaRv+j4X+BrwBXv5F4B/t6dvsfeHAi4B1tjLK4C99rjcni7Pc22XDmwTuHmgNnt+P1BVoH12FfD0MK+T1d/L061ryHNvI32/iXzurznArKHvaXKcY1n5xcnWwJAQAvo5fl5gErDNnv474O8y1nuedEAtBZ7PWD5ovVzXNeQ5ivTdjj32/KAfbJ7316D1hrwZd2TM3wf8qED761+Br2TMZ31/DdneH4DrgZ1AXcb+2GlP/wi4L2P9nfbjg/bR0PXyUduQdcsZfBCxnyyF1Rnss6sYPtxz8nt5hvvr18BH87m/MuYHvaeH7geynGOjplnmBLYAt9vTd3P8dn/D3bS7/iTL81VXpruAt7TW8YxlP7f//PvHs23+OIO6piil3lJKvaKUutxeVk96Hw0o5P66B3h0yLKc7C+lVBPpv7LWALVa6zYAezzQ/FOQ99gIa8v0AOm/MAZo4AWVbhZ8sAB1LVVKbVRKPaeUmmcvy9k+O539pZTyAzcBv8tYnI/9dSI5fY+N9nC/H/i4Umo96T9zEvbyE92Qe0Q36s5hXQDYb+p/B/4yY/H7tNYLgMvt4QN5rKsNmKy1XgR8Bvi1Srd7j5b9dTEQ0VpvyVick/2llCoi/cv9kNa6/2SrDrMsp++x06htYP2rSYd75o2FL9NaLybdXPNxpdQVeazrTdJfjV8IfAd4cuAlhln3rPfZ6e4v0k0yr2utM+/vXMj9ldP32KgOd631Dq31DVrrC0gf1e2xHzrRTbtHcjPvXNaFUqoB+D3wQa31noznHLbHQdJ/Gl6Ur7q01nGtdZc9vd5ePpP0/mrIeIm87y/bvQw5as/F/lJKuUj/0v231voJe/FRpVSd/Xgd0G4vz+t77DRrQyl1HvATYNnAzxZAa91qj9tJvw/Par+dTl1a636tdciefhZwKaWqyME+O939ZRvufZaP/XUiuX2P5aKt6SzaqJoY3FZbY48N4BHgfnt+HoNPROwlfRLCaU9P4fiJiHl5rKvM3uZdQ57vxG7XA1zAb4G/ymNd1YDDnp4KHAYq7Pm1pE8YDpxQvSVfdWUsawGm5nJ/2f+/R4BvDVn+dQafhPuaPX0rg0+ovmEvrwD2kW7rLrenK/Jc22SgGbh0yPoBoDhj+s/ATXmsawLHz61cBBy0XyOrv5enW5c9X0r6/s6BfO+vjMdfZnCbe05z7Kx+ibM5kP5EbQOS9i/7A8DfkD7jvAv4t4E3jr3+F0kfAe4k4woP0lc57LIf+2I+6wL+AQgDGzKGGvuNsx7YBGwF/gs7bPNU1132djeS/tP5tozXWUK6TXwP8N3MfZynn+NVwOohr5GL/fUO0n/absr42dwCVAL/C+y2xwMfegr4nr1fNg/5pbyfdLg2A3+RhffY6db2E6AnY9119vKp9s94o73fzur9fwZ1fSLjfbaajA8fsvh7ebp12c/5MPDYkNfJ1/66w/5diANHGXyyNGc5Jt9QFUL8/+3YMQ0AAAzDMP6sx6HXFNkgcoSg188dgI24AwSJO0CQuAMEiTtAkLgDBIk7QJC4AwQdiByx8riK/5QAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "\n",
    "print(len(Time))\n",
    "print(len(SL_wTd_nos_base_R0_RCP19_cdf[0:-1,500]))\n",
    "plt.plot(Time,SL_wTd_nos_base_R0_RCP19_cdf[0:-1,10])\n",
    "plt.plot(Time,SL_wTd_nos_base_R0_RCP19_cdf[0:-1,50])\n",
    "plt.plot(Time,SL_wTd_nos_base_R0_RCP19_cdf[0:-1,166])\n",
    "plt.plot(Time,SL_wTd_nos_base_R0_RCP19_cdf[0:-1,500])\n",
    "plt.plot(Time,SL_wTd_nos_base_R0_RCP19_cdf[0:-1,833])\n",
    "plt.plot(Time,SL_wTd_nos_base_R0_RCP19_cdf[0:-1,950])\n",
    "plt.plot(Time,SL_wTd_nos_base_R0_RCP19_cdf[0:-1,990])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.3733869194984436\n",
      "0.6061061024665833\n",
      "1.1127036809921265\n"
     ]
    }
   ],
   "source": [
    "print(SL_wTd_nos_base_R0_RCP19_cdf[-1,833])\n",
    "print(SL_wTd_nos_base_R0_RCP19_cdf[-1,950])\n",
    "print(SL_wTd_nos_base_R0_RCP19_cdf[-1,990])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}