You are here: Home Research Transformation Pathways Research Landuse Management

Landuse Management

Nowadays, production of food, energy and materials, and the related use of water, nitrogen and other inputs account for crucial components and interactions in the land as well as full earth system. The global land system will be facing new intersecting challenges in the future such as changing climate and increasing demand for ecosystem services. On the other hand it will have to undergo fundamental transformations to meet the requirements of climate protection, environmental sustainability, food and water security as well as ecosystem and biodiversity protection and regeneration. Hence, there is a higher need than ever for interdisciplinary science on sustainable land-use management.

Our research responds to this need by the analysis of transformation pathways towards sustainable land-use systems to reach the sustainable development goals (SDGs) within planetary boundaries. We estimate baseline trajectories for the future, identify options for intervention, and study opportunities and risks in regard to a multitude of policy goals. Hereby, our approach bridges different disciplinary approaches by combining agricultural economics with biology and hydrology, and by establishing firm links to research areas such as energy systems, macroeconomics, climate science or public health. We investigate topics from an interdisciplinary perspective and at different geographic scales. Besides its scientific goals, policy relevance for e.g. international bodies such as CBD, OECD, SDSN, World Bank and FAO is of core importance for our research.

The central methodological tool for this research is the global multi-regional land system modeling framework MAgPIE (Model of Agricultural Production and its Impacts on the Environment) and its underlying data structure (MADRaT). MAgPIE has evolved into one of the world’s leading land-system modeling frameworks for the analysis of climate change impacts and mitigation strategies but also for sustainable development issues taking into account the biophysical as well as the socio-economic dimension. MAgPIE is linked to the biophysical model LPJmL as well as the energy-economy-climate model REMIND and in this combination MAgPIE was also selected as one of five marker models for the Shared Socio-economic Pathways (SSP), which is the new integrating framework for the scientific communities on physical climate, climate change impacts, adaptation and mitigation, sustainable development as well as biodiversity and ecosystem services research. Since 2018 the MAgPIE model is Open Source.

Beyond the work with the MAgPIE model, the LUM group has also played a leading role in the comparative assessment of scenario results from multiple models (e.g. AgMIP, ISI-MIP, and Stanford Energy Modelling Forum) and contributes strongly to international climate, land-use, biodiversity and ecosystem service assessments such as IPCC and IPBES.

The working group land use management (RD3) is part of the cross-cutting activity land use, in which it - together with the working group land use and resilience (RD2) forms a strong, inter-disciplinary team.

Current research projects

  • Climate pOlicy assessment and Mitigation Modeling to Integrate national and global Transition pathways (COMMIT)
  • Kopernikus Project Energy Transition Navigation System (Enavi)

  • Linking Climate and Development Policies: Leveraging International Networks and Knowledge Sharing (CD-LINKS)
  • 33th round of the Stanford Energy Modeling Forum (EMF33)
  • Climate change scenario toolkit (SENSES)
  • The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP)
  • The Food, Agriculture, Biodiversity, Land, and Energy Project (FABLE) India (FABLE)
  • Sustainable Integrated Management FOR the NEXUS of water-land-food-energy-climate for a resource-efficient Europe (SIM4NEXUS)
  • Pathways and Entry Points to limit global warming to 1.5°C (PEP1P5)
  • Assessing options for the SUSTainable intensification of Agriculture for integrated production of food and non-food products at different scales (SUSTAg)
  • Contextualizing Climate Engineering and Mitigation: Illusion, Complement, or Substitute? (CEMICS2)
  • CO-designing the Assessment of Climate Change costs (COACCH)
  • DialoguE on European Decarbonisation Strategies (DEEDS)
  • Energiewende-Navigationssystem zur Erfassung, Analyse und Simulation der systemischen Vernetzungen (ENAVI)
  • Economic Growth Impacts of Climate Change (ENGAGE)

Recent key publications

  • Dietrich, J. P., Bodirsky, B. L., Humpenöder, F., Weindl, I., Stevanović, M., Karstens, K., Kreidenweis, U., Wang, X., Mishra, A., Klein, D., Ambrósio, G., Araujo, E., Yalew, A. W., Baumstark, L., Wirth, S., Giannousakis, A., Beier, F., Chen, D. M.-C., Lotze-Campen, H., and Popp, A.: MAgPIE 4 – a modular open-source framework for modeling global land systems, Geosci. Model Dev., 12, 1299-1317,, 2019.
  • Gidden M, Riahi K, Smith S, Fujimori S, Luderer G, Kriegler E, van Vuuren D, van den Berg M, Feng L, Klein, Calvin K, Doelman J, Frank S, Fricko O, Harmsen M, Hasegawa T, Havlik P, Hilaire J, Hoesly R, Horing J, Popp A, Stehfest E, and Takahashi K (2018) Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geoscientific Model Development Discussion. DOI: 10.5194/gmd-2018-266
  • Kim H, Rosa IMD, Alkemade R, Leadley P, Hurtt G, Popp A, van Vuuren D, Anthoni P, Arneth A, Baisero D, Caton E, Chaplin-Kramer R, Chini L, De Palma A, Di Fulvio F, Di Marco M, Espinoza F, Ferrier S, Fujimori S, Gonzalez R E, Guerra C, Hartfoot M, Harwood T D, Hasegawa T, Haverd V, Havlik P, Hellweg S, Hill S L L, Hirata A, Hoskins A J, Janse J H, Jetz W, Johnson J A, Krause A, Leclere D, Martins I S, Matsui T, Merow C, Obersteiner M, Ohashi H, Poulter B, Purvis A, Quesada B, Rondinini C, Schipper A, Sharp R, Takahashi K, Thuiller W, Titeux N, Visconti P, Ware C, Wolf F, Pereira H (2018) A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geoscientific Model Development. 11, 4537-4562
  • Humpenöder, F., Popp, A., Bodirsky, B., Weindl,  I., Biewald, A., Lotze-Campen, H., Dietrich,  J., Klein,  D., Kreidenweis U.,  Müller, C., Rolinski, S., Stevanović, M. (2018). Large-scale bioenergy production: How to resolve sustainability trade-offs? Environmental Research Letters, 13, 024011, doi: 10.1088/1748-9326/aa9e3b
  • Heck, V., Gerten, D., Lucht, W., Popp, A. (2018). Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nature Climate Change 8, 151155, doi: 10.1038/s41558-017-0064-y.
  • Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat, D., Fujimori, S., Strefler, J., Hasegawa, T., Marangoni, G., Krey, V., Kriegler, E., Riahi, K., van Vuuren, D.P., Doelman, J., Drouet, L., Edmonds, J., Fricko, O., Harmsen, M., Havlík, P., Humpenöder, F., Stehfest, E., Tavoni, M. (2018). Scenarios towards limiting global mean temperature increase below 1.5 °C, Nature Climate Change 8, 325–332, doi: 10.1038/s41558-018-0091-3.
  • Bertram, C., Luderer, G., Popp, A., Minx, J., Lamb, W., Stevanović, M., Humpenöder, F., Kriegler, A.(2018). Targeted policies can compensate most of the increased sustainability risks in 1.5°C mitigation scenarios. Environmental Research Letters,13,, 064038, doi: 10.1088/1748-9326/aac3ec.
  • Pikaar, I., Matassa, S., Bodirsky, B., Weindl, I., Bruschi, M., Humpenöder, F., Rabaey, K., Boon, N., Yuan, Z., van Zanten, H., Herrero, M., Verstraete, W., Popp, A. (2018) Decoupling livestock from land use through industrial feed production pathways. Environmental Science & Technology, 52,(13), 7351-7359, doi: 10.1021/acs.est.8b00216.
  • Kreidenweis, U., Humpenöder, F., Kehoe, L., Kuemmerle, T., Bodirsky, B.Lotze-Campen, H., Popp, A. (2018): Pasture intensification is insufficient to relieve pressure on conservation priority areas in open agricultural markets. Global Change Biology, 24 (7), 3199-3213, doi: 10.1111/gcb.14272.
  • Pehl, M., Arvesen, A., Humpenöder, F., Popp, A., Hertwich, E., Luderer, L. (2017). Understanding Future Emissions from Low-Carbon Power Systems by Integration of Lice Cycle Assessment and Integrated Energy Modelling. Nature Energy 2, 939945, doi: 10.1038/s41560-017-0032-9.
  • Weindl, I., Bodirsky, B.,  Rolinski, S., Biewald, A., Lotze-Campen, H., Müller, C., Dietrich, J., Humpenöder, F.,  Stevanović, M., Schaphoff, S., Popp, A. (2017). Livestock production and the water challenge of future food supply: implications of agricultural management and dietary choices. Global Environmental Change 47, 121-132, doi: 10.1016/j.gloplacha.2017.10.002.
  • Rosa, I., Pereira, H., Ferrier, S., Alkemade, R., Belder, E., Fujimori, S., Harfoot, M., Harrison, A., Kauch, J., Jetz, W., King, N., Kok, M., Kolomytsev, G., Leadley, P., Meyer, C., Navarro, L., Ninan, K., Palomo, M., Pereira, L., Pichs, R., Popp, A., Purvis, A, Rondini, C., Seppelt, R., Settele, J., van Vurren, D. (2017). Multiscale scenarios for nature futures. Nature Ecology & Evolution 1 (10), 1416, doi: 10.1038/s41559-017-0273-9.
  • Popp, A., Calvin, K., Fujimori, S., Havlik, P., Humpenöder, F., Stehfest, E., Bodirsky, B., Dietrich, J., Doelmann, J., Gusti, M., Hasegawa, T., Kyle, P., Obersteiner, M., Tabeau, A., Takahashi, K., Valin, H., Waldhoff, S., Weindl, I., Wise, M., Kriegler, E., Lotze-Campen, H., Fricko, O., Riahi, K., van Vuuren, D. (2016). Land use futures in the shared Socio-Economic Pathways. Global Environmental Change, doi: 10.1016/j.gloenvcha.2016.10.002.
  • Frieler, K., Lange, S., Piontek, F.,  Reyer, C., Schewe, J., Warszawski, L., Zhao, F., Chini, L., Denvil, S., Kerry, E., Geiger, T., Halladay, K., Hurtt, G., Mengel, M., Murakami, D., Ostberg, S., Popp, A., Riva, R., Stevanović, M., Volkholz, J., Burke, E., Ciais, P., Ebi, K., Eddy, T., Elliott, J., Galbraith, E., Gosling, S.N., Hattermann, M., Hickler, T., Hinkel, J., Hof, C., Huber, V., Jägermeyr, J., Krysanova, V., Marcé, R., Jones, H., Lotze-Campen, H., Sahapal, R., Thonicke, K., Tian, H., Yamagata, Y., Suzuki, T. (2017). Assessing the impacts of 1.5°C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geoscience Model Dev., 10, 1–25, doi: 10.5194/gmd-10-4321-2017.
  • Stevanovic M, Popp A, Lotze-Campen H, Dietrich JP, Müller C, Bonsch M, Schmitz C, Bodirsky B, Humpenöder F, Weindl I (2016): High-End Climate Change Impacts on Agricultural Welfare. Science Advances 8(2) DOI: 10.1126/sciadv.1501452
  • Popp A., Humpenöder F., Weindl. I., Bodirsky B., Bonsch M., Lotze-Campen H., Müller C., Biewald A., Rolinski S., Stevanovic M., Dietrich JP. (2014) Land use protection for climate change mitigation. Nature Climate Change 4, 1095–1098.
  • Bodirsky BL, Popp A, Lotze-Campen H, Dietrich JP, Rolinski S, Weindl I, Schmitz C, Müller C, Bonsch M, Humpenöder F, Biewald A, Stevanovic M (2014): Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution, Nature Communications, 5, 3858, doi: 10.1038/ncomms4858.
  • Nelson GC, Valin H, Sands RD, Havlik P, Ahammad H, Deryng D, Elliott J, Fujimori S, Heyhoe E, Kyle P, von Lampe M, Lotze-Campen H, Mason d'Croz D, van Meijl H, van der Mensbrugghe D, Müller C, Popp A, Robertson R, Robinson S, Schmid E, Schmitz C, Tabeau A, Willenbockel D (2014): Climate change effects on agriculture: Economic responses to biophysical shocks. Proceedings of the National Academy of Sciences of the United States of America, 111, 9 3274-3279


Alexander Popp (leader)

Florian Humpenöder

Kristine Karstens

Abhijeet Mishra

Miodrag Stevanovic

Hermann Lotze-Campen (RD2)

Isabelle Weindl (RD2)

Xiaoxi Wang (RD2)

Benjamin Bodirsky (RD2)

Felicitas Beier (RD2)

Master Thesis and internships:

You want to write your master thesis in the landuse group of PIK? Or you want to stay for a longer internship? Please have a look at our potential topic list and contact us!

Document Actions