You are here: Home Research Earth System Analysis Projects


Semi-Empirical Sea Level
September 2011 until August 2014
95.760 € funded by National Oceanic and Atmospheric Administration (NOAA) : NOAA improving NOAA's climate services for the costal zone
Rahmstorf, Stefan

Advanced regional and decadal predictions of coastal inundation for the U.S. Atlantic and Gulf Coasts. Sea-level rise has significant impacts not only on ecosystems but also on society. It involves a variety of processes from thermal expansion over melting of glaciers and ice sheets to land-water storage. Thus, predicting sea-level rise is one of the major challenges of climate science. As one part of a bigger consortium we explore the capabilities and limitations of semi-empirical sea-level modeling. Semi-empirical models arose as a complementary approach to process based models which are not yet mature, given the great complexity of relevant processes. Exploiting the connection between global mean sea-level and temperature, semi-empirical models depend on long sea-level and temperature time-series for calibration. Within this project long (>2000yrs) proxy sea-level time-series are collected from drilling cores from the U.S. Atlantic and Gulf coasts. These time series give good calibration targets for our models and help improve predictions of future global sea-level rise. These predictions again will help estimating coastal inundation under changing climate conditions.

Responsible for developing new semi-empirical sea-level models