An urban surface parametrization scheme and derivation of its input parameters

Sebastian Schubert

Potsdam Institute for Climate Impact Research, Germany

GeoInformatik 2010
An Urban Parametrization Scheme

- size of urban areas growing
- resolution of weather and climate models increasing
- *but*: computation cost too high to incorporate every single building
 ⇒ simplified model required
An Urban Parametrization Scheme

- size of urban areas growing
- resolution of weather and climate models increasing
- *but*: computation cost too high to incorporate every single building
 ⇒ simplified model required

Parametrization Scheme by Martilli et al. (2002):

\[B \quad \text{building width} \]

\[W \quad \text{street width} \]

\[D \quad \text{canyon length} \]

\[h \quad \text{height with probability } \gamma(h) \]

\[z_i \quad \text{height of level } i \]
Input Parameters

\[\Rightarrow \]

\[h \]

\[W \]

\[D \]

\[B \]

\[z_{i+1} \]

\[z_i \]

\[i \]

\[z_{j+1} \]

\[z_j \]

\[j \]
Input Parameters

\[B \leftarrow h \]

\[D \]

\[W \]

\[z_{i+1} \]

\[i \]

\[z_i \]

\[j \]

\[z_{j+1} \]

Building Width [m]

- Color scale from 2 to 22.
- Map of building widths across different latitudes and longitudes.

Legend:
- Green: 2
- Yellow: 4 to 6
- Orange: 8 to 10
- Red: 12 to 22