A double-canyon radiation scheme for urban canopy models

S. Schubert¹ S. Grossman-Clarke¹ A. Martilli²

¹Potsdam Institute for Climate Impact Research, Germany

²Centro de Investigaciones Energéticas Medioambientales, Spain

International Workshop on Urban Weather and Climate: Observation and Modeling

Potsdam Institute for Climate Impact Research

Contents

A Double-Canyon Radiation Scheme Basis: BEP (Martilli et al. 2002) Modifications

Sensitivity analysis

Summary

Contents

A Double-Canyon Radiation Scheme

Basis: BEP (Martilli et al. 2002) Modifications

Sensitivity analysis

Summary

Building Effect Parametrization Model by Martilli et al.

Multilayer Street Canyon model

Input of BEP:

- \mathcal{L}^{\downarrow} : longwave rad. (down)
- \mathcal{K}^{\downarrow} : shortwave rad (down)
- u: wind velocity
- ρ : air density
- T: air temperature
- p: air pressure

Output of BEP:

- L^{\uparrow} : longwave rad. (up)
- K^{\uparrow} : shortwave rad. (up)
- H: sensible heat flux
- τ: momentum flux

BEP by Martilli et al. (continued)

Issues in the radiation part of BEP

1 no differentiation between diffuse and direct shortwave radiation

2 energy balance of incoming and distributed radiation not closed

3 roofs do not interact with other urban surfaces, no shadow effects on roofs independent of roof height

Consider diffuse and direct solar radiation

- diffuse solar radiation formulated analogously to diffuse longwave radiation
- · separation of effective urban albedo for diffuse and direct radiation

S. Schubert et al. (PIK)

A double-canyon radiation scheme

Distribution of incoming diffuse radiation from the sky

radiation from sky with R_{top} [Wm⁻²]

Distribution of incoming diffuse radiation from the sky

radiation from sky with R_{top} [Wm⁻²]

roofs always get full radiation

Distribution of incoming diffuse radiation from the sky

radiation from sky with R_{top} [Wm⁻²]

roofs always get full radiation

Distribution of incoming diffuse radiation from the sky

radiation from sky with R_{top} [Wm⁻²]

- roofs always get full radiation
- energy not accounted for where no walls present

Distribution of incoming diffuse radiation from the sky

radiation from sky with R_{top} [Wm⁻²]

from side with $R_{side} = R_{top}$

- roofs always get full radiation
- energy not accounted for where • no walls present

Distribution of incoming diffuse radiation from the sky

radiation from sky with R_{top} [Wm⁻²]

from side with $R_{side} = R_{top}$

- roofs always get full radiation
- energy not accounted for where • no walls present

Distribution of incoming diffuse radiation from the sky

radiation from sky with R_{top} [Wm⁻²]

from side with $R_{side} = R_{top}$

- roofs always get full radiation
- energy not accounted for where • no walls present

Distribution of incoming diffuse radiation from the sky

radiation from sky with R_{top} [Wm⁻²]

from side with $R_{side} = R_{top}$

- roofs always get full radiation
- energy not accounted for where no walls present
- in general, total calculated energy received by the canyon is larger than incoming energy

S. Schubert et al. (PIK)

A double-canvon radiation scheme

Modifications

2 Our approach

Distribution of incoming diffuse radiation from the sky

radiation from sky with R_{top} [Wm⁻²]

from side with $R_{side} = cR_{top}$

- scale irradiance from the side of the canyon with factor c to fulfill energy conservation
- c constant during runtime

3 Double Canyon Effect Parametrization

Distribution of radiation from the sky

extend the basic canyon element to include another canyon

- distribution of diffuse radiation using view factor formalism
- roofs do not receive the full diffuse sky radiation

3 Double Canyon Effect Parametrization

Distribution of radiation from the sky

extend the basic canyon element to include another canyon

- distribution of diffuse radiation using view factor formalism
- roofs do not receive the full diffuse sky radiation
- calculation of received direct solar radiation depending on the position of the sun
- shadows on roofs possible

3 Double Canyon Effect Parametrization

Radiative interaction in the double canyon

Contents

A Double-Canyon Radiation Scheme Basis: BEP (Martilli et al. 2002) Modifications

Sensitivity analysis

Summary

- energy ratio η : ratio of incoming to in the canyon distributed energy
- η and correction factor c depend only on urban morphology parameters

- energy ratio η : ratio of incoming to in the canyon distributed energy
- η and correction factor c depend only on urban morphology parameters

- energy ratio η : ratio of incoming to in the canyon distributed energy
- η and correction factor c depend only on urban morphology parameters

- energy ratio η : ratio of incoming to in the canyon distributed energy
- η and correction factor c depend only on urban morphology parameters

Sensitivity analysis

Simulations with regional climate model CCLM

- simulations starting
 2003-08-01 ooUTC with
 double nesting approach:
 - 7.8 km resolution nested into ERA-Interim
 - 2.8 km resolution with urban module for the area of Berlin, Germany

- urban module settings: urban fraction 1, street width 20 m, building width 10 m, height distribution γ^{max} or γ^{min}
- urban radiation scheme: "BEP" original but with 1, "corr" also 2,
 "DCEP" also 3

S. Schubert et al. (PIK)

A double-canyon radiation schem

Urban albedo

Air and effective radiation temperatures

S. Schubert et al. (PIK)

A double-canyon radiation scheme

Contents

A Double-Canyon Radiation Scheme Basis: BEP (Martilli et al. 2002)

Modifications

Sensitivity analysis

Summary

Summary

Properties of DCEP

- calculation of effective radiation parameters possible or corrected: albedo for diffuse and direct solar radiation, radiation temperature
- increased urban heat island effect compared to original formulation but without overestimation of incoming sky radiation
- most important for cities with hetereogenous distribution of roof heights

Summary

Properties of DCEP

- calculation of effective radiation parameters possible or corrected: albedo for diffuse and direct solar radiation, radiation temperature
- increased urban heat island effect compared to original formulation but without overestimation of incoming sky radiation
- most important for cities with hetereogenous distribution of roof heights

Thank you for your attention! Any questions?