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Institut für Theoretische Physik, Technische Universität Berlin,
Hardenbergstraße 36, 10623 Berlin, Germany

∗christian.otto@tu-berlin.de

THOMAS ERNEUX
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We study a five-variable electron-hole model for a quantum-dot (QD) laser subject to optical
feedback. The model includes microscopically computed Coulomb scattering rates. We consider
the case of a low linewidth enhancement factor and a short external cavity. We determine the
bifurcation diagram of the first three external cavity modes and analyze their bifurcations.
The first Hopf bifurcation marks the critical feedback rate below which the laser is stable. We
derive an analytical approximation for this critical feedback rate that is proportional to the
damping rate of the relaxation oscillations (ROs) and inversely proportional to the linewidth
enhancement factor. The damping rate is described in terms of the carrier lifetimes. They depend
on the specific band structure of the QD device and they are computed numerically.
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1. Introduction

The exceptional performance of self-assembled
quantum-dot materials renders them extremely
appealing for their use as optical communications
devices. As lasers, they feature reduced and tem-
perature independent threshold current and proper
emission wavelength at the fiber telecommunication
windows. These properties, together with the low
linewidth enhancement factor and broad spectrum,
make QD materials extremely attractive for appli-
cation as light emitters or amplifiers.

There exist, nevertheless, several unclear issues
which prevent QDs from leading the new gener-
ation of optoelectronic devices. Their differential

efficiency is lower than expected. The output power
of QD lasers is lower than that of their Quantum
Well (QW) counterpart. Still, it is their dynami-
cal stability properties which have initiated most
of the studies. In particular, their higher tolerance
to optical feedback compared to QW semiconduc-
tor lasers is important for data transmission in fiber
optic telecom applications. Intensive theoretical and
experimental work has been carried out in order
to understand which laser parameters (or group of
parameters) may have an impact on the stability of
the laser. For the QW laser, a sufficient condition for
stability has been derived in terms of a critical feed-
back rate kc below which the laser is guaranteed to
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be stable. This condition has the form [Mørk et al.,
1992]

k < kc :=
ΓR√

1 + α2
(1)

where ΓR represents the damping rate of the Relax-
ation Oscillations (ROs) and α is the linewidth
enhancement factor. Although derived from the
standard QW laser rate equations, Eq. (1) is used as
a guide in current experimental studies of QD lasers
[Azouigui et al., 2009; Grillot et al., 2008; O’Brien
et al., 2003; Gioannini et al., 2008]. A laser with
a strong RO damping rate and with a low α will
be less sensitive to optical feedback. For the QW
laser, this can be realized by increasing the lifetime
of the photons in the cold cavity to a value compa-
rable to the carrier lifetime while maintaining strict
single mode operation [Baili et al., 2006, 2009]. For
the QD laser, the task is much more subtle because
carrier lifetimes and α strongly depend on material
design as well as operating conditions (wavelength
and pump parameter). A linewidth enhancement
factor as small as 0.1 was reported for injection cur-
rent below threshold [Newell et al., 1999], however,
it increases above threshold reaching values close
to those of QW lasers [Cong et al., 2007; Ram-
dane et al., 2008]. Current publications report on
QD lasers that exhibit either a large or a low value
of α [Grillot & Dubey, 2011; Lin et al., 2011].

We consider a five-variable electron-hole model
for a QD laser. Our model combines Lang–
Kobayashi (LK) type field equations [Lang &
Kobayashi, 1980] with microscopically based rate
equations for the carriers that have also been incor-
porated in models for semiconductor optical ampli-
fiers [Majer et al., 2010; Wegert et al., 2011].
The solitary laser has been studied previously in
[Lüdge & Schöll, 2009; Lüdge et al., 2010, 2011]
and the dynamics of the model subject to optical
feedback has been studied in [Otto et al., 2010].
In this paper, we analyze the simplest case of a
laser exhibiting a low linewidth enhancement fac-
tor and subject to optical feedback from a mir-
ror close to the laser (short external cavity). We
determine numerically the bifurcation diagram of
the first three external cavity modes (ECMs) and
investigate systematically each of their bifurcations.
As we shall demonstrate, the bifurcation diagram
exhibits complex dynamics even with a single ECM.
We then concentrate on the first Hopf bifurcation
point that marks the critical feedback rate below

which the laser is stable. We determine a simple
analytical approximation of the form (1) but now
with a new expression for ΓR. The numerical valid-
ity of this approximation is tested using a numerical
continuation method. We conclude that it is the rel-
atively larger value of ΓR that explains the higher
stability properties of QD lasers.

The paper is organized as follows. We introduce
the laser rate equations in Sec. 2 and determine
the ECMs in Sec. 3. Section 4 describes a typical
numerical bifurcation diagram which involves the
first three ECMs. We determine an approximation
of the first Hopf bifurcation point in Sec. 5 and
summarize our main results in Sec. 6.

2. Laser Model

In this section, the electron-hole rate equation
model for a QD laser with optical feedback from
a distant mirror is introduced. A schematic setup
of the device is depicted in Fig. 1. In the QD laser
model carriers are first injected into a two-dimen-
sional carrier reservoir before they are captured by
the QDs. The nonlinear rate equations describe the
dynamics of the photon density nph and the phase φ
of the complex, slowly varying electrical field ampli-
tude E(t) :=

√
Anph(t)e−iφ(t) where A is the active

area as well as the dynamics of the carriers. Pho-
ton density and phase variables, labeled by the sub-
script τec denote quantities taken at time points
t − τec that are delayed by the round-trip time of
the light in the external cavity τec (for example:
nph,τec := nph(t − τec)). For the carriers separate
rate equations are formulated for electron and hole
densities in the quantum dots, ne and nh, as well
as for electron- and hole densities in the carrier

Fig. 1. Schematic setup of the considered laser device with
delayed optical feedback from an external cavity. The electri-
cal field amplitude E taken at a time t − τec delayed by the
external cavity round trip time τec is coupled back into the
laser multiplied with the feedback strength K and rotated by
the external cavity phase C.
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reservoir, denoted by we and wh, respectively. The complete system of delay differential equations reads:

ṅph = −2κnph + ΓRind(ne, nh, nph) + βRsp(ne, nh) + 2
K

τin

√
nph,τecnph cos(φ − φτec + C), (2)

φ̇ =
α

2
[ΓWA(ne + nh − NQD) − 2κ] − K

τin

√
nph,τec

nph
sin(φ − φτec + C), (3)

ṅe = Sin
e (we, wh)(NQD − ne) − Sout

e (we, wh)ne − Rind(ne, nh, nph) − Rsp(ne, nh), (4)

ṅh = Sin
h (we, wh)(NQD − nh) − Sout

h (we, wh)nh − Rind(ne, nh, nph) − Rsp(ne, nh), (5)

ẇe =
j

e0
+

N sum

NQD
(S in

e (we, wh) + Sout
e (we, wh))ne − Sin

e (we, wh)N sum − R̃sp(we, wh), (6)

ẇh =
j

e0
+

N sum

NQD
(S in

h (we, wh) + Sout
h (we, wh))nh − Sin

h (we, wh)N sum − R̃sp(we, wh). (7)

In the photon equation [Eq. (2)] the optical inten-
sity loss 2κ is balanced by the linear gain term
ΓRind. Therein Γ is the optical confinement factor
and the linear gain, resulting from the inversion in
the quantum dots, is given by Rind(ne, nh, nph) :=
WA(ne + nh − NQD)nph, with the Einstein-factor
W , the normalization area of the QDs A, and twice
the density of the subensemble of active quantum
dots NQD (the factor of two accounts for spin degen-
eracy). The spontaneous emission in the QDs and
in the carrier reservoir is modeled by bimolecu-
lar recombinations Rsp(ne, nh) := (W/NQD)nenh

and R̃sp(we, wh) := BSwewh, respectively, with the
band–band recombination coefficient in the carrier-
reservoir BS. In the equation for the optical subsys-
tem [Eq. (2)] the expression Rsp for the spontaneous
emission is multiplied with the spontaneous emis-
sion factor β, which takes into account that only a
small fraction of the photons generated by sponta-
neous emission have the same wavelength as the las-
ing mode. The linewidth enhancement factor that
models the phase-amplitude coupling is denoted
by α. We are aware of the fact that for QD lasers
this quantity α is problematic because it cannot
account for the independent dynamics of resonant
(ne, nh) and nonresonant (we, wh) charge carriers
and eventually neglects a degree of freedom of the
dynamics. For a careful treatment of this topic, see
[Lingnau et al., 2012] and [Gioannini et al., 2006].
However, in this paper we want to focus on an ana-
lytical treatment and choose a constant α for sake
of simplicity. The last term in Eqs. (2) and (3),
respectively, models the effect of the optical feed-
back. The feedback strength K varies from zero to
one, the internal cavity round-trip time is denoted

by τin and C is the phase with which the light is cou-
pled back into the cavity. It is given by C := ωthτec,
with the frequency ωth of the solitary laser at las-
ing threshold. Variations of the phase over its full
range [0, 2π] can be obtained by very small varia-
tions of the length of the external cavity by half of
the optical wavelength (λ/2 ∼ 650 nm). Since this
variation does not significantly modify the exter-
nal cavity round-trip time τec itself, C is regarded
as an independent parameter. The carriers are first
injected into the carrier reservoir with the current
density j, and e0 is the elementary charge. Carrier
exchange between carrier reservoir and QDs is medi-
ated by the nonlinear, microscopically calculated
Coulomb scattering rates, that are denoted by Sin

e

and Sin
h for electron and hole capture into the QD

levels and by Sout
e and Sout

h for carrier escape to the
reservoir, respectively. The scattering rates depend
upon the reservoir densities and determine the car-
rier lifetime for electrons τe := (Sin

e + Sout
e )−1 and

holes τh := (Sin
h + Sout

h )−1, respectively. Twice the
total quantum dot density is denoted by N sum, thus
NQD/N sum is the fraction of QDs that participate
at the emission of the laser light.

To simplify notation we wish to discuss the
rate equations in a dimensionless form, that has
already been introduced in [Lüdge et al., 2011] for
the solitary laser. If not stated otherwise, we use
the same values of the original physical parame-
ters as in [Otto et al., 2010]. Please note that in
[Globisch et al., 2012] and [Pausch et al., 2012]
a different terminology is used. The differences to
the notation of this paper are explained in the
appendices of these publications. To reformulate the
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equations in dimensionless form, we introduce the new dimensionless variables Nph, Ne/h, We/h and t′
defined by:

nph = A−1Nph, ne/h = NQDNe/h,

we/h = N sumWe/h, t′ := 2κt.
(8)

Inserting Eq. (8) into Eqs. (2)–(7), and neglecting spontaneous emission in the optical equations (β = 0),
yields:

N ′
ph = [g(Ne + Nh − 1) − 1]Nph + 2k

√
NphNph,τ cos(C − φτ + φ), (9)

φ′ =
α

2
[g(Ne + Nh − 1) − 1] − k

√
Nph,τ

Nph
sin(C − φτ + φ), (10)

N ′
e = γ[sin

e (We,Wh)(1 − Ne) − sout
e (We,Wh)Ne − (Ne + Nh − 1)Nph − NeNh], (11)

N ′
h = γ[sin

h (We,Wh)(1 − Nh) − sout
h (We,Wh)Nh − (Ne + Nh − 1)Nph − NeNh], (12)

W ′
e = γ[J + (sin

e (We,Wh) + sout
e (We,Wh))Ne − sin

e (We,Wh) − cWeWh], (13)

W ′
h = γ[J + (sin

h (We,Wh) + sout
h (We,Wh))Nh − sin

h (We,Wh) − cWeWh]. (14)

Here prime (′) means differentiation with respect to the dimensionless time t′. The dimensionless out-
scattering rates sout

e , sout
h and the parameters g, k, τ , γ, J and c introduced above are defined as

follows:

s
in/out
e/h :=

1
W

S
in/out
e/h , g :=

ΓWANQD

2κ
, k :=

1
2κ

K

τin
, τ := 2κτec,

γ :=
W

2κ
, J :=

j

e0N sumW
, c :=

BSN sum

W
.

The dimensionless electron- and hole lifetimes are denoted by te := (sin
e + sout

e )−1 and th := (sin
h +

sout
h )−1, respectively. The parameter values that have been used in our numerical simulations are shown in

Table 1.

Table 1. Dimensionless parameters for Eqs. (9)–(14), that correspond to the physical parameters given in [Otto et al., 2010].

Parameters Value Meaning

g 3.78 Linear gain parameter

γ 7 × 10−3 Ratio of photon and carrier lifetime

k K/2.4 Rescaled feedback strength

τ 16 External cavity round-trip time

c 1.54 Spontaneous and nonradiative losses

J/Jth 2.50 Ratio of current to current at lasing threshold

Jth 3.96 Current at lasing threshold

Nph 3.16 Steady state photon population at J/Jth = 2.5 for k = 0

Ne (Nh) 0.83 (0.44) Steady state electron (hole) population at J/Jth = 2.5 for k = 0

We (Wh) 2.20 (2.59) Steady state electron (hole) density in carrier reservoir at J/Jth = 2.5 for k = 0

sin
e (sin

h ) 7.32 (15.40) Steady state electron (hole) in-scattering rates at J/Jth = 2.5 for k = 0

sout
e (sout

h ) 9.70 × 10−2 (16.94) Steady state electron (hole) out-scattering rates at J/Jth = 2.5 for k = 0

te 1.35 × 10−1 Steady state electron lifetime at J/Jth = 2.5 for k = 0

th 3.09 × 10−2 Steady state hole lifetime at J/Jth = 2.5 for k = 0
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3. Basic Solutions — The External
Cavity Modes (ECMs)

Equations (9)–(14) are not independent, but con-
tain carrier conservation as we can see by calculat-
ing the quantity

N ′
e − N ′

h + W ′
e − W ′

h = 0.

Thus, the term Ne−Nh+We−Wh is a constant that
is determined by the initial conditions. Physically
we can describe the effect of reservoir doping by
choosing a nonzero initial value for one of the reser-
voir densities, i.e. We �= 0 for n-doping and Wh �= 0
for p-doping, respectively [Lüdge & Schöll, 2010]. In
the absence of doping this constant is zero:

Ne − Nh + We − Wh = 0. (15)

Due to the invariance of the dynamical equations
(9)–(14) under rotations in the complex plane (S1-
Symmetry), their basic solutions are rotating waves
with constant photon and carrier numbers and a
phase that varies linearly in time [Krauskopf et al.,
2000], i.e. they are special periodic orbits with cir-
cular shape:

(Nph(t′), φ(t′), Ne(t′), Nh(t′),We(t′),Wh(t′))�

=
(√

Nph,s,

(
−C

τ
+ ωs

)
t′, Ne,s,

Nh,s,We,s,Wh,s

)�
. (16)

Solutions, given by Eq. (16) are called external
cavity modes (ECMs). The frequency deviation of
the ECM-frequency ω from the frequency of the
solitary laser at its lasing threshold is given by
ωs − C/τ . Inserting the ECM ansatz Eq. (16) into
Eqs. (9) and (10), we find the following expression
for nonzero intensity solutions (Nph,s �= 0):

N inv :=
1
2
[g(Ne,s + Nh,s − 1) − 1]

= −k cos(ωsτ), (17)

ωs − C

τ
= αN inv − k sin(ωsτ). (18)

In Eq. (17) a carrier inversion N inv which is zero at
the threshold of the solitary laser has been intro-
duced. (See Sec. 4 for a plot of the carrier inver-
sions N inv and the frequency deviations ωs − C/τ
in terms of the feedback strength k.) Without feed-
back (k = 0) we see from Eq. (17), that the sum of

the electron and hole numbers in the quantum dots
Ne + Nh = (1 + g)/g is “clamped” to a constant
value. This is the well-known effect of gain-clamping
in semiconductor lasers [van Tartwijk & Lenstra,
1995]. With feedback (k �= 0), Eq. (17) demon-
strates the effect of threshold reduction. For suitable
values of ωs, the right-hand side of Eq. (17) becomes
negative, which means that the carrier popula-
tion necessary for inversion and thus the lasing
threshold is reduced in comparison to the solitary
laser.

With the help of the relation for the carrier con-
servation [Eq. (15)] we can express the QD popu-
lations Ne,s and Nh,s as functions of the reservoir
populations We,s and Wh,s:

Ne,s =
1
2

[
1 + g − 2k cos(ωsτ)

g
+ Wh,s − We,s

]
,

(19)

Nh,s =
1
2

[
1 + g − 2k cos(ωsτ)

g
+ We,s − Wh,s

]
.

(20)

From Eqs. (13) and (14), we find that the reservoir
populations have to be determined by solving the
equations

J + (sin
e (We,s,Wh,s) + sout

e (We,s,Wh,s))Ne,s

− sin
e (We,s,Wh,s) − cWe,sWh,s = 0, (21)

J + (sin
h (We,s,Wh,s) + sout

h (We,s,Wh,s))Nh,s

− sin
h (We,s,Wh,s) − cWe,sWh,s = 0, (22)

self-consistently, which has to be done numeri-
cally due to the nonlinear functions for the scat-
tering rates. Taking the ECM ansatz [Eq. (16)]
the evolution equations for the carrier popula-
tions [Eqs. (11)–(14)] equate to zero. By inserting
Eqs. (13) and (14) into Eqs. (11) and (12) we get
an expression for Nph,s as a function of the carrier
populations:

Nph,s =
g

1 − 2k cos(ωsτ)

× [J − Ne,sNh,s − cWe,sWh,s]. (23)

The carrier populations do not vary significantly
above threshold. Thus, we retrieve in good approx-
imation the linear dependence of Nph,s on the
pumping current, which is typical for semiconductor
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lasers above the threshold:

Nph,s ∝ J − Jth, (24)

where we have introduced the threshold current of
the solitary laser Jth := Ne,thNh,th + cWe,thWh,th.
The carrier populations Ne/h,th and We/h,th are
defined at the threshold of the solitary laser.

In the following subsections we aim to derive
expressions for the line at which new pairs of ECMs
are created in saddle-node bifurcations and the
ellipse on which the ECMs lie. In terms of the fre-
quency deviation ωs − C/τ and the inversion N inv

they are identical to the expressions that have been
derived for the LK model. For a more detailed dis-
cussion please consider, for example, the review
article by van Tartwijk and Agrawal [1998] or the
article by Rottschäfer and Krauskopf [2007].

3.1. Line of saddle-node
bifurcations

With increasing feedback strength ECMs are
formed pairwise in saddle-node bifurcations (see
Sec. 4). To see this we insert Eq. (17) into Eq. (18):

ωs − C

τ
= −k(α cos(ωsτ) + sin(ωsτ)). (25)

With the help of some trigonometric relations, this
can be rewritten as

ωs − C

τ
= −Ke

τ
sin(ωsτ + arctan(α)), (26)

where we have introduced the effective feedback
strength Ke := kτ

√
1 + α2. See [Rottschäfer &

Krauskopf, 2007] for a nice graphical interpretation
of Eq. (26). For a saddle-node bifurcation to occur,
the derivatives with respect to ωs on both sides of
Eq. (26) have to be equal. This provides us with the
condition

− 1
Ke

= cos(ωsτ + arctan(α)). (27)

Equation (27) has solutions for Ke ≥ 1. Thus for
Ke < 1 the equation for the frequency deviation
[Eq. (18)] has only one solution, namely the ECM
that results from the solution of the solitary laser.
For Ke ≥ 1 new pairs of ECMs are created pairwise
in saddle-node bifurcations. The saddle-solutions
are called anti-modes and they are unstable upon
their creation. The stability of the node solutions,
which are called modes, has to be determined by
a linear stability analysis. This is going to be dis-
cussed in Sec. 4. To get an expression for the inver-
sion along the saddle-node lines N inv

sn in terms of the

frequency deviation ωs−C/τ of the ECMs, we apply
the saddle-node condition, i.e. taking the derivative
of both sides of Eq. (25) with respect to ωs and
requiring equality, which yields

1 = τ(αk sin(ωsτ) − k cos(ωsτ)). (28)

Inserting Eqs. (17) and (18) in the above expres-
sion provides us with the expression for the line
of saddle-node bifurcation in the (ωs − C/τ,N inv)-
plane:

N inv
sn

(
ωs − C

τ

)
=

1 + τα

(
ωs − C

τ

)
τ(1 + α2)

. (29)

Anti-modes are associated with destructive interfer-
ence of the laser field and the field delayed by the
external cavity round-trip time τ , and modes are
associated with constructive interference [Levine
et al., 1995]. Anti-modes lie above the saddle-node
line while modes lie below this line [Rottschäfer &
Krauskopf, 2007].

3.2. Ellipse of ECMs

In the (ωs−C/τ,N inv)-plane the ECM solutions lie
on an ellipse that is well known for the LK model.
This can be seen by rewriting Eq. (18) as ωs−C/τ−
αN inv = −k sin(ωsτ), and adding the square of this
equation to the square of Eq. (17):(

ωs − C

τ
− αN inv

)2

+ (N inv)2 = k2. (30)

In Sec. 4 the ellipse is plotted for different values
of k. ECMs are created at intersection points of
the ellipse [Eq. (30)] with the line of saddle-node
bifurcations [Eq. (29)]. For Ke > 1, we find two
solutions ωsn:

ωsn − C

τ
= ±1

τ

√
K2

e − 1. (31)

4. Bifurcation Analysis

In this section we analyze the stability of the ECM
solutions [Eq. (16)] of the dynamical Eqs. (9)–(14)
and compare our findings with direct numerical sim-
ulations. According to experimental findings QD
lasers seem to have a smaller phase-amplitude cou-
pling than QW lasers [Newell et al., 1999]. Thus
we focus on the case of small α = 0.9. Further,
having in mind integrated devices, we focus on the
short-cavity regime as introduced by Schunk and
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Fig. 2. Real parts of the Floquet exponent (solid blue lines)
of the ECM that can be followed out of the solitary laser
solution in terms of the feedback-strength k. The horizon-
tal (black) line corresponds to the trivial Floquet-multiplier
(Goldstone mode). The vertical red dash-dotted line indicates
the feedback strength kH at which the first supercritical Hopf
bifurcation occurs. Parameters: α = 0.9, τ = 16, C = π, other
parameters as in Table 1.

Petermann [1989]. The authors define an external
cavity as short if the product of the RO frequency
and the roundtrip time of the light in the external
cavity is considerably less than unity. Since Eqs. (9)
and (10) are delay differential equations, each mode
has infinitely many eigenvalues. Their real parts
rise from minus infinity with increasing feedback
strength. In Fig. 2 the real parts of the eigenvalues
of the first ECM (the one that can be followed out of
the solution for the solitary laser) are plotted over
the feedback strength k. The transcendential char-
acteristic equation has been solved numerically. At
a critical feedback strength kH = 0.041 (red dash-
dotted lines in Figs. 2 and 3) the leading eigen-
value crosses the real axis and the mode becomes
unstable in a supercritical Hopf bifurcation lead-
ing to a more complex solution with periodically
modulated photon population. In the following, we
are going to study the dynamics of the laser in

Fig. 3. (Upper panel) Bifurcation diagram of the photon number Nph (red points) as a function of the rescaled feedback
strength k. Filled circles are steady state values of Nph of the stable ECMs. (Middle and lower panel) Frequency devi-

ations ωs − C/τ and carrier inversion N inv of the ECMs as functions of k. Filled circles indicate stability of the ECM
and open circles indicate its instability. Vertical black dashed lines labeled (a) to (f) mark k-values at which time series
and phase space projections are shown in Figs. 4 and 5, respectively. The feedback strength of the first supercritical Hopf
bifurcation is labeled kH (vertical red dash-dotted line). Parameters: α = 0.9, τ = 16, C = π, other parameters as in
Table 1.
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the unstable regime. In the short cavity regime for
τ = 16 and for small α = 0.9 the laser displays only
one instability region as a function of the feedback
strength k.

In the following we are going to focus on this
region of the bifurcation diagram. In the upper
panel of Fig. 3, the bifurcation diagram of Nph as a
function of k is plotted with red dots. Here we plot
the local extrema of Nph for each value of k after
transients have died out. Additionally the photon
population Nph,s of the first and the second ECM
given by Eq. (23) are plotted in the upper panel of
Fig. 3. Stable ECMs are indicated by filled circles.
The middle panel shows the frequency deviations
ωs − C/τ of the ECMs and in the lower panel the
carrier inversion N inv of the ECMs is plotted as a
function of k. Stable modes are indicated by filled
and unstable modes by open circles. Vertical black
dashed lines labeled by (a) to (f) indicate k-values
at which time series and phase space projections are
presented in Figs. 4 and 5, respectively. In Fig. 5 the
trajectory (red solid line) is projected onto a plane
spanned by the frequency deviations and the car-
rier inversion. In this projection, ECMs are points.
For more complex solutions with nonconstant fre-
quency ωs, we plot the frequency deviations aver-
aged over one external cavity round-trip time τ .
They are given by (φ − φτ )/τ . The ECMs lie on

the ellipse described by Eq. (30) (black dashed line
in Fig. 5). On the blue dash-dotted line in Fig. 5
saddle-node bifurcations take place [Eq. (29)]. Note
that the saddle-node line and the ellipse of the ECM
are plotted as functions of the frequency deviation
ωs − C/τ , while the ECMs and the trajectories of
more complex solutions are only plotted for the
fixed value C = π of the phase. For C = π the
saddle-node bifurcation takes place at a feedback
strength k = 0.08955 (see Fig. 3, middle and lower
panel). Also in Fig. 5 stable ECMs are indicated by
filled circles. The filling color corresponds to the
color-code of the stable modes in Figs. 3 and 4.
Unstable ECMs, modes as well as anti-modes, are
indicated by gray open circles.

At k = 0 the first ECM is stable. With increas-
ing k its frequency and its carrier inversion shift.
This is why in Fig. 5(a) the ECM is not located
at the origin (see also black dashed line labeled (a)
in Fig. 3). At kH = 0.0041 (red dash-dotted line
in Figs. 2 and 3) the first ECM becomes unsta-
ble in a supercritical Hopf bifurcation. The time
series displays self-sustained intensity pulsations
[see Fig. 4(b)] with the frequency of the ROs, as it
is expected for higher pump-currents [Lythe et al.,
1997]. The bifurcation diagram for k > kH shows
two branches that scale like the square root of the
distance from the bifurcation point (Fig. 3, upper

Fig. 4. Time series for selected values of the rescaled feedback strength k. Feedback strengths in (a) to (f) correspond to black
dashed lines labeled (a) to (f) in Fig. 3. In (e) the time between two consecutive pulse packages is labeled by T . Parameters:
α = 0.9, τ = 16, C = π, other parameters as in Table 1.
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Fig. 5. Phase space projections of the trajectory (red solid line) onto planes spanned by the frequency deviation ωs − C/τ
and the inversion N inv for selected values of the rescaled feedback strength k. The stable and unstable ECMs are indicated
by filled circles and open gray circles, respectively. The color-code of the stable ECMs is the same as in Fig. 3. The ECMs lie
on the ellipse given by Eq. (30) (black dashed line). The blue dash-dotted line is the saddle-node line [Eq. (29)]. Figures (a)
to (f) correspond to black dashed lines labeled (a) to (f) in Fig. 3. Parameters: k = 0.9, τ = 16, C = π, other parameters as
in Table 1.

panel). This is the signature of a Hopf bifurca-
tion [Kuznetsov, 1995]. In phase space the inten-
sity pulsations correspond to a periodic motion on
a delay-induced limit cycle. The Hopf bifurcation
is followed by a cascade of period-doubling bifurca-
tions leading to chaos. In Fig. 4(b) (black dashed
line (b) in Fig. 3) we see the time series after the
first bifurcation of this cascade has taken place. The
time series now consists of two oscillations with
slightly different peak heights. The corresponding
phase space projection in Fig. 5(b) depicts a motion
on a two-loop limit cycle. For increasing k the sys-
tem becomes chaotic. The small chaotic region is
followed by a large periodic window ranging from
k = 0.051 to k = 0.082. For larger k-values the
laser becomes chaotic again. The chaotic region is
interrupted by small windows of frequency locking.
Time series and phase space projection of such a
frequency locked solution are depicted in Figs. 4(c)
and 5(c), respectively (black dashed line (c) in
Fig. 3). The time series depicts regular intensity pul-
sations with the RO frequency. In the phase space
projection we note that the attractor has become
larger: indeed the trajectory does not only surround
the unstable first ECM as it did at the beginning

of the bifurcation cascade [Fig. 5(b)], instead it
already starts to wind around the point in the phase
space, where a new pair of ECMs appears at higher
values of k. The winding in the phase space cor-
responds to the damped ROs in the time series.
In Figs. 4(d) and 5(d) we see a time series and a
phase space projection in the chaotic region near
the end of the bifurcation cascade (dashed line (f)
in Fig. 3). The time series displays irregular pulse
packages. The underlying frequency is again one of
the ROs. In the phase space projection, we recog-
nize the winding mechanism from Fig. 5(c).

At k = 0.0895 the time series in Fig. 4(e) shows
strictly regular pulse packages (black dashed line
(e) in Fig. 3). Note that the long “tail” of the pulse
packages in the time series [Fig. 4(e)] corresponds to
the winding around the point where the saddle-node
bifurcation appears. At the ends of the pulse pack-
ages the trajectory is reinjected into the high gain
region (N inv > 0.1). A similar reinjection mecha-
nism has previously been observed experimentally
and studied theoretically for QW lasers in the short
cavity regime [Heil et al., 2001, 2003]. Note that the
pulse packages studied by Heil et al. [2001, 2003] dif-
fer in two ways from the pulse packages described
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in this paper: first, their modulation frequency is
the external cavity round-trip time which can be
attributed to the much lower pump current in their
studies as discussed in [Lythe et al., 1997]. Second,
the pulse packages studied by Heil et al. [2001, 2003]
are slightly irregular and thus their trajectory does
not close up in the phase space to form a limit cycle.
We presume that the second difference could be due
to the higher α-factor of α = 5.0 the authors use in
their numerical studies. We only find strictly regu-
lar pulse packages for α < 1 and in the short cavity
regime. At k = 0.08955 a pair of ECMs is created in
a saddle-node bifurcation. We can see from Fig. 3
(middle and lower panel) that the second ECM
mode is stable upon creation, but with the cho-
sen initial conditions, its basin of attraction is only
accessible for the system after a global bifurcation
at kbif = 0.096 that we are going to discuss in the
following. In [Otto et al., 2010] we found that the
time between two consecutive pulse packages T [see
Fig. 4(e)] scales logarithmically with the distance
from the bifurcation point kbif = 0.096. This behav-
ior is typical for a homoclinic bifurcation of limit
cycles with a negative saddle quantity [Kuznetsov,
1995; Hizanidis & Schöll, 2008]. The saddle quantity
for a saddle-focus is defined as σ0 := λs + �(λu,±),
where λs is the positive real eigenvalue and �(λu,±)
are the real parts of the complex conjugate lead-
ing eigenvalues, respectively. A negative σ0 results
in the birth of a unique stable limit cycle from a
homoclinic orbit. Indeed we find σ0 to be negative
near kbif and the unique limit cycle is the one that
is plotted in Fig. 5(e) for k = 0.095. For k slightly
smaller than kbif we find a small range of bistability
between the unique limit cycle and the second ECM
mode. For k larger than kbif the laser performs sta-
ble continuous wave emission as we can see from
the time series [Fig. 4(f)] for k = 0.098. The phase
space projection [Fig. 5(f)] reveals that now the sec-
ond ECM is stable (see also black dashed line (g)
in Fig. 3).

5. Feedback Tolerance of QD Lasers

In this section we are going to discuss the toler-
ance of QD lasers to optical feedback. QD lasers
are less easily destabilized by optical feedback than
QW devices [O’Brien et al., 2003; Huyet et al.,
2004; Carroll et al., 2006]. High sensitivity to back-
reflected light is one of the major shortcomings of
QW laser. According to Huyet et al. [2004] the
higher tolerance of QD lasers to optical feedback

brings the possibility of designing directly modu-
lated semiconductor lasers operating without costly
optical isolators that are needed for QW lasers. In
this section, we present an analytical formula for
the feedback strength kH at which the QD laser is
destabilized in a Hopf bifurcation and compare it
to the Hopf bifurcation line we obtained by numer-
ical continuation techniques. From the numerical
continuation we find that in the studied param-
eter range the Hopf bifurcation is super-critical.
With the help of the analytics we can attribute the
higher feedback tolerance observed for QD laser to
their strongly suppressed ROs and their moderate
phase-amplitude coupling. For the derivation of the
analytical formula for kH an extensive asymptotic
analysis based on the smallness of γ = W/(2κ), i.e.
the ratio of the carrier lifetimes and the photon life-
time, has been performed. Its mathematical details
are presented elsewhere [Lüdge, 2011]. For the sub-
sequent discussion it is sufficient to state the expres-
sion for kH :

kH :=
−2ΓDa

√
1 + α2(1 − cos(ωDaτ)) cos(ωsτ − arctan(α))

.

(32)

In the above equation ΓDa is the damping of the
ROs of the solitary laser as introduced in [Lüdge
et al., 2011], and it is given by:

ΓDa :=
1
2
[Nph(th + γ) + γ(Nh + t−1

e )]. (33)

The damping of the ROs ΓDa depends directly on
the band-structure of the device through the micro-
scopically calculated scattering rates. The carrier
and photon populations are taken at their steady
state values without feedback.

In contrast to the damping ΓDa the frequency
of the ROs ωDa which is given by

ωDa :=
√

γNph (34)

does not explicitly depend on the band-structure.
From Eq. (23) we see that within the validity of the
approximation of Eq. (24) ωDa shows the square-
root-like dependence on the pumping current J that
is well known for semiconductor lasers [Erneux &
Glorieux, 2010]. From Eq. (32) one can see that
the tolerance to optical feedback increases with the
damping of the ROs ΓDa, which in turn increases
with Nph. From Eq. (23) one sees that Nph and
thus the feedback tolerance of the laser increases
with the linear gain coefficient g. This is in corre-
spondence with recent experimental findings, where
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the impact of the differential gain for the feedback
tolerance of the laser is emphasized [Azouigui et al.,
2009].

In this paper we discuss the case of very fast
holes, where the hole lifetime is drastically smaller
than the electron lifetime th � te. This case,
denoted by the superscript Da in [Lüdge et al.,
2011], is appropriate to describe the dynamics of a
QD laser with its strongly suppressed ROs [Lüdge &
Schöll, 2009; Lüdge et al., 2010]. Note that for the
case of similar electron and hole lifetimes that is
discussed as “case S” by Lüdge et al. [2011] the
same expression for kH is obtained, if we take into
account the appropriate damping and frequency of
the ROs [Lüdge, 2011].

The expression for kH [Eq. (32)] has been
derived in the limit that the feedback rate k is a
small O(γ)-quantity and that the external cavity
is long, more precisely the following scaling of the
parameters has been assumed:

k = O(γ), ωDa = O(γ1/2), τ = O(γ−1/2).
(35)

A similar formula has been previously derived and
studied for the LK model [Ritter & Haug, 1993;
Levine et al., 1995]. It differs only by the expression
for the damping of the ROs. Further, Erneux [2000]
refined existing approximations and found appro-
priate scalings of the parameters leading to different
approximations of the Hopf bifurcation point that
are better suited for the short cavity regime, large
feedback rates as well as operation close to lasing
threshold.

For most technological application the phase
C of the back-reflected light is not of interest. For
example, if one tries to couple the signal of a directly

modulated laser into an optical fiber, one does not
want to make any effort to control the phase of the
back-reflected light. In this case, only the “worst
case scenario” might be of interest, namely the min-
imal feedback strength which can destabilize the
laser. From Eq. (32), the following inequalities can
be derived:

kH ≥ −ΓDa

√
1 + α2 cos(ωsτ − arctan(α))

≥ kc. (36)

Here kc = ΓDa/(1 + α2)1/2 is the critical feedback
strength as introduced in Eq. (1) with the damp-
ing rate ΓR = ΓDa of the ROs. In this paper, we
want to study the “worst case” kH = kc. There-
fore we first assume cos(ωDaτ) = −1 to make the
first inequality in Eq. (36) hold exactly. Secondly
from Eq. (26) we see that in the asymptotic limit,
in which Eq. (32) has been derived ωsτ−C is a small
O(γ1/2)-quantity and we thus can assume ωsτ ≈ C.
Within the validity of this approximation the phase

Cmin := arctan(α) + (2n + 1)π, with n ∈ Z,

(37)

minimizes the expression for kH [Eq. (32)] with
respect to ωsτ . For this phase Cmin we compare the
analytical expression for the Hopf line with the line
of the first Hopf bifurcation obtained by numeri-
cal continuation in terms of the linewidth enhance-
ment factor α. The numerical continuation has been
performed with the program DDE-Biftool [Engel-
borghs et al., 2002]. In Fig. 6 the curves obtained
by numerical continuation are plotted as solid black
lines and the analytical approximations are depicted
by red dashed lines for the long cavity regime
[Fig. 6(a)] and the short cavity regime [Fig. 6(b)],
respectively. For a long cavity with τ = 80 we find

(a) (b)

Fig. 6. First Hopf bifurcation for the feedback phase Cmin := arctan(α) + (2n + 1)π (n ∈ Z) as a function of the linewidth
enhancement factor α. In the long cavity regime for (a) τ = 80 and in the short cavity regime for (b) τ = 16. The black solid
lines are obtained by numerical continuation and the red dashed lines are analytical approximations.
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very good correspondence for α � 3. For smaller
values of the α-factor the feedback strength kH

becomes so large that the assumption kH = O(γ)
for which Eq. (32) is valid does not hold any longer.
That is the reason why the analytic approxima-
tion underestimates kH for small values of α. The
same reasoning holds for the short cavity regime
τ = 16 [Fig. 6(b)], but the deviations of the ana-
lytical and the numerical value for kH are less pro-
nounced for α � 3, because the feedback strength
remains smaller. However, in both cases and for all
α-factors in the range studied (α ∈ [0.8, 6]) the ana-
lytical formula provides a reliable approximation for
the lower bound of kH .

In the following we are going to discuss the
possibility to tune the critical feedback strength
kH by doping of the carrier reservoir. In [Lüdge
et al., 2010] the authors discussed that the electron
lifetime te decreases with increasing n-doping con-
centration of the carrier reservoir. From Eq. (33)
we see that the slower species, namely the elec-
trons (te 
 th), determine the damping of the ROs.
This means that the n-doping concentration of
the carrier reservoir is an experimentally accessi-
ble parameter to control the damping of the ROs,
ΓDa, and thus to tune the critical feedback strength,
kH , [Eq. (32)] at which the first feedback induced
instability occurs.

6. Conclusion

In this paper, we first discussed the complex dynam-
ics of a semiconductor QD laser subject to optical
feedback in the short cavity regime and for a small
phase-amplitude coupling expressed by a small
value of the α-factor. In this case, we performed
a linear stability analysis for the basic solutions
and discussed the more complex dynamics in the
instability region of the bifurcation diagram. Sec-
ondly, an analytical formula for the critical feedback
strength kH at which the QD laser is destabilized in
a Hopf bifurcation was presented. With the help of
this formula we could explain the higher feedback
tolerance of QD lasers found experimentally [Huyet
et al., 2004; Carroll et al., 2006] by their strongly
suppressed relaxation oscillations and their moder-
ate phase-amplitude coupling which is expressed by
moderate α-factors. A comparison of the analyti-
cal approximation of kH with the first Hopf bifur-
cation line obtained by numerical continuation in
terms of the α-factor revealed that the analytics
gives a reliable approximation for its lower bound.

The approximation holds best for α � 3, when the
critical feedback strength remains small. Finally the
possibility to enhance the damping of the ROs and
thus the critical feedback strength by n-doping of
the carrier reservoir, which is relevant for applica-
tions, was discussed.
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Heil, T., Fischer, I., Elsäßer, W., Krauskopf, B., Green,
K. & Gavrielides, A. [2003] “Delay dynamics of semi-
conductor lasers with short external cavities: Bifur-
cation scenarios and mechanisms,” Phys. Rev. E 67,
066214.
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