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Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers
subject to optical feedback
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We examine changes in the dynamics of a semiconductor quantum-dot (QD) laser subject to optical feedback
that correlate to changes in the QD laser band structure. By employing a microscopic model for the carrier-carrier
scattering processes between the QDs and the carrier reservoir we are able to tune the carrier lifetimes in the QDs,
e.g., by modifying the QD confinement energies or the pump current. By using numerical continuation methods
as well as asymptotic theory we demonstrate that the feedback sensitivity crucially depends on these lifetimes
through the damping of the turn-on oscillations, and small lifetimes on the order of this relaxation time scale lead
to an increased feedback resistivity. Thus intelligent band structure engineering can lead to stable continuous
wave operation of the laser over a large parameter range.
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I. INTRODUCTION

Self assembled quantum-dot (QD) lasers are promising
candidates for future applications in optical communications
devices [1]. Compared to their quantum well (QW) counter-
parts, they exhibit a lower and less temperature-dependent
threshold current, a smaller line width enhancement factor
α, and less sensitivity to optical feedback. The last property
is especially important in fiber optical telecom applications.
Therefore, a lot of experimental and theoretical work has
been done to identify the parameters that have the strongest
impact on the stability properties of a laser subject to optical
feedback [2–4].

In this paper we consider a five-variable rate equation model
that combines in a semiclassical approach a Lang-Kobayashi-
type field equation [5] with microscopically calculated scat-
tering rates in the carrier rate equations [2,3]. In contrast to
simpler models [6,7] we separately treat electrons and holes.
Within our model it is possible to derive an analytical condition
for the critical feedback strength below which the laser is
guaranteed to be stable [4]. According to this relation the
parameters that mainly determine the stability properties of
the laser are the line width enhancement factor α as well as
frequency ωRO and damping �RO of the relaxation oscillations.
The latter critically depends upon the energy band structure
of the QD device and upon the pump current resulting in
different scattering-induced lifetimes of the carriers in the
QD [8,9]. Hence, it is the purpose of this paper to investigate
the destabilizing bifurcations of the QD laser subject to optical
feedback focusing on different scattering-induced carrier
lifetimes in the QD. They can be implemented directly in
our model by a variation of the energy band structure relative
to the embedding quantum well carrier reservoir or by varying
the pump current. We will show that it is even possible to keep
the laser in its continuous wave (CW) regime for the full range
of the considered feedback strength by a careful adjustment of
these parameters. The investigation is motivated by our work
on optically injected QD lasers [10], where we found a strong
dependence of the frequency-locking behavior on the QD size
and composition and thus on the band structure.

Our paper is organized as follows: Before we perform any
numerical bifurcation studies we introduce the laser model

and the nonlinear scattering rates in Sec. II. In Sec. III
we motivate the numerical bifurcation studies presented in
Sec. IV by some important relations derived in analytical
investigations of the saddle-node and Hopf bifurcations of
the basic solutions of the laser equations. Here we show
that position and shape of Hopf bifurcation lines critically
depend on the scattering-induced carrier lifetimes, while the
appearance of saddle-node bifurcations is not affected by these
parameters. Hence, we aim to shift the Hopf bifurcation lines
in parameter space such that there exists always at least one
basic solution of the laser equations over the full range of
the considered bifurcation parameters. The result is a laser
that never leaves the desired CW regime. In Sec. V we will
verify the analytic results of Sec. III by direct comparison with
numerically calculated bifurcation lines before we summarize
our results in Sec. VI.

II. LASER MODEL

In this paper we consider the dimensionless electron-hole
rate equation model with external optical feedback previously
introduced in Refs. [2,3]. The schematic picture of the setup
is shown in Fig. 1. In the QD laser model, the carriers are
first injected into the two-dimensional carrier reservoir (QW)
before being captured by the QDs. A schematic plot of the
considered band structure is shown in Fig. 2. The nonlinear rate
equations describe the dynamics of the complex electrical field
amplitude E in the slowly varying envelope approximation, the
charge carrier densities per unit area in the QD, ne and nh, and
the carrier densities per unit area in the QW, we and wh (e and
h stand for electrons and holes, respectively). Electrical field
amplitude E , photon number Nph, QD carrier densities ρe/h,
and QW carrier densities We/h are defined by

E = √
Nphe

iφ, ρe,h = ne,h

/
(2NQD

a

)
, (1)

Nph = Anph, We/h = we,h/(2NQD). (2)

Here NQD
a denotes the density per unit area of the active QDs

and NQD the total QD density, as given by experimental surface
imaging. The factor 2 accounts for spin degeneracy. As a result
of the size distribution and material composition fluctuations
of the QDs, the gain spectrum is inhomogeneously broadened,
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FIG. 1. (Color online) Scheme of a QD laser subject to optical
feedback. Light is coupled back into the internal laser cavity after a
single round trip in the external cavity.

and only a subgroup (density NQD
a ) of all QDs (density NQD)

matches the mode energies for lasing. The photon density per
unit area is denoted by nph, and A is the in-plane area of the
QW. The full system of delay differential equations reads

E ′ = 1
2 (1 + iα)[g(ρe + ρh − 1) − 1]E(t ′)

+ ke−iCE(t ′ − τ ), (3)

ρ ′
e = γ

[ − ρeτ
−1
e + s in

e

−w(ρe + ρh − 1)Nph − ρeρh

]
, (4)

ρ ′
h = γ

[ − ρhτ
−1
h + s in

h

−w(ρe + ρh − 1)Nph − ρeρh

]
, (5)

W ′
e = γ

[
J + ρeτ

−1
e − s in

e − cWeWh

]
, (6)

W ′
h = γ

[
J + ρhτ

−1
h − s in

h − cWeWh

]
. (7)

In these equations time t ′ = t/τph is measured in units of
the photon lifetime τph, and the prime denotes differentiation
with respect to the dimensionless time t ′. The nonlinear
Coulomb scattering rates S

in/out
e and S

in/out
h are schematically

depicted in Fig. 2 and implemented as dimensionless quantities
s

in/out
e = S

in/out
e /W and s in/out

h = S
in/out
h /W . Here W is the

ground state (GS)
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FIG. 2. (Color online) Schematic energy band diagram of QW
and QD. 	Ee and 	Eh denote the energy spacings of the QW band
edge and the QD ground state (GS) for electrons and holes. hν marks
the GS lasing energy, and 	e, 	h label the distance of the QD GS
from the bottom of the QD.

Einstein coefficient of spontaneous emission, resulting from
incoherent interaction of the QDs with all resonator modes.
As these scattering rates describe the microscopic Coulomb
scattering processes between carriers of the two-dimensional
QW and the QDs they are nonlinear functions of the carrier
densities in the QW, We and Wh. They are systematically
derived in Refs. [9,11]. Since they are calculated numerically
for different fixed values of the electron and hole densities in
the QW, we use nonlinear fitting functions to obtain continuous
functions se/h(We,Wh). These fitting parameters are presented
in Appendix B. In Ref. [9] it was shown that the in- and
out-scattering rates are not independent but connected by
detailed balance relations. Hence, it is sufficient to calculate
the in-scattering rates in the framework of a microscopic theory
and determine the out-scattering rates through Eqs. (B3) and
(B4) given in Appendix B.

Due to the described in- and out-scattering processes
between QD and QW we obtain nonconstant carrier lifetimes
τe/h = (s in

e/h + s in
e/h)−1, which are also nonlinear functions

of the carrier densities We and Wh in the QW. The order
of magnitude of τe and τh will be an important parameter
to understand the different dynamical behavior of the laser
in certain scenarios. The small parameter γ = W/(2κ) =
O(10−3) appears in all carrier rate equations and denotes the
ratio of the photon lifetime τph = (2κ)−1 to the radiative carrier
lifetime W−1. Note that the time W−1 results from radiative
losses due to spontaneous emission processes and must not
be confused with the carrier lifetimes τe/h resulting from
carrier-carrier scattering processes. Due to the smallness of γ

the turn-on dynamics of the QD laser show damped relaxation
oscillations that are typical for class B lasers (see Fig. 3) [12].

In Eq. (3)–(7) spontaneous emission processes in the
QDs are approximated by bimolecular recombination, i.e.,
ρeρh. Analogously, the spontaneous recombination rate in the
QW is described by cWeWh with the normalized band-band
recombination coefficient c = 2BSNQD/W . BS denotes the
band-band recombination coefficient in the QW. The induced
processes of absorption and emission are modeled by a
linear gain g(ρe + ρh − 1) with the linear gain coefficient
g = 2ZQD

a W̄/(2κ) and the carrier inversion (ρe + ρh − 1) in
the QD. Here ZQD

a = aLANQD
a denotes the number of active

QDs inside the waveguide, aL is the number of self-organized
QD layers, and w = W̄/W is the ratio of the Einstein
coefficient of induced and spontaneous emission, i.e., coherent
and incoherent interaction of the QDs with the resonator
modes. In previous publications [3,4,8,9,13] a different value
for W̄ was implemented. This leads to a rescaling of the photon
number Nph = |E |2 by the factor w = W̄/W in all subsequent
equations of this paper. One has to consider this rescaling if
the results of this paper are compared to those of previous
publications. The derivation of W̄ is given in Appendix A.

Carriers are injected into the QW by an electrical current,
which is modeled by the dimensionless pump current density
J = j/(2e0N

QDW ), where e0 denotes the elementary charge.
The line width enhancement factor α in Eq. (3) models the
phase-amplitude coupling of the electric field E . For QD lasers
this quantity α is problematic because it cannot account for the
independent dynamics of resonant (ρe,ρh) and nonresonant
(we,wh) charge carriers [14,15] and eventually neglects a
degree of freedom of the dynamics. It was, however, shown
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FIG. 3. Turn-on dynamics of the QD laser without optical
feedback. (a) The pump current is kept constant at J = 2.5Jth, and
the QD-QW band structures are changed in agreement with Table I.
Using fast, reference, and slow scattering rates leads to the dot-dashed,
dashed, and solid turn-on curves. (b) The reference QD-QW band
structure is fixed, and the pump current varies from J = 2.5Jth

(dashed) via J = 5Jth (dot-dashed) to J = 10Jth (solid) The steady
state scattering-induced electron and hole lifetimes τe/h label each
curve. Parameters are as in Table II.

that QD laser models based on an α parameter still lead reliable
results as long as only the transitions between stable and
unstable behavior, i.e., Hopf and saddle-node bifurcations,
are investigated [15]. Since this is the focus of our paper
we choose α to be constant but keep in mind that it may
vary with the operation conditions. The optical feedback is
expressed by the last term in Eq. (3). This corresponds to
the established Lang-Kobayashi model of external optical
feedback first published in Ref. [5]. The light is coupled
back into the device with the dimensionless feedback strength
k = K/(2κτin) and the feedback phase C ≡ ωthτ . Since K is a
dimensionless feedback parameter that varies from zero to one,
we will use K instead of k in our subsequent investigations. τin

and τ denote the internal and external cavity round-trip time,
respectively, and ωth is the frequency of the solitary laser at
lasing threshold in units of t ′.

Figure 1 shows a schematic picture of the QD laser structure
and the external cavity modeled by a simple mirror. Although
being completely determined by ωth and τ the feedback phase
C is treated as an independent parameter since small variations
of the external cavity length cause a variation of the phase C

over its full range [0,2π ] while the external round-trip time τ is
hardly affected by these fluctuations. This is a well-established
procedure in the analysis of semiconductor lasers subject to
optical feedback [3,16–18]. Hence, we always consider C as
a free parameter in our two-parameter bifurcation diagrams
presented in Secs. IV and V.

TABLE I. Confinement energies for three different QD-QW band
structures and the associated steady state carrier lifetimes at J =
2.5Jth as investigated throughout this paper. The corresponding turn-
on dynamics is depicted in Fig. 3.

Name 	Ee [meV] 	Eh [meV] τe [ps] τh [ps]

Slow 140 120 222.0 68.0
Reference 210 50 64.1 3.2
Fast 74 40 8.9 6.0

The purpose of this paper is to discuss the impact of
different carrier lifetimes on the laser dynamics under optical
feedback. These different carrier lifetimes can be introduced
into the simulations by using different nonlinear scattering
rates s

in/out
e/h . In our microscopic model these rates are not

simply a parameter but are calculated within a detailed picture
of the QW-QD band structure (Fig. 2). Since the magnitude of
the nonlinear in- and out-scattering rates strongly depends on
the QD-QW band structure, changing the confinement energies
	Ee/h results in very different scattering rates and carrier
lifetimes. The three QD structures considered in this paper are
characterized by the confinement energies and resulting carrier
lifetimes listed in Table I.

The corresponding turn-on dynamics of the QD laser with-
out optical feedback (k = 0) obtained by numerical integration
of Eqs. (3)–(7) is shown in Fig. 3(a). The assumed values of
all numerical parameters appearing in Eqs. (3)–(7) are listed
in Table II. If not stated otherwise they will be used for all
subsequent simulations and path continuations.

The important difference between the three turn-on curves
in Fig. 3(a) is the damping of the relaxation oscillations.
The dashed-dotted line that corresponds to small energy
spacings 	Ee = 74 meV, 	Eh = 40 meV between QW and
QD for both carrier types shows an exponential decay of
the photon density to its steady state value. This is the
characteristical turn-on behavior of a class A laser corre-
sponding to similar lifetimes of carriers and photons (τe =
8.9 ps,τh = 6.0 ps,τph = 10.0 ps). Hence, this QD structure
is labeled fast because short carrier lifetimes imply fast carrier
exchange between QD and QW. Note that the radiative carrier
lifetimes W−1 is equal for all QD structures considered here.
For the QD structure named slow (solid line) we observe
damped relaxation oscillations that are indicative of a class

TABLE II. Parameters appearing in Eqs. (3)–(7). Physical pa-
rameters that correspond to dimensionless parameters are given in
Table III of Appendix A.

Symbol Value Meaning

g 3.96 Linear gain parameter
γ 7 × 10−3 Ratio of photon to carrier lifetime
w 1.5 × 10−4 Ratio of Einstein coefficients of

induced and spontaneous emission
k K/2.4 Rescaled feedback strength
τ 16 External cavity round-trip time
c 1.54 Spontaneous and nonradiative losses
J/Jth 2.50 Ratio of current to current

at laser threshold
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B laser. In this case we assume relatively large confinement
energies 	Ee = 140 meV and 	Eh = 120 meV resulting in
long carrier scattering lifetimes compared to the photons
(τe = 222 ps,τh = 68 ps,τph = 10 ps). The turn-on dynamic
of the reference QD structure shows relaxation oscillations
that are more strongly damped than in the case of slow
carriers but still observable. In this case there is a time-
scale separation between the underlying electron and hole
scattering lifetimes (τe = 64 ps,τh = 3 ps,τph = 10 ps). It is
called reference as it resembles the behavior found in common
QD laser experiments [13]. It was also investigated in previous
dynamical studies of the QD laser with optical feedback [2,3].

The impact of the pump current J on the turn-on dynamics
is investigated within Fig. 3(b), where for clarity only the
reference scattering rates are considered. Note that the dashed
line in panel (a) corresponds to the dashed line in panel (b). By
increasing the pump current from 2.5Jth to 10Jth the damping
of the relaxation oscillations increases while the corresponding
steady state scattering-induced carrier lifetimes τe/h decrease.
Thus we can conclude from Fig. 3 that higher pump currents
as well as smaller energy spacings between QW and QD in the
band structure lead to smaller carrier lifetimes τe/h and thus to
larger damping of the turn-on oscillations.

Before we start our numerical bifurcation analysis of the
QD laser with optical feedback in Sec. IV we will summarize
some important analytical results in the next section. The
scattering-induced carrier lifetimes τe/h discussed in this
section will play an important role in the following analytical
and numerical investigations.

III. ANALYTICAL RESULTS

In this section we briefly summarize the results of a
geometric bifurcation analysis of Eqs. (3)–(7) performed in
Ref. [3] based on the results of Refs. [19,20]. The basic
solutions of Eqs. (3)–(7) with nontrivial photon number
Nph = |E |2 �= 0 are called external cavity modes (ECMs).
They correspond to constant photon and carrier densities and
a phase of the electric field amplitude that varies linearly in
time (continuous-wave light output of the laser). The existence
of this type of solution is caused by the S1-symmetry of
Eqs. (3)–(7) that has been investigated in detail in Ref. [21]
for a QW laser with optical feedback. The transformation

E → cE with {c ∈ C : ‖c‖ = 1}, (8)

i.e., a rotation of E in the complex plane, leaves Eqs. (3)–(7)
invariant. Thus, solutions of Eqs. (3)–(7) must show this
rotational invariance in the complex plane too. Therefore,
the basic solutions of the dynamical equation (3) are rotating
waves. By separating Eq. (3) in amplitude Nph and phase φ

of the complex field amplitude E via E(t) = √
Nph(t)eiφ(t) we

obtain the following two equations:

N ′
ph = {g[ρe + ρh + 1] − 1}Nph

+ 2k
√

Nph(t ′ − τ )Nph cos(	φ + C), (9)

φ′ = α

2
{g[ρe + ρh + 1] − 1}

− k

√
Nph(t ′ − τ )

Nph
sin(	φ + C), (10)

with 	φ = φ(t ′) − φ(t ′ − τ ). In terms of Nph and φ an ECM
solution is of the form

(Nph,φ) = (Nph,s ,	ωst
′). (11)

Here 	ωs denotes the time-constant ECM frequency deviation
from the threshold frequency ωth of the laser. Together with
Eqs. (9) and (10) the following two expressions can be derived

−2k cos(	ωsτ + C) = {g[ρe + ρe + 1] − 1}, (12)

	ωs + k sin(	ωsτ + C) = α

2
{g[ρe + ρe + 1] − 1}. (13)

Inserting Eq. (12) into Eq. (13) yields

	ωs = −k[α cos(	ωsτ + C) + sin(	ωsτ + C)]. (14)

In Eq. (12) one can observe the well known gain-clamping
in semiconductor lasers [22]; i.e., the sum of the electron and
hole density in the QDs is constant above threshold. With the
help of some trigonometric identities and the definition of an
effective feedback strength Ke ≡ kτ

√
1 + α2 Eq. (14) can be

rewritten as

	ωsτ = −Ke sin[	ωsτ + C + arctan(α)]. (15)

The number of solutions of this transcendental equation for
	ωs determines the number of existing ECMs. The right-hand
side of Eq. (15) is a sinusoidal oscillation with frequency 	ωs

while the left-hand side is a linear function of 	ωs . Thus, the
solutions of Eq. (15) are the intersection points of a straight
line and a periodic function. From this geometrical point of
view its obvious that new solutions of Eq. (15) are created in
pairs if the slope of both sides coincides [19]. This condition
reads

− 1

Ke

= cos[	ωsτ + C + arctan(α)]. (16)

We note that for Ke < 1 Eq. (16) has no solution, and for
Ke > 1 at least two or even more ECMs may exist. Since Ke

directly depends on α and K , the number of existing ECMs
increases with these parameters. Thus, we will consider the
influence of α and K on the laser dynamics in our subsequent
bifurcation analysis. The pairwise appearance of new solutions
is indicative of a saddle-node bifurcation. Therefore, Eq. (16)
can be treated as the determining equation for saddle-node
bifurcation points [19]. If we reorganize Eq. (16) we get an
analytic expression for the saddle-node bifurcation line in the
(C,K) plane

CSN
n (k) = ±

[√
K2

e − 1 + arccos

(
− 1

Ke

)]
− arctan(α)

+ 2nπ, (17)

with n ∈ Z. This equation neither depends on the scattering
rates s

in/out
e/h nor on the pump current J . Thus, the position of

a saddle-node bifurcation point in the (C,K) plane is neither
influenced by the energetic structure of the QD device nor by
the pump current. Note that Eq. (17) is even equivalent to that
given in Ref. [19] for the QW laser because no quantity specific
of QDs appears. Our next step is to show analytically that the
position of Hopf bifurcation points depends explicitly on the
scattering rates s

in/out
e/h . This motivates the detailed numerical

investigation presented in Sec. IV, where we determine the
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relative positions of Hopf and saddle-node bifurcation lines in
the (C,K) plane depending on the QD confinement energies
and the pump current. The basic idea of the asymptotic analysis
of Eqs. (3)–(7) is to exploit the smallness of the parameter
γ = O(10−3) [23]. The extensive asymptotic expansions have
been performed in Ref. [4] for the reference and the slow
scattering rates (see Fig. 3). (The analysis of the impact of the
scattering-induced carrier lifetimes τe/h is possible by treating
s

in/out
e/h as constant parameters. The value of these steady state

scattering constants determines the order of magnitude of the
terms containing them and hence influences the appearance
of these terms in the hierarchy of the asymptotic expansion.)
For the subsequent discussions it is sufficient to present the
results. In both cases (reference and slow scattering rates) the
critical feedback strength kH at which the ECM solution is
destabilized in a Hopf bifurcation is given by

kH = −2�RO

√
1 + α2[1 − cos(ωROτ )] cos[C + 	ωsτ − arctan(α)]

(18)

with the frequency of the relaxation oscillations ωRO and their
damping rate �RO. The latter two quantities are given by

ωRO
slow =

√
2wN∗

phγ , (19)

�RO
slow = �QW + γ

4

[
1

τe

+ 1

τh

]
, (20)

ωRO
ref =

√
wN∗

phγ , (21)

�RO
ref = γ

2

[
τ−1
e + wN∗

ph + ρ∗
h + wN∗

ph

γ
τh

]
. (22)

In these expressions the asterisk superscript labels steady
state values of the solitary laser, and �QW = γ /2[1 + g−1 +
2wN∗

ph] is the damping rate of the relaxation oscillations for
the QW laser. In Ref. [20] the authors derived an equation for
the Hopf bifurcation of a QW laser with optical feedback in the
framework of an asymptotic analysis. That equation exhibits
the same functional dependencies as Eq. (18). Primarily, one
can derive two general properties from Eq. (18). The stability
of the QD laser increases on the one hand with higher damping
of the relaxation oscillations �RO and on the other hand with
smaller α factors.

We recall that the α parameter in QD lasers is sensitive
both to the position of the emission wavelength with respect
to the gain maximum and to the pump current, while in
the considered regime it does not depend on the internal
scattering processes [15]. Thus it can be varied within an
experiment. For the two sets of scattering rates considered
in our asymptotic analysis the frequency of the relaxation
oscillations ωRO depends only on the steady state photon
density N∗

ph and scales with
√

γ . However, the damping rate of
the relaxation oscillations �RO is a function of the scattering-
induced carrier lifetimes τe and τh. This indicates that the
appearance of Hopf bifurcation points strongly depends on
the scattering-induced carrier lifetimes through the damping
of the turn-on oscillations. As we already mentioned in the
discussion of Fig. 3 the two main factors that influence the
scattering-induced carrier lifetimes are the QD confinement

energies and the pump current. Hence, we expect different
behavior of the QD laser subject to optical feedback depending
on QD structure and operation condition. As an example a
smaller gain, e.g., due to less layers of QDs, would lead to
higher steady state values of the carrier densities, which in
turn decrease the carrier lifetimes and thus increase the turn-on
damping as indicated in Eqs. (20) and (22). Consequently
a smaller gain increases the feedback tolerance. Further, the
analytic results summarized in the equation for the critical
feedback strength [Eq. (18)] could also be useful to determine
an approximate α factor from feedback experiments if the
damping of the turn-on oscillations is exactly known.

Since the argument of the cosine in the denominator of
Eq. (18) contains the ECM frequency shift 	ωs and 	ωs =
	ωs(k) [see Eq. (15)], Eq. (18) depends implicitly upon k.
However, with the help of some trigonometric identities and
Eq. (15) it is possible to reorganize Eq. (18) such that the
Hopf bifurcation line in the (C,K) plane can be calculated
analytically by the following relation (for details of the
derivation see Appendix C):

CH
n (k) = arctan(α) ± arccos

( −G
KH

e

)
− 2αG

1 + α2

± 1 − α2

1 + α2

√(
KH

e

)2 − G2 + 2nπ, (23)

with G = 2�ROτ/[1 − cos(ωROτ )], the effective feedback
strength KH

e = kH τ
√

1 + α2 at a Hopf bifurcation point
and n ∈ Z. The above rearrangement of Eq. (18) gives us
the opportunity to compare our numerically obtained two-
parameter bifurcation diagrams directly with the results of the
asymptotic analysis. This will be done in detail in Sec. V.

IV. NUMERICAL BIFURCATION ANALYSIS

In order to use numerical continuation methods for calculat-
ing bifurcation diagrams of Eqs. (3)–(7) one has to resolve the
S1 symmetry [16]. As mentioned in the last section, an ECM
solution is not unique due to the invariance of the solution
under transformations of the type of Eq. (8). It is well known
from Refs. [16,18] that the substitution

E → A(t ′)eibt (24)

with the additional parameter b ∈ R and A(t ′) = x(t ′) + iy(t ′)
leads to two dynamic equations for x(t ′) and y(t ′)

x ′(t ′) = 1

2
{g[ρe(t ′) + ρh(t ′) − 1] − 1}x(t ′) + by(t ′)

− α

2
{g[ρe(t ′) + ρh(t ′) − 1] − 1}y(t ′)

+ k cos(C + bτ )x(t ′ − τ )

+ k sin(C + bτ )y(t ′ − τ ),

y ′(t ′) = 1

2
{g[ρe(t ′) + ρh(t ′) − 1] − 1}y(t ′) − bx(t ′)

+ α

2
{g[ρe(t ′) + ρh(t ′) − 1] − 1}x(t ′)

− k sin(C + bτ )x(t ′ − τ )

+ k cos(C + bτ )y(t ′ − τ ). (25)
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Since the phase of the electric field amplitude is still not
uniquely defined in these equations the free parameter b is
used to set y(t ′) = y(t ′ − τ ) ≡ ys = 0. Now, one can calculate
an ECM solution as a fixed point of Eqs. (25) together with
Eqs. (4)–(7) and the additional condition ys = 0.

The subsequent numerical bifurcation diagrams are calcu-
lated with the continuation packages DDE-BIFTOOL [24] and
KNUT [25].

A. One-parameter bifurcation set

To start our numerical bifurcation analysis we first compare
the results of direct numerical integration of Eqs. (3)–(7)
and the path continuation in DDE-BIFTOOL as the feedback
strength K is varied. We contrast a relatively large α factor
(α = 3) with α = 0.9 in order to point out the advantages
of a small α that QD lasers are supposed to have [26].
The remaining important bifurcation parameters are set to
C = π , τ = 16, and J = 2.5Jth. These values correspond to
a short external cavity of 2.4 cm and a pump current density
clearly above threshold Jth. Figure 4 shows the one-parameter
bifurcation diagrams of the photon number Nph (normalized
to 2ANQD

a ) versus the bifurcation parameter K for α = 0.9
in panels (a) and (c) and α = 3 in panels (b) and (d). In
the upper panel (direct numerical integration) local extrema
of the photon density are plotted for each K after transients
have died out. The differences between gray and black points
in Fig. 4(a) and 4(b) result from different choices of the

initial conditions in the numerical simulations. The results
depicted in gray correspond to solutions where those values
of the photon and carrier densities that were used as an initial
condition on the delay interval that have been calculated as
final results of the lower feedback strength in the previous
simulation (up-sweep of K). Experimentally this could be
realized by increasing the reflectivity of a mirror while the
pump current is not switched off. In the same sense, the black
points represent the decrease of the feedback strength from
K = 1 to K = 0 (down-sweep of K). By distinguishing these
two ways of feedback implementation it is possible to identify
hysteresis effects.

The lower panel of Fig. 4 shows the bifurcations of
the steady state solutions calculated with path continuation
methods. For clarity we plot only the maxima of the photon
number Nmax

ph (normalized to 2ANQD
a ). Solid and dashed lines

denote stable and unstable steady state solutions (ECMs),
respectively. Vertical dashed lines facilitate the comparison
of Hopf (circles) and saddle-node bifurcation points (squares)
in panels (b) and (d) with the bifurcation diagrams in panels
(a) and (c). Exemplarily we continue the periodic solution
that emerges from the Hopf bifurcation of the first ECM for
α = 0.9 and α = 3. Period-doubling and Torus bifurcations of
these periodic solutions are marked with triangles and stars,
respectively.

First, we note that there exist fewer ECM solutions for
α = 0.9 compared to α = 3 if K is increased. This is predicted
directly by Eq. (14). Second, one observes for all of the

FIG. 4. One-parameter bifurcation diagrams of the photon number Nph (normalized to 2ANQD
a ) vs feedback strength K for direct numerical

integration [(a), (b)] and path continuation with DDE-BIFTOOL and KNUT [(c), (d)]. In the upper panels maxima and minima of the photon
density N

min/max
ph (normalized to 2ANQD

a ) are plotted, in the lower panels only maxima Nmax
ph are shown. The α factor is set to α = 0.9 (left

column) and to α = 3 (right column). In (a) and (b) gray points indicate results for an upsweep of K , and black points result from down-sweep of
K . In (c) and (d) Hopf, saddle-node, torus, and period doubling bifurcation points are denoted by dots, squares, stars, and triangles, respectively.
Stable solutions are printed as solid lines, unstable solutions as dashed lines. Vertical dashed lines facilitate comparison. Further parameter are
fixed at C = π , τ = 16, and J = 2.5Jth. Shown are the results for the reference scattering rates (see Fig. 3 and Table I).
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bifurcation diagrams that the solitary solution is initially stable
for small values of K before it is destabilized in a Hopf
bifurcation (circle). The emerging periodic solution can be
clearly identified in the diagrams obtained by direct integration
[Fig. 4(a) and 4(b)] as well as in the results of path continuation
in panels (c) and (d). For a detailed analysis of the bifurcations
of periodic solutions and the chaotic regimes see Ref. [3]. Our
extension of the analysis presented there is the continuation
of the first periodic solution after it has been destabilized
in a torus or periodic-doubling bifurcation. In Fig. 4(c)
and 4(d) one observes that the periodic solution created in the
Hopf bifurcation of the first ECM solution vanishes in a Hopf
bifurcation of the unstable branch (antimode) of the subsequent
ECM. These bifurcation bridges between two consecutive
ECM solutions have been studied extensively in Ref. [16]
for the QW laser. In that paper the authors suspected that
the existence of bifurcation bridges is generic as new modes
and antimodes appear. This assumption is supported by our
results.

From now on we will focus on the steady state bifurcations.
In Fig. 4(c) and 4(d) it can be seen that the next pair of
ECM solutions is created in a saddle-node bifurcation with
one stable and one unstable ECM. The stable upper branch
is again destabilized in a Hopf bifurcation. In general, we
note that all the upper branches emerging from a saddle-node
bifurcation point are initially stable and are destabilized for
higher feedback strength K in a Hopf bifurcation. The clear
difference of upsweep (gray) and downsweep (black) of K in
Fig. 4(a) and 4(b) can be explained directly with the use of the
results of the path continuation. For increasing K each upper
ECM branch becomes unstable in a Hopf bifurcation, and
the emerging periodic orbit bifurcates via period doubling.
When the next pair of ECM solutions is created in the
saddle-node bifurcation the periodic solution that emerges
from the previous ECM solution does not reach the attractor
of the new ECM directly, but needs a further increase of K

to do so. Instead, for decreasing K the ECM vanishes in a
saddle-node bifurcation, and the laser directly jumps to the
only stable solution that exists, i.e., the periodic orbit. The
consequence of this bistability of a periodic orbit and an ECM
solution is that the existence of a stable ECM solution does
not necessarily mean that the laser will operate in the CW
regime in an experimental setup. This strongly depends on the
experimental implementation of the feedback.

B. Two-parameter bifurcations

We now investigate the bifurcations of the ECMs in the
(C,K) plane for the three different QD device structures
introduced in Sec. II. The upper panel of Fig. 5 shows
two-parameter bifurcation diagrams for α = 0.9 calculated
for the implementation of fast (a), reference (b), and slow (c)
scattering rates. The lower panel is organized identically with
α = 3. Hopf and saddle-node bifurcation lines are depicted
as solid and dashed lines, respectively. The bifurcation curves
are drawn dark when supercritical, and light when subcritical.
The number of stable ECM solutions is expressed by the
shaded areas. White shading means no stable ECM solution,
light gray areas correspond to one stable ECM and dark
gray labels regions of bistability of two ECM solutions. The

one-parameter bifurcation diagrams we discussed before in
Fig. 4 correspond to a vertical line for C = π in Fig. 5(b)
and 5(e). If we begin our analysis with the upper panel of
Fig. 5 we note that the solitary solution is stable for all
C ∈ (−π,π ) below a certain feedback strength K . (Note the
2π periodicity of all bifurcation lines.) The destabilization
of the solitary ECM occurs in a Hopf bifurcation for all the
three QD energy structures. The important difference between
Fig. 5(a), 5(b), and 5(c) is the position of the destabilizing Hopf
bifurcation line with respect to the saddle-node bifurcation
line. As we stated in Sec. III the saddle-node bifurcation
lines are not affected by changing the QD energy structure.
Hence, they exhibit the same shape in all the three plots.
However, the shape of the Hopf bifurcation lines is drastically
different for the three QD structures. In Fig. 5(a) the Hopf
line always appears above the saddle-node line. Therefore, we
can find at least one stable ECM solution for all K ∈ (0,1)
and C ∈ (−π,π ). Thus, the laser never leaves the region of
time-constant photon density emission. Figure 5(b) shows a
quite different situation for the case of implemented reference
rates. One may find two white shaded areas that indicate
the absence of any stable ECM solution. For C ∈ (π/2,π )
and K < 0.3 the bistability region of Fig. 5(a) disappears
because the Hopf bifurcation line is moved to smaller values
of K . The same occurs for the Hopf line at C ∈ (−π,π/2)
and K ∈ (0.1,0.7). Here the laser is destabilized in a Hopf
bifurcation before a new stable ECM solution exists, resulting
in oscillatory and chaotic behavior of the photon density. The
highest K for which the solitary ECM solution of the laser is
still stable in the full range of C is K < 0.1 ≡ Kc. Tuning the
QD size to even slower rates leads to the bifurcation diagram
shown in Fig. 5(c). The unstable, white regions are even larger
than in panel (b), and the Kc ≈ 0.06 indicates higher sensitivity
to optical feedback for this QD structure. In the lower panel
of Fig. 5 (α = 3) the same general conclusions derived by
analyzing the upper panel can be drawn. The fast QD structure
exhibits the highest critical feedback strength Kc and the most
extended regions of bistability. Both, Kc and the bistability
regions decrease for the reference and slow QD structures.
Due to the increased number of possible ECM solutions for
the higher α factor it is no longer possible to guarantee the
existence of one stable ECM solution for the full range of C and
K in Fig. 5(d) as it was possible for α = 0.9. However, one is
able to minimize the unstable regions for the fast QD structure
compared to reference and slow. Here one has to keep in mind
from the study of Fig. 4 that the existence of a stable ECM
solution does not mean automatically that the laser performs
a CW operation. If there exists a stable periodic solution that
was created in a Hopf bifurcation of the last ECM in addition
to the now stable ECM it crucially depends on the initial
conditions in a numerical simulation, or the implementation
of the feedback in an experiment, which solution is favored
by the laser. In order to determine those areas in the (C,K)
plane where the laser is guaranteed to be stable, one has to
find the bifurcation point that connects the periodic solution
with the next ECM solution. This is a quite challenging task
and not considered in this paper. Hence, it is important to
stress here that the light-gray shaded areas label areas in the
(C,K) plane where it is possible to prepare the laser in the CW
regime.
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FIG. 5. Two-parameter bifurcation diagrams of the ECM solutions in the plane of the feedback phase C vs feedback strength K. (a)–(c)
α = 0.9, (d)–(f) α = 3. Panels (a) and (d) correspond to the set of fast scattering rates, (b) and (e) to reference rates, and (c) and (f) to the
slow rates (see also Table I). Hopf bifurcation lines are drawn as solid lines, saddle-node bifurcation lines as dashed lines. Bifurcation lines are
displayed dark when supercritical and light when subcritical. Shading marks the number of stable ECM solutions. White indicates no stable
ECM, light gray marks one stable ECM solution and dark gray denotes bistability of two ECM solutions. The pump current is fixed at 2.5Jth.

In the previous discussion we observed that the confinement
energy distribution of the QD laser has a large impact on its
sensitivity to optical feedback. As we mentioned in Sec. III
the determining equation for the saddle-node bifurcation lines
[Eq. (17)] neither depends on the scattering rates nor on the
pump current. So far, we have fixed the pump current at 2.5Jth

and analyzed the influence of the scattering rates on the ECM
bifurcations. Our next step is to change the pump current to
a different, fixed value and compare the bifurcation scenarios
with Fig. 5. Note that our microscopic modeling of the carrier
density-dependent scattering rates allows us to change the
pump current without adjusting any time scale parameter.
Figure 6 shows the bifurcation diagrams for α = 0.9 with
implemented fast, reference, and slow scattering rates at a
pump current of J = 5Jth (upper panel) and J = 10Jth (lower
panel). Here we restrict our numerical analysis to a small
α factor since its value for QD lasers is expected to be
relatively small [26]. However, it is noted that the general pump
current-dependent changes that are discussed in the following
can be observed for α = 3 as well.

If one compares the upper panel of Fig. 6 with the upper
panel of Fig. 5 one can conclude as a first result that the saddle-
node bifurcation lines have the same shape for all scattering
rates and pump currents as was predicted in Sec. III. The Hopf
bifurcation lines instead are shifted towards higher feedback
strength K resulting in more extended regions of stability
and bistability. Going to even higher currents as shown in the
lower panel of Fig. 6 it is striking to see that all white regions
disappear as the Hopf lines shift above the saddle-node lines

for all QD structures. An explanation can again be given by
discussing the nonlinear scattering rates. From Fig. 3(b) we
know that an increasing pump current leads to a reduction of
the scattering-induced lifetimes τe/h and increases the steady
state photon density N∗

ph. If we reconsider the results of the
asymptotic analysis presented in Sec. III we can explain the
reduced sensitivity of the laser subject to optical feedback
directly by the dependencies of Eq. (22):

�RO
ref = γ

2

[
τ−1
e + wN∗

ph + ρ∗
h + wN∗

ph

γ
τh

]
. (26)

One observes that the damping of the relaxation oscillations
increases with the steady state photon and hole density, N∗

ph and
ρ∗

h , respectively. Logically, these two quantities will increase
for higher pump currents. Equation (26) also implies that
�RO

ref will increase for decreasing electron lifetime τe but for
increasing hole lifetimes τh. From Fig. 3(a) one obtains that
both the steady state values of τe and τh decrease for increasing
J . However, the relative decrease of τe from J = 2.5Jth to
J = 10Jth is by a factor of 2 higher than the decrease of
τh. Therefore, with the help of our analytic results we can
explain the lower sensitivity of the laser towards optical
feedback with increasing pump currents by a reduction of
the scattering-induced carrier lifetimes τe and τh.

From Fig. 5 and Fig. 6 we conclude that it is possible to
increase the stability of the QD laser towards optical feedback
by adjusting both the pump current and the QD-QW band
structure of the device.
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FIG. 6. Same as Fig. 5 for (a)–(c): J = 5Jth and (d)–(f): J = 10Jth. The α factor is fixed at α = 0.9.

A last interesting remark concerns the shape of the first Hopf
bifurcation line in all two-parameter bifurcation diagrams we
investigate here. One observes that these lines (light and dark
solid lines in Figs. 5 and 6) appear as a loop in the lower
right part of the two-parameter bifurcation diagrams. (The
size of this loop drastically increases with the pump current.
Compare Fig. 6 upper and lower panels.) For C = π and low
feedback two distinct Hopf bifurcation points are found in
all two-parameter bifurcation diagrams. That is a supercritical
Hopf point for lower feedback strength and a subcritical Hopf
point for higher feedback strength. A detailed investigation of
the subcritical Hopf point reveals that it coincides with that
Hopf bifurcation on the antimode of the subsequent ECM we
mentioned in the previous subsection. That means that the
bifurcation bridge that emerges from the supercritical Hopf
point disappears in that subcritical Hopf point we see in all
two parameter bifurcation diagrams for C = π . If the feedback
phase C is now decreased from C = π the supercritical and
subcritical Hopf bifurcation points collide with each other.
This behavior is another indication of the connection between
two subsequent ECM solutions through bifurcation bridges
[see Fig. 4(c) and 4(d)] that are created in a supercritical Hopf
bifurcation and vanish in a subcritical Hopf bifurcation.

V. COMPARISON OF NUMERICAL AND
ASYMPTOTIC RESULTS

In this section we compare the numerically calculated first
Hopf bifurcation line in the (C,K) plane with the analytic
prediction for two different carrier lifetime scenarios. The
analytical formula [Eqs. (23)] was presented in Sec. III and is
derived in Ref. [4]. One of the most important approximations

applied in the derivation processes is the assumption of
small optical feedback, i.e., k = O(γ ). This corresponds to
an interval K ∈ [0,0.02] where the Hopf bifurcation occurs
in order to ensure good agreement between numerical and
analytical results. From Figs. 5 and 6 it can be seen that the
minimal critical feedback strength of the first Hopf bifurcation
is close to KH = 0.1 for α = 0.9. Thus, the condition of
k = O(γ ) is never fulfilled for small line width enhancement
factors α = 0.9. In contrast, for α = 3 the critical feedback
strength is in the vicinity of the required interval. Hence, we
will consider the relatively large line width enhancement factor
α = 3 in this section.

Figure 7(a) shows the numerically obtained Hopf bifurca-
tion line from Fig. 5(e) as a solid curve and the computed
Hopf line obtained from Eq. (23) as a dashed curve. For
clarity we plot the bifurcation lines in the truncated interval
K ∈ [0,0.25] and omit the shading. In the small feedback
regime we find good agreement between the two bifurcation
lines. The shape as well as the position of the analytically
obtained bifurcation line compares well with the numerical
solution for C in the vicinity of ±π . The agreement of
the two curves becomes worse for C close to zero because
the critical feedback strength moves to higher values of
K. However, even in this regime the analytical solution
reproduces the shape of the numerical solution and can be
used as a worst-case estimate. In Fig. 7(b) the results for
the slow scattering rates are shown. The conclusions drawn
from Fig. 7(a) also apply here. The asymptotic analysis of
the laser equations in the regime of relatively large scattering
induced carrier lifetimes τe and τh (slow scattering rates)
predicts the appearance of the destabilizing Hopf bifurcation
in accordance with the numerical analysis. Hence, we can
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FIG. 7. Comparison between numerical (solid) and analytical
(dashed) results for the Hopf bifurcation line in the

(
C,K

)
plane.

J = 2.5Jth and α = 3: (a) reference, (b) slow scattering rates.

conclude that the parameters that appear in Eq. (23) mainly
contribute to the stability properties of the laser subject to
optical feedback and may be used to optimize the stability
properties. Especially the line width enhancement factor α

as well as the scattering-induced carrier lifetimes τe/h have
to be controlled in order to obtain a device with the desired
properties.

Our dynamical analysis also shows that the knowledge of
the laser turn-on dynamics is sufficient to predict the stability
boundaries (here the first Hopf bifurcation) of the QD laser
even if complicated carrier dynamics is involved. This result is
robust under parameter variation and useful for experimental
characterization since turn-on experiments are much easier to
perform than feedback experiments. Of course, changes in the
gain parameter or in the scattering lifetimes have a large impact
on the turn-on dynamics as explicitly discussed in Eqs. (20)
and (22), but, after all, a simplified modeling approach that
uses a reduced number of dynamic variables for the solitary
QD laser will also lead to reliable results for the stability
boundaries of the feedback problem as long as the correct turn-
on dynamics of the laser is reproduced. Instead, the detailed
shape of the bifurcation diagram (as seen in Fig. 4) that goes
beyond the stability information given in Figs. 5 and 6 depends
on the details of the carrier dynamics and will change if, e.g.,
excited states are included or if the amplitude-phase coupling
is implemented beyond the description with a constant α factor.

VI. CONCLUSION

In this paper we have demonstrated that the stability
properties of a QD laser are influenced crucially by the
scattering-induced carrier lifetimes. In our QD laser model
we assume nonlinear Coulomb scattering rates that enable
us to compute the carrier lifetimes numerically based on a
microscopic model. Hence, we obtain carrier lifetimes that

change with the pump current and the considered QD-QW
band structure. Therefore, we can investigate changes of these
parameters without using the carrier lifetimes as fit parameters.
Within this model we have identified both analytically and
numerically the most important parameters that determine the
sensitivity of the QD laser to optical feedback. We propose that
the stability towards back reflection of light can be significantly
increased on the one hand by a small α factor that might be
achieved by adjusting the resonator wavelength, and on the
other hand by strongly damped relaxation oscillations that
occur, e.g., if the laser is operated at higher pump currents.
Further, also optimizing the QD structures and its material
compositions leads to better feedback resistivity if a higher
damping of the relaxation oscillations is obtained.
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APPENDIX A: DERIVATION OF PHOTO RATE EQUATION

The coherent interaction between a two-level system (e.g.,
QD) and a light mode can be described by semiconductor
Bloch equations. [11,27,28] Eliminating the fast microscopic
polarization p of one QD (the probability amplitude for an
optical transition) by assuming ṗ = 0 leads to a quasistatic
relation between p and the slowly varying complex amplitude
E of the electric field. By further assuming equal energy for
light mode and level spacing this relation reads

p = −i
μET2

h̄
(ρe + ρh − 1). (A1)

Here μ is the associated dipole moment of the optical transition
and T2 is the lifetime of the microscopic polarization defining
the homogeneous line width h̄/T2 of the levels. The term (ρe +
ρh − 1) describes the inversion of the two-level system with
the electron and hole occupation probabilities in the QDs, ρe

and ρh. For the derivation of the photon rate equation we
start with the reduced field equation for the electric field [29]
without damping,

Ė = iωL�

2ε0εbg

P, (A2)

where ε0 is the vacuum permittivity, εbg is the background
dielectric constant, and ωL is the transition frequency of the
two-level system. Please see Table III for the numerical values
used for the physical parameters. Using the total macroscopic
polarization inside one QW layer given by P = 1

hQW 2NQD
a μp,

and the optical confinement factor � perpendicular to the
direction of light propagation � = aLhQW

hw (height hw of the
waveguide, height hQW of the QW layers that contain the
self-organized QDs, and number of QW layers aL), we arrive
at the following field equation:

Ė = |μ|2ωLT2aL2NQD
a

2ε0εbgh̄hw
(ρe + ρh − 1)E

= ZQD
a W̄ (ρe + ρh − 1)E (A3)
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TABLE III. Numerical parameters used in simulations.

Symbol Value Meaning

A 4 × 10−5 cm2 QW in-plane area
NQD 10 × 1010 cm−2 Total QD density
NQD

a 0.3 × 1010 cm−2 Density of active QDs
aL 15 Number of QD layer
τec 160 ps External cavity round-trip time
τin 24 ps Internal cavity round-trip time
BS 540 ns−1 nm2 QW band-band recombination

coefficient
2κ 0.1 ps−1 Optical intensity loss
W 0.7 ns−1 Einstein coefficient of

spontaneous emission
W̄ 0.11 μs−1 Einstein coefficient of

induced emission
T 300 K Carrier temperature

with the Einstein coefficient of induced emission

W̄ = |μ|2ωLT2

ε0εbgh̄V w
, (A4)

which measures the strength of the coherent interaction. W̄

depends on the volume of the optical waveguide V w = A · hw

and on the width of the optical transition h̄/T2. The number
ZQD

a = aLANQD
a is the number of active QDs inside the

waveguide. Rewriting Eq. (A3) for the photon density per
unit area nph = |E|2 hwε0εbg

2h̄ω
gives

ṅph = 2ZQD
a W̄ (ρe + ρh − 1)nph. (A5)

In previous publications [2,8,9,13] a different value for W̄ was
implemented because the QD volume V act was used instead
of the optical waveguide volume V w in Eq. (A4). As a result
the geometric optical confinement factor �g = V act

V w appeared
in the equation for the photon density per unit area Eq. (A5),
which was somewhat misleading. Because the differing W̄

was also used in the carrier equations, those simulations yield
a rescaled photon density. Thus, the values for nph given in
Refs. [2,8,9,13] need to be multiplied by 6.6 × 103 to yield
the real photon density in the cavity.

The Einstein coefficient for the spontaneous emission can
be derived by calculating the incoherent interaction of the
two-level system with all resonator modes in the framework

of second quantization [29]. It gives W = |μ|2√εbg

3π ε0 h̄
(ωL

c
)3.

APPENDIX B: SCATTERING RATES

The results of the microscopic calculations of the carrier-
carrier scattering rates have been fitted with the following
functions to enable their use with path continuation software:

s in
e (We,Wh) = [tanh(aeWe + be)]

4∑
i=1

(
ce,iW

i
e + de,iW

i
h

)
,

(B1)

s in
h (We,Wh) = [tanh(ahWe + bh)]

4∑
i=1

(
ch,iW

i
e + dh,iW

i
h

)
.

(B2)

TABLE IV. Fit parameters for the reference rates from Table I.

Coefficient Value Coefficient Value

ae −1.836 × 10−5 ah 3.326 × 10−5

be −7.89 × 10−6 bh −8.064 × 10−4

ce,1 −298187.0 ch,1 −6886.56
ce,2 38 443.3 ch,2 −7191.73
ce,3 −3287.08 ch,3 1117.15
ce,4 112.303 ch,4 −43.6502
de,1 53 262.5 dh,1 −17291.4
de,2 571.696 dh,2 −13288.4
de,3 −72.5439 dh,3 1000.69
de,4 0.683815 dh,4 −52.8802

The parameter values of the coefficients are given in Table IV
for the reference rates, in Table V for the fast rates, and in
Table VI for the slow rates. Due to the principle of detailed
balance, the out-scattering rates can be calculated from the
in-scattering rates with the help of a detailed balance relation
derived in Ref. [9]:

sout
e (We,Wh) = s in

e (We,Wh)e
−	Ee
kB T

(
e

2WeNQD

DekB T − 1

)−1

, (B3)

sout
h (We,Wh) = s in

h (We,Wh)e
−	Eh
kB T

(
e

2WhNQD

DhkB T − 1

)−1

. (B4)

In these equations 	Ee and 	Eh denote the energy differences
between the QD ground states and the QW band edge for
electrons and holes (see also Fig. 2). De = me/(πh̄) and
Dh = mh/(πh̄) are the two-dimensional density of states in
the QW with the effective masses of electrons and holes me =
0.43m0 and mh = 0.45m0, respectively. kB is the Boltzmann
constant and T the absolute temperature that is fixed at
room temperature (T = 300 K) in our simulations. Hence,
the confinement energies 	Ee/h from Table I contribute to
both the microscopically calculated in-scattering rates and
the out-scattering rates obtained from the detailed balance
relations (B3) and (B4).

TABLE V. Parameters for the fast rates from Table I.

Coefficient Value Coefficient Value

ae −1.73923 × 10−5 ah 1.34424 × 10−5

be −1.30964 × 10−6 bh −3.35376 × 10−4

ce,1 −707 607.0 ch,1 −626.353
ce,2 106 490.0 ch,2 −3077.88
ce,3 −8788.67 ch,3 356.116
ce,4 287.055 ch,4 −17.8843
de,1 51 376.6 dh,1 −13087.5
de,2 7347.35 dh,2 −15 153.0
de,3 −663.515 dh,3 1066.2
de,4 17.169 dh,4 −55.0711

046201-11
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APPENDIX C: ANALYTICAL HOPF BIFURCATION LINE

In this section we perform the transformation of Eq. (18) into Eq. (23). We start with Eq. (18) (see Sec. III):

kH = −2�RO

√
1 + α2[1 − cos(ωROτ )] cos[C + 	ωsτ − arctan(α)]

. (C1)

The first step is to introduce the abbreviations:

G = 2�ROτ

1 − cos(ωROτ )
, KH

e = kH τ
√

1 + α2. (C2)

In this notation Eq. (C1) has the form

KH
e = −G

cos[C + 	ωsτ − arctan(α)]
, (C3)

⇔ 	ωsτ = arctan(α) − C ± arccos

(
− G

KH
e

)
+ 2nπ.

(C4)

If one rewrites the ECM condition of Eq. (15) in the same way
one obtains

	ωsτ = −KH
e sin[C + 	ωsτ + arctan(α)]. (C5)

Inserting Eq. (C4) into Eq. (C5) leads to

C = arctan(α) ± arccos

(
− G

KH
e

)

+KH
e sin

{
2 arctan(α) ± arccos

(
− G

KH
e

)}
+ 2nπ. (C6)

In order to simplify Eq. (C6) one uses several trigonometric
identities for resolving the sine:

sin(x ± y) = sin(x) cos(y) ± sin(y) cos(x), (C7)

cos(x ± y) = cos(x) cos(y) ∓ sin(y) sin(x), (C8)

sin[arctan(x)] = x√
1 + x2

, (C9)

cos[arctan(x)] = 1√
1 + x2

, (C10)

TABLE VI. Parameters for the slow rates from Table I.

Coefficient Value Coefficient Value

ae −2.6612 × 10−5 ah 1.94259 × 10−5

be −1.6475 × 10−6 bh −4.74478 × 10−4

ce,1 −363 381 ch,1 −3601.34
ce,2 50 519.5 ch,2 −15193.1
ce,3 −4290.71 ch,3 1441.14
ce,4 146.18 ch,4 −47.7236

de,1 69 984.1 dh,1 −19 129.2
de,2 −74.2397 dh,2 −5584.61
de,3 −86.6277 dh,3 435.245
de,4 1.65736 dh,4 −27.6885

sin[arccos(x)] =
√

1 − x2. (C11)

With the help of these identities one can expand the sine in
Eq. (C6) as follows:

sin

{
2 arctan(α) ± arccos

(
− G

KH
e

)}

(C7)= sin[2 arctan(α)] cos

[
arccos

(
− G

KH
e

)]

± cos[2 arctan(α)] sin

[
arccos

(
− G

KH
e

)]
.

Using

sin[2 arctan(α)]
(C7)= 2 sin[arctan(α)] cos[arctan(α)]

(C9),(C10)= 2α

1 + α2

and

cos[2 arctan(α)]
(C8)= cos2[arctan(α)] − sin2[arctan(α)]

(C9),(C10)= 1 − α2

1 + α2

one obtains

sin

{
2 arctan(α) ± arccos

(
− G

KH
e

)}

= − 2αG
KH

e (1 + α2)
± 1 − α2

1 + α2
sin

[
arccos

(
− G

KH
e

)]

(C11)= − 2αG
KH

e (1 + α2)
± 1 − α2

1 + α2

√
1 − G2(

KH
e

)2

= 1

KH
e

{
− 2αG

1 + α2
± 1 − α2

1 + α2

√(
KH

e

)2 − G2

}
.

Inserting this result into equation Eq. (C6) leads to

CH
n (k) = arctan(α) ± arccos

( −G
KH

e

)
− 2αG

1 + α2

± 1 − α2

1 + α2

√(
KH

e

)2 − G2 + 2nπ. (C12)
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