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Quantum dot laser tolerance to optical feedback

Christian Otto, Kathy Ludge, Evgeniy Viktorov and Thomas Erneux

6.1
Introduction

In optical fiber networks, the semiconductor laser source may be perturbed by un-
avoidable optical feedback from fiber pigtails or fiber connectors unless expensive
optical isolators are used. Analytical expressions for the stable operation of laser
diodes are highly desirable and have been a constant preoccupation of researchers in
the field [1]. Mork et al. [2] investigated the Lang and Kobayashi equations describing
a quantum well (QW) semiconductor laser subject to delayed optical feedback and
derived an approximation of the stability boundary in terms of the feedback parameter
k. k* = P./P; is defined as the ratio of the reflected powerand emitted powepP;.
Mathematically, this stability boundary corresponds to the lowest possible valhe of
first Hopf bifurcation of an external cavity mode. The external cavity modes (ECMs)
are the basic solutions of a laser subject to optical feedback from a distant mirror. In the
weak feedback limit, there exists only one mode which is determined by the feedback
phaseC = woTec, in first approximationdy is the angular frequency of the solitary
laser andr.. is the round-trip time). The stability condition derived by Mork et al. [2]
is given by
rew

k<ke= v (6.1)
wherea is the linewidth enhancement factor ahd" is defined as the damping rate
of the relaxation oscillations (ROs) multiplied by the photon lifetime so thatk.
is dimensionless. Because of a possible confusion with a different definition of the
damping rate used by Mork et al. [2], we derive the expressions of the ROs frequency
w®" and damping rat&?" from their rate equations in Appendix A. As noted by
Mork et al. [2], Eq. (6.1) was previously suggested by Helms and Petermann [3] as a
simple analytical criterion for tolerance with respect to optical feedback. siaim
Petermann [3] evaluate the validity of Eq. (6.1) by analyzing numerically the $yabili
of the minimum linewidth ECM. They noted that this approximation gives a good
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description of the critical feedback level as long as the linewidth enhancenctmtda
is significantly larger than unity. They then proposed an empirical law given by

ko = pQW Y1+ o?
o= T

(6.2)
Both Egs. (6.1) and (6.2) are used in current experimental studies of quantum dot
(QD) lasers subject to optical feedback. Specifically, Eq. (6.1) is used in Ref. [4] and
Eq. (6.2) is used in Refs. [5, 6, 7]. Note that the minimum linewidth mode appears
as the first ECM in the weak feedback limit for the feedback pliase — arctan(«).
For the minimum linewidth mode the minimum value of the feedback strength of the
first Hopf bifurcation, which marks the critical feedback strength below that the laser
is guaranteed to be stable, is given by [8]

ko=rewYlto® (6.3)

a?—1

The approximation of the first Hopf bifurcation in terms of an arbitrary phases and
thus for arbitrary ECMs is derived in [9]. Substituting the expression for the frequency
of the minimum linewidth modeA ~ C' = — arctan(«) then leads to Eq. (6.3).
The denominator in (6.3) is different from the denominator of (6.2) which explains
the numerically observed singularity as— 1% [3]. The expression (6.1) follows
from analytic considerations of the first Hopf bifurcation at a feedback ptase
m + arctan(a), which provides the lowest possible valuekof The inequality (6.1) is
based on a series of approximatioks< 1, w°" r../7, > 1, a > 1) which may or
may not be appropriate. Asymptotic techniques were later used to determine systemati
approximations for a variety of cases (pump parameter close to threshold, short external
cavity) [9]. In this approach, all small or large dimensionless parameters appearing in
the rate equations are scaled with respect to a unique parapugéned as the ratio of
the photon and carrier lifetimes & 7, /7 ~ 1072 — 10~%) [10]. Different scalings
lead to different limits. We shall use the same strategy for two different catation
models that are currently used in order to determine useful information on the dynamics
of QD lasers. As we shall demonstrate, the stability condition can still be fateull
by Eq. (6.1) but with different expressions for the damping Fate

Both, models with one carrier type and electron-hole models have been successfully
used to describe turn-on experiments [11, 12, 13, 14], gain recovery dynamics [15, 16,
17], optical injection [18] and optical feedback [19, 20]. The rate equation models with
only one carrier type assume the same scattering rates for electrons and holes. They
allow the derivation of simple analytical expressions which are useful when examini
experimental data. Electron-hole rate equation models are taking into account the fact
that the thermal redistribution occurs on different time scales for electrons and holes.
These models aim to bridge the gap between a microscopic description and the simpler
rate equation models but are too complicated for direct analysis.

In QD semiconductor devices, the carriers are first injected into a two dimensional
carrier reservoir, i.e. a quantum well, before being captured by a dot. The minimal
way to describe this process is to formulate three rate equations for the electtital fie
in the cavity, the carrier density in the reservoir, and the occupation probability of a
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dot [21, 22]. These equations were analyzed using the asymptoticylimit0 in Ref.

[23] and we shall apply the same analysis for the laser subject to optical feedback. Our
main result is described in Section 6.2. The electron-hole rate equation model that we
consider next involves five independent variables for the charge carrier densities in t
QD, the charge carrier densities in the reservoir, and the photon density in the cavit
and it involves microscopically calculated scattering rates that are syronglinear
functions of the carrier densities in the reservoir [24, 25, 11, 12] . (Please see Chapter 1
of this book for a review on the microscopic modeling). We recently showed that these
equations can be simplified by taking advantage of the lymit> 0 [26]. Although
coefficients of the reduced equations need to be computed numerically, distifmg scal
laws can be extracted for the RO frequency and RO damping rate. We plan to use the
same analysis here for the case of a laser subject to optical feedback [19]. The main
results are summarized in Section 6.3. The asymptotic studies of the two problems are
long and tedious. For clarity, the detailed computations are relegated to Appendix B
and C, and in the following we only concentrate on the final results.

6.2
QD laser model with one carrier type

The rate equations for a QD laser subject to optical feedback formulated by O’Brien
et al. [27] consist of three equations for the amplitude of the normalized laser field in
the cavity £, the occupation probability of a QD in the laser, and the numberof
carriers in the reservoir per QD. The dimensionless equations are derived in Appendix
B and are of the form

fo. % 14 g(2p — D] (1+ia)E + ke “CE({ — 1), (6.4)
p = v[Bn(l—p)—p—(2p—1)|E]], (6.5)
n' = ~[J—n—2Bn(l—p) (6.6)

where prime means differentiation with respect to the dimensionlessttimet/7,.
The factor2 in Eq. (6.6) accounts for the twofold spin degeneracy in the quantum dot
energy levels. A similar factaz is included in the definition of the differential gain
factorg in Eq. (6.4) [28]. The parameter= 7,/ is the ratio of the photon lifetime
and the carrier recombination time. The relaxation ratgsaridn are assumed equal
for mathematical simplicity.J is the electrically injected pump current per dot, and it
is the control parameter. The nonlinear teBn(1 — p) describes the carrier exchange
rate between the reservoir and the dd8s= 7, /7cqp ~ 102 — 10% is the dimensionless
capture rate and — p is the Pauli blocking factor. The three parametBrsy, and
g — 1 control the time-dependent response of the solitary QD laser. The last term in
Eq. (6.4) represents the contribution of the delayed optical feeddaekdr are the
dimensionless feedback rate and round-trip time laser-mirror-laser, respeativady,
is the feedback phase.

As for the conventional laser, our objective is to determine the minimal valueeof t
feedback rate below which a stable operation can be guaranteed. We shall consider
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~ as our order parameter because it does not appear in the expressions of the steady
states and scalB andg — 1 with respect toy. Several cases are possible depending

on their respective scalings. The physically most interesting case cons$ideeddtion
B(1—-p) = 0(7*1/2) [23], which basically assumes the carrier capture process into
the QDs to be much faster than the radiative recombination time of the carrigues in

QDs. The first Hopf bifurcation poirt” is determined by Eq. (6.69) (see Appendix

B for the asymptotic analysis), and its lowest possible value and thus the lower bound
for the critical feedback strength is given by the same expression as Eq. (6.1) but with

a different dimensionless damping rate narﬁé)d’:

L1417 B} .
5 T B 1_g_1+2(1+21) (6.7)

with B; = v/2B(1 — g~1), and the steady state intensity of the solitary ld$efsee
Appendix B). In the limity — 0, I* is given by

I = %(J — Jin) (6.8)

whereJy, = 14 ¢~ ! is the threshold current in the limjt— 0. The expression for the
RO frequency in units of, is w?? = /27T* and is the same as the one for the QW
laser ©“" is given by Eq. (6.37)). If the damping rate given in Eq. (6.7) is explored in
the limits B — oo (fast capture) of* — 0 (close to threshold), the value decreases
and approaches the much lower RO damping rate of QW lasers

y(142I7)

revw
2

(6.9)

(see Appendix A, Eg. (6.38)), thus in this limit§’® — 1<V,
However, if B = O(1) and/org is close tol, T is much larger thai@". This
can be demonstrated by rewritifi¢ ” as

NTF g41420F

oD _ pewW
2 +21*+B§ g—1

(6.10)

where the correction term clearly indicates the effeqj ef 1 if g is close tol.

6.3
Electron-hole model for QD laser

The microscopically-based rate-equation model for a solitary QD laser that s&parate
treats electron and hole dynamics has been formulated and further investigated in
[24, 12, 14] (see Chapter 1 of this book for a review). Supplemented by the optical
feedback term [19] and formulated with dimensionless quantities [20] it describes the
evolution of the occupation probability of the confined QD leveéls, and N}, the
number of carriers in the reservoir per Q. andW}, (e,h stand for electrons and
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holes, respectively), and the normalized slowly varying amplitude of the las@r fie
inside the cavitye = /T exp(—i¢$) with the normalized intensity and the phass.

ZT:%[71+ANHJWAJHOA%®E+kJCEWfTL (6.11)

F +£WM70W+N57UWF7MW4, (6.12)
ézyF — Ni) + 2Ny, — (Ne + Ny — 1)|EJ? Auw} (6.13)
W’—VLF+ "4 2N, — s —d%ﬂ@} (6.14)
W@:WLF+@?+S?ﬂNﬁ—£f—d%MQ} (6.15)

In the above equations prime means differentiation with respect to the dimensionless
timet’ = t/7, (with the photon lifetimer,). As beforek, C' andr are the dimensionless
feedback rate, the feedback phase and the external round-trip time, respectively and g is
the linear gain parameter. The parametaccounts for spontaneous and non-radiative
losses in the reservoir anflis the dimensionless electrically injected pump current
per QD. Furtheri™, s2*f, si™ 9! represent dimensionless scattering rates that are
rescaled by, = —w- 1Sé"h‘”“ with ! being the carrier lifetime due to radiative
recombination inside a QD that corresponds-tdn the QW- and in the QD model

with one carrier type. They are computed numerically from a microscopic theory of
carrier-carrier scattering events between QD and reservoir [24, 12]. The scattering
timesr. = (5" + 5¢**)~" andr, = (S} + S;’L“t)f1 are our reference time scales.

By introducing a rescaled time = ~+/2¢, reformulating the above equations in
terms of deviations from the steady state and taking advantage of the small value of
v = 1,/7s — 0, we showed in Ref. [26] that the rate equations can be reduced to four
equations that are given in Appendix C. Note that this rescaling of time is suggested by
the fact that the RO frequency is proportionahfd? asy — 0.

As we shall demonstrate, valuable information can be extracted from these equations
on the basis of simple scaling assumptions. Three cases were explored in [26] which
we now review.

6.3.1
Similar scattering times 7. and Ty

At first, one case will be discussed that assumes the scattering times ofavoér ¢

types to be on the same timescale. Further, this case assfimesc“t andsi® + s3*

to be O(1) quantities compared tg'/2. We find that the expression for the critical

feedback strength. is the same as Eq. (6.1) but with a different damping rate given by
s _ 7 [0 4se s + s

= | A A NN+

: . (6.16)

where I*, N7, and N; are the dimensionless steady state values for the solitary
laser of the light intensity, the electron, and the hole occupation probability in the
QDs, respectively, that need to be computed numerically. In [26], we noted that
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Nj; 4+ N =1+ g whereg = O(1) is the dimensionless gain coefficient. Eg. (6.16)
then simplifies as

rs=1 {L gsgut Fort paggt g s zsfﬁ“} . (6.17)
Eq. (6.17) can be reformulated as
IS — peW | % {Sin -ZSZM I st ';5}?“] (6.18)
where
T = 2 [14+g7t +217] (6.19)

has the same format as Eq. (6.9) and can be considered as the contribution of the
conventional QW laser.

6.3.2
Different scattering times 7, and 73,

The microscopic calculations predict very large scattering rates for the holes [12] due
to their much larger effective mass. Consequently this section aims tesdittte effect

of holes if they are much faster than the electrons. For the asymptotic analysis we
introduce the dimensionless parametes a measure for the hole scattering rates

a=,/ 2;* (si® + s°t) (6.20)

wherel™ is assumed to be an(1) quantity.

Small scattering lifetime of the holes a = O(l)

To this end, we assume thdt +s2** = O(1) while s;" +s5"* = O(y~'/?) which then
implies from Eq. (6.20) that = O(1). Note that this is different to Section 6.3.1 where
the scaling: = O(~'/?) was discussed. The leading order equation for the growth rate
is the same as for the solitary laser [26] and does not contain any contribution of the
feedback. In other words, the amplitude of the feedlaiskoo weak k = O(~)). We
would need to consider the cake= O(y'/?) in order to find the feedback parameter

in the leading equation for the growth rate, but this problem has not been solved
analytically yet.

Very small scattering lifetime of the holes  a = 0(7_1/2)

For the case were the hole scattering time is on the order of pico-seconds another
scaling has to be introduced. Thus, for this case we assume thad(y~'/2) while

st 4 5% = O(1). Compared to the case of similar scattering times the RO frequency
is slightly reduced by a factor df/,/1/2. The expression for the critical feedback
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Fig. 6.1 Solid line shows the first Hopf bifurcation point k =
as a function of v as obtained numerically from the original rate
equations using a continuation method [20] (C' = 7 + arctan(c),
7 = 80).The broken line represents its analytical approximation
given by Eq. (6.1). As « decreases towards zero, k¥ increases
and the analytical approximation that assumes k£ < 1 begins to
fail.

strength is the same as Eq. (6.1) but with a different dimensionless damping rate given
by
pa_ 7 |[I” 1 in out * *
M= |————+s +se""+1"+Np|. (6.21)
2 ~ S;ln + Szut
InFig. 6.1, we compare numerical and analytical predictions for a laser subject to a long
external cavity. The numerical determination of the Hopf bifurcation pefihbas been
obtained by using a continuation technique (DDE-Biftool [29]) applied to the original
electron-hole rate equation model [26, 19] and not from the reduced equations (6.87)-
(6.90). Details on the numerical simulations and parameter values are documented in
Ref. [20]. The broken line in Fig. 6.1 represents the analytical approximation given by
Eq. (6.1). Asx decreases towards zekd! increases and the analytical approximation
that assumek < 1 begins to fail, while a very good agreement with the analytic results
is found for larger.

6.4
Summary

The expression for the critical feedback strength from Eq. (6.1) provides a sufficient
condition for stable operation of a quantum well laser subject to optical feedback. The
critical feedback rate above which pulsating instabilities are observedeseed as

a function of the linewidth enhancement factoand the damping rate of the ROs. Its
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simplicity has encouraged experimental studies of QD lasers subject to optiizdéde

Itis shown that Eq. (6.1) is also a good approximation for QD lasers provided that their
much larger damping rate of the relaxation oscillations is considered. The damping
rate is generally obtained by fitting data. In this review we examine two different
rate equations models for QD lasers and derive the stability condition with amdlytic
expressions for the damping rate. These expressions allow us to anticipate the effect of
specific parameters, e.g. the carrier scattering rates and the differentiabgéinient,

and design lasers with a larger tolerance to optical feedback.
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6.5
Appendix A: rate equations for quantum well lasers

The rate equations for a solitary quantum well laser used by Mork et al. [2] are given
by

de 1 1
o= 5 |Gv(N=No)— - g, (6.22)
dN B E _ B 2

G = o GN(N = NoE” (6.23)

Here¢ is the amplitude of the electrical field ad is the carrier density. The linear
gain coefficient is denoted b, Ny is the transparency density of carriessis the
pumping current and, andr, are the photon and carrier lifetimes, respectively. The
non-zero intensity steady state is

1
GnTp'
1 N

£ = m“‘?' (6.25)

N* = No +

(6.24)

From the linearized equations, we then determine the characteristic equation for the
growth rate\
1 * ]- *
2+ (—+Gn¢E N+ —GnE 2=0. (6.26)

p

In order to properly define the relaxation oscillation frequency and its damping rate,
we take advantage of the fact thgt<< 7. The roots of the quadratic equation then
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take the form

A= T8V +iuQY (6.27)
where
QW _ %2 1 %22 1 2
Wro = Gfo,‘ 1( + GNEF?)2 GNEg , (6.28)
1 1 . 1,1
TR = 5 +GNE™) = (- + mwho) (6.29)

are defined as the RO frequency and RO damping rate of the solitary laser, respectivel
They are the quantities that are measured experimentally Mork et al. [2] introduced
the RO damping rate a5 '” which equalszr but could wrongly be interpreted
asrey.

In order to determine asymptotic approximations, we need to reformulate the rate
equations in dimensionless form. The simplest way is to measure time in units of the
photon lifetime by introducing

t' =t/7p. (6.30)

Furthermore, introducing the new dimensionless dependent varigtdes Z defined

by
./GNTS gandz =+ [GN(N Noyry — 1] (6.31)

allows to reduce the number of parameters. Inserting Egs. (6.30) and (6.31) into
Egs. (6.22) and (6.23), we find

E

% — ZE, (6.32)
% = y[P-Z-(1+22)E? (6.33)

wherey and P are defined by

122 p= GN;”TS (J = Jun), with Jy = ]ZO Gle,,T; (6.34)
The non-zero intensity steady state is
Z*=0andI* =E? =P (6.35)
and the characteristic equation for the growth eate given by
o? +~y(1+ 200 + 21"y = 0. (6.36)

Providedy is sufficiently small, the roots of Eq. (6.36) are complex-conjugated. The
dimensionless RO frequency and RO damping rate (in units ofttinaee then defined
from the imaginary and real part of these roots. We obtain

€
Ml

2
W \/27]* — %(1 +2I*)2 ~ /2yI*asy — 0 and (6.37)

rev = w (6.38)
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In our analysis of the QD rate equations, we use the same dimensionlegstimgr,
and reformulate the dynamic equations so that the samaltiply the right hand side
of the carrier equations.

6.6
Appendix B: asymptotic analysis for QD laser model with one carrier type

The equations examined by O'Brien et al. [27] are the following three equations for
the amplitude of the laser field in the cavigy, the number of carriers in the reservoir
per dot,N and the occupation probability of the dots in the laser

d€ 1 1 0w n

_ = — —_——_— —1 - a — lec) .

- 5 Tp—l—go@(Qp )| E+ €+ 5E(E - Tec) (6.39)

d ~

L= L w2 -DEP + F(N.p), (6.40)

% R O R ad 20 ) (6.41)
Ts

For the definition of the various parameters, see Ref. [27]. The capture rate is
described by the terfi = CN?(1 — p) in [27] and is proportional to the number of
carriers present as well as the probability to find a dot. As in [23], we shall consider
F = BN(1 — p) instead ofF = C'N?(1 — p). Here the carrier phonon and the Auger
carrier capture rates are denoted Byand C, respectively. We definéw = o/7,
whereq is the linewidth enhancement facta¥.?? is the two dimensional density of
guantum dots. In our analysis, we introduce théactor in the traditional way i.e.,

by the term(1 + i) multiplying the full square bracket in (6.39). Moreover, we take
into account the feedback phaSe= wqt.. Wherewy is the angular frequency of the
solitary laser ¢' = 0 mod 2 in [27]). Our starting equations are then given by

a 11 1 _ . N ~iCory

% = 5 Tp—i—gg@(?p D A +ia)e+ e E(t —7ec),  (6.42)

d ~

&= L g2 -DEP + BN(1-p), (6.43)

% = N T onPBNG - ). (6.44)
Ts

By introducing a dimensionless timé the number of carriers in the reservoir per QD
n, and a normalized fiel& , according to

t' =t/7p, n=N/NOP, E = \/goTsE, (6.45)
the Egs. (6.42)-(6.44) simplify as
% - % (=14 g(2p — 1)] (1 + i) E + ke "CE({ — 1), (6.46)
& 5 [=p— (20— DIEP + Bn(1 — p)], (6.47)
an 4+ T —2Bn(1-p)] (6.48)
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o _ 7 _ _JTs
v = p g = gol1p, k= 5 T = Tee/Tp, J = Nab’

andB = BN%Pr,.

(6.49)
If we consider the rate equations (6.46)-(6.48), in terms of the normalized intensity
I and the phase of the fieldE = /T exp(i¢), the equations can be rewritten as

I'=[-1+g(2p— DT +2k\/I{t' — T)I(#") cos(—=C + ¢(t' —7) — $), (6.50)

¢ = % —14g(2p—1)]a+k % sin(—C+ (' —7)—¢),  (6.51)
p'=~[Bn(l—p)—p—(2p—1I], (6.52)
n' =~[J —n—2Bn(l - p)]. (6.53)

6.6.1
External cavity modes

The basic solutions of the feedback problem are the external cavity modes (ECMs).
They are defined as solutions with constant field intensity and carrier numbers, i.e.
I =1, p = ps,n = ns, and a phase of the field that varies linearly in time given by
¢ = ps = —CL + AL with the ECM frequency). For clarity the index is omitted
in the following equations.

From Egs. (6.50)-(6.53), the basic solution satisfy the following conditions

21149029~ 1)] = ~kcos(A),
A = C — k7 [acos(A) +sin(A)],

" J
T 1+4+2B(1-p)’
2p—1 '
Solving for p, we obtain
1 _ k
p= §(l+g h— ;COS(A), (6.54)
J
"= TTeB ) (6:59)
_ B(l-p) J—Jum
T 1+4+2B(1-p) 2p—1 (6.56)
where 2B
Jin = M (6.57)

B(1—p)
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We note the following relations which will be useful when we eliminatéom the
coefficients of the characteristic equation:

Bn+1+42I = 1‘;[
(14+2B(1—p))(Bn+1+2I) 1+1
= ——+2B(1—p)(1+21).
—2B?n(1 —p) 1—p+ (1=p)(1+20)
6.6.2
Stability

From the linearized equations, we determine the following condition for the growth
ratec:

i (k COS(A)F) kT sin(A)F i 0 ]
—0
“EFsin(A) <Cosﬁ)F) go 0
B Bn+1 —0
—2y(2p — VT 0 T\ qer YB(1 - p)
—0
1
0 0 2yBn "\ 2B - p)
) B (6.58)
where
F = exp(—oT1) — 1. (6.59)

Expanding the determinant (6.58), we find the following characteristic equation for the
growth rates

0=o0"+0" {7 <1 +2B(1—p)+ %) — 2k cos(A)F]

+02[

+o0o

29(2p — D)gl + 47 (L +2B(1 - p)(1 +21)) + k*F*
—v2k cos(A)F (23(1 —p)+ M)

2v(2p — 1)gl [y (1 +2B(1 — p)) + k(asin(A) — cos(A))F]
722k cos(A)F (g +2B(1—p)(1 + 21))
k2 F? (23(1 o)+ L’—p)

1—p
A2 K2R (}%{ +2B(1—p)(1 + 21))

. (6.60)
+72k2(2p — 1)gI (14 2B(1 — p)) (asin(A) — cos A))F

We next investigate two cases that depend on the size of paraBeter
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6.6.3
B(1-p) = O(1)

We solve Eq. (6.60) by seeking a solution of the form

0271/2004—7014—...,
k=~ki+.... (6.61)

From the Egs. (6.54)-(6.56) we note the following scalings:

I=T1"+0(), p=p"+0(y), andA = A¢ + O(y) (6.62)
where
. B(1—p*) (J—Jwmo) g Bl—g")
I — 2 = = J — J
(1+2B(1—p") (2p*—1) 21+ B(1— g—l)( th.0),
o = %(1 +g Y, and Ag=C. (6.63)

153

Herel™ andp™ denote intensity and occupation probability of the QDs for the solitary

laser, respectively and the threshold current of the solitary laser is given by [23]

pr(1+2B(1—p*) 1+B(l-g"
(1-p)B  B(l-g)

th,o = (1 + gil).

We find from Eq. (6.60) the following sequence of problems

O0(?) : 0 =o0g + 021", (6.64)
0(*?):0= (405 +4I") oo
+o5|142B(1—p")+ 1 + I* — 2k1 cos(Ao) Fy
-p
+ 21" 00 [k1(asin(Ag) — cos(Ao)) Fo
+14+2B(1—p")] (6.65)
where
Fo = exp(—y"/2007) — 1. (6.66)
From Eq. (6.64), we determing as
o0 =1V 2I*
and from Eq. (6.65) with
WP = /2T~ (6.67)

we findo; as

oy =T+ %(asin(Ao) + cos(A0)) [(cos(w?P7) — 1) — isin(w?P7)]
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where .
r= 1+1 .
1—g1
The real part of; then is
2 UJQDT
Re(o1) = =T — k1(asin(Ag) + cos(Ap)) sin”( ) (6.68)

which implies stability for all values of; if (asin(Ag) 4 cos(Ag)) > 0 or provided
that
I
(arsin(Ag) + cos(Ag)) sin?( “’QQDT )
-2 r

= 1= cos@r)(cos(Bo —arctan(@) vifer OO

if acsin(Ao) + cos(Ap) < 0. From Eq. (6.69) we see that the lowest possible value for
kT is for

ki < kP =

Ao = C = 7 + arctan(a) andw®" 7 = 7(mod 27).

Itis given by
r
kic = ——. 6.70
= Tt (6.70)
In terms of the original parameters, the stability condition (6.70) implies that
reb
k<ke= — 6.71
oot (6.71)
wherel'?” = 4T, or equivalently,
2
rep — o 1+ 1o (6.72)

1—g 1

6.6.4
B(1—p)=0(y""7?)

Taking into account thaB(1 — p) = O(y~'/?) we introduce a0(1) quantity B; as
B = vY22B(1 — p*). With the scaling ofp = p* + O(v) (see Eq. (6.62)) we may
expand/;, from Eq. (6.57) and from Eq. (6.56) in powers of'/2, which yields

Jin =2p" + p"+0() =2p"+~"%2p" BT + O(v),

1
B(1—p*)
I=T"++"2I, + O(v) (6.73)

where we have defined the steady state intensity of the solitary fasarthe limit
~ — 0 and its first order correctiofy
« 1 1

F=55, V- 207) = %(J* (1+g7), (6.74)

I = —%Bflj. (6.75)
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Inserting Eq. (6.61) and Eq. (6.73) into the characteristic equation (6.60) we find the
following problems foroy andoy

O(y?): og+05B1+ 002" +002I" By =0, (6.76)
0(75/2) : [403 + 303 B1 + 20021" + 21*31] o1
= *(0'(2) -+ 0031)211

— oy 1-5—2114_1_1

— 2](71 COS(AQ)FO

— 0'(2) [Bl(]. =4 21*) — 2k1 COS(Ao)FoBl]
— 0020 [1 + k1 (asin(Ag) — cos(Ao)) Fo)
— [2I*B1k1 (O{ bln(Ao) — COS(Ao))Fo} (677)

whereF) is defined by (6.66). Equation (6.76) admits the solution
og = —2I" (6.78)
and from (6.77) with (6.78) and (6.67), we find

20051 | ki(asin(Ao) + cos(Ao)) [(cos(w?PT) — 1) — isin(w?"7)]
TS 2

! oodl* =L Lo (14217 (6.79)

Al (00 + B1) 1—gt

Equation (6.79) implies that

E1(asin(Ag) + cos(Ao))(cos(w?Pr) — 1)

Re(al) =-I+ 5

(6.80)

where ,
1 L1+1*  B?
I'= 21 —
2I*+Bf{ 1—g*1+ 2
is the damping rate of the solitary laser [9]. Our stability conditions are now sitoila
those of Egs. (6.71)-(6.72) with?” replacingl’’” where

(1+ 21*)} (6.81)

L1+ yB(l-gY) .

I$P =40 = i 21 14214 .

Y g e { gt " 2 (1+2r)
(6.82)

6.7

Appendix C: asymptotic analysis for a QD laser model with electrons and

holes

The microscopically based electron-hole rate equation model describe the evolution of
the charge carrier densities in the QR @ndn},), the carrier densities in the reservoir
(we andwy,) (e,h stand for electrons and holes, respectively), and the photon density
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npn. Please see Chapter 1 of this book for the equations with dimensions while the
dimensionless form is given in Egs. (6.11)-(6.15). To reformulate the equations we
introduced the new dimensionless variables

I=npA, Nep =nem/N®P, Wep =wen/N*mand ¢ =t/7,, (6.83)

and the dimensionless parameters:

I'WAN®P 1 K
QEL, ,YEK7 k= ——, T = 2KTee, (6.84)

2K 2K 2K Tin

in/out __ 1 in/out _ BN®™ _ ]
Se/h = Wse/h’ 5 C = W , J = W (685)

By formulating dimensionless equations in terms of deviations from the steady state
and by taking advantage of the small valueyof> 0, we showed in Ref. [26] that the

five rate equations without feedback can be reduced to three equations. Supplemented
by the optical feedback term [19], they consist of four equations for the deviation of the
intensity from its steady statg, the phase of the electrical field and the deviations

ue,p, Of the QD occupation probabilities from their steady state values. Specifibally t

new dynamic variableg, u. andu,, are defined via

I=I"(1+y) and Nesn = N + VAwg e (6.86)

where the superscripitdenotes the steady state values of the solitary laser.
The new set of rate equations is given by

Y =(ue +un)(1+y)

+26CV/ (14 y) (L +y(s — se)) cos(C — ¢(s — sc) + ), (6.87)
¢ =as
fai(uﬁ + up)
1+y(s—sc) .
—eC T sin(C — ¢(s — sc) + @), (6.88)
W= gy el + 52
—e(te +un)I™ — e(ue Ny, + NZup) + O(y), (6.89)
up = — 3y — aun
— (e +un)I™ —e(ue Ny + Noup) + O(y) (6.90)

where prime means differentiation with respect to the dimensionlessstimest’ =

wt/1p and
w = /29I* (6.91)

is the RO frequency of the solitary laser. Equation (6.91) is identicaft8 given by
(6.37) andw®@? given by (6.67).I*, N, N; are dimensionless steady state values of
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the solitary laser that need to be computed numerically. The new feedback amplitude
¢ = O(1), the delays. the small parameter, anda are defined by

_k o _ -]
C:’y,scfum',sf 2I*,al’ld (6.92)

a=e(sy" + sp'h). (6.93)

The dimensionless scattering rates that also need to be computed numerically are
denoted bysi®, s2%t, sin s9u'. As we shall now demonstrate, valuable information
can be extracted from these equations on the basis of simple scaling assumptions.

6.7.1
External cavity modes

The basic solutions are the external cavity modes (ECMs). Analog to Sec. 6.6.1 they
are defined as the steady state solutiongfat., u,, and a phase that changes linearly

in time

S

6= —csi +A (6.94)

Sc
with ECM frequencyA = os.. From (6.87) and (6.88), we find that satisfies the
following transcendental equation

A =C —eCsc (acos(A) + sin(A)) (6.95)

which implies thatA ~ C ase — 0, i.e. A is independent of the feedback amplitude
¢, in first approximation. For the subsequent asymptotics we write

A= Ao+ O(e) (6.96)
with Ay = C. From (6.87), we also note that
Ue + up, = —2eC cos(A) (6.97)

which indicates that both. andu, areO(e) small. From Eq. (6.89), we then find that
y is O(e?) small. These scaling laws fai;, uy, andy are useful when we reorganize
the coefficients of the characteristic equation in powees dhree cases were explored
in [26] which we now examine.

6.7.2
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Stability

From the linearized equations, we determine the following condition for the growth

rateu:
—eCcos(A)F —2e¢(1+y)
1 1
( -1 x sin(A)F v v
sin(A —e( cos(A)F o o
C2(l(+1/)) F) ( — 2 2
1
B + 50" =0
-1 0 +I* + Ny (I"+N¢)
—p
—a
-1 0 (I"+ Ny) (I* + NY)
—p
(6.98)
where
F=1—e e, (6.99)
Expanding the determinant, we obtain
pt o+ ? [( + 82" 42" + Np + N2)e +a +2eC cos(A)F]
e (s + s +I" + Ny) (a+e(I* + NJ))
—p |- +y) - —* (I" + Nyp) (I" + N2) + 2P F?
+2eCcos(A)F (a+e(21" + NJ + Ny + s + 52))
i e2¢2F? (a+€(2[* +N:+si"+s‘e’“t+N;))
out a
+2eC cos(A)F | e ( e T > +e(I™ + NJ)
+ +I* + Nj; N PO,
® 4 —e2(I* + Nj) (I" + NY)
—eC(1+ y) sm(A)Foz
+2eC cos(A)F1(1+y) +y) [a+ (s + s2*")e] ]
iy sout a+el”
2 2F2 Se e _ 22 T* N (I* N*
e €<+I*+Ni +eN; I+ NI+ M)
—2eC(1+y)sin(A)F§ [a+ (2" + s2*)e]
+eCcos(A)FL(1+y) [a+ (s7 + s2)e] .
(6.100)
6.7.3

Similar carrier lifetimes 7. and 73, (case S)
We seek a solution of the form

W= jpo+epr+ ... (6.101)
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and assume thag™ + s3“* = O(1). Inserting (6.93), (6.96) and (6.101) into (6.100),
we obtain the following sequence of problems fgrand .,
O() : ug + g =0, (6.102)
O(e) = 4ppp + 2ponn
+ i [si" + 82 4 2T 4+ N + NI+ s + 50 +2¢ cos(Ao)Fo]

—C Sin(Ao)FoOé
+ 4 , =0, 6.103
PUL HCoos(0)Fo + L (sir + s 4 st 4 s2) (6109
where we have introduced
Fy=1—¢e #0%, (6.104)
The solution of Eq. (6.102) is
po = —1
and from (6.103), we then obtain
gt =T — %gFo(cos(Ao) +sin(Ao)a) (6.105)
where ) , ) .
P=d |3t o Ny Ny S S (6.106)

2 2 2

is the damping rate of the solitary laser [26]. Using (6.99) and= ¢, (6.105) then
implies that

Re(u1) = —T — %((1 — cos(se))(cos(Ao) + sin(Ao)a) (6.107)
=-T— (sinQ(%)(cos(Ao) + sin(Aop)a).

The stability condition now is

€< G = ~ o) T (6109
if asin(Ag) + cos(Ag) < 0. The lowest possible value fgg; is for
Ag = C = m + arctan(a) ands. = w(mod 2).
Itis given by
G = \/% (6.109)

Interms of the original parameters, the stability condition is the same as for (6.71)-(6.72)
with T'* replacingl¢” where

in out in out
e R R A s (6.110)

2 2
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6.7.4
Different carrier lifetimes 7., and 75 and a = O(l)

Assuming thats;” + s5** = O(¢™') or equivalentlya = O(1), we now find from
(6.100) thafu, satisfies

o(1) : ué-ﬁ-uga—kug-i-,uo% =0 (6.111)
which is analyzed in [26]. We note thatdoes not appear in (6.111) meaning that the
feedback is too weak(= O()) to have an effect in this case.

6.7.5
Very small scattering lifetime of the holes (  a = 0(671))

We next assume that
a= % (6.112)
wherea; = €%(si" + s3*") = O(1). Inserting (6.112) into (6.100), we now find the

following problems forue and

O™ s arpd + ,u()% =0 (6.113)
O(1) : Bayppp + Hl% + 1o
— A2 [71 - (sze” + s T+ N;’Z) a1 — 2¢ cos(Ag) Foar
— 2C Sin(Ao)Fg%al =+ CCOS(AO)FO%OJ =0 (6114)
whereF, is defined in (6.104). The solution of (6.113) is
2_ 1
Ho = 2
and from (6.114), we then obtain
jy = —T — %Fo(cos(Ao) +sin(Ao)a) (6.115)
where
p=1 i+s§”+s‘;“t+l*+N,j (6.116)

2 2(11

is the damping rate of the ROs for the solitary laser [26]. Using (6.99):and i/1/2,
(6.115) implies

Re(p1) = -T'— %C(l — cos(s¢))(cos(Ao) + sin(Ao)«)
= —I'—(sin (T\cﬁ)(cos(Ao) + sin(Ag)a). (6.117)

The stability conditions are the same as for (6.71)-(6.72) Wittt replacingl'?”
where

FD“E% %+s§”+s;’“t+l*+N;{ ) (6.118)
1
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