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Climate Impact Research ???

PIK: Potsdam Institute for Climate Impact Research

“At PIK researchers in the natural and social sciences work together

to study global change and its impacts on ecological, economic and

social systems. They examine the Earth system’s capacity for with-

standing human interventions and devise strategies for a sustainable

development of humankind and nature.

PIK research projects are interdisciplinary and undertaken by scien-

tists from the following Research Domains: Earth System Analysis,

Climate Impacts and Vulnerabilities, Sustainable Solutions and Trans-

disciplinary Concepts and Methods.”
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Brave new world.

Lots of scope for conceptual analysis.

Examples:

vulnerability

resilience

adaptive capacity

mitigation

sustainability

. . .
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Best tool for the job

Opinions differ. . .

physicist: partial differential equations

economist: utility functions

social scientist: subject interviews

mathematician: sets, lattices, categories
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Vulnerability

Example: “Vulnerability”

“. . . a human condition or process resulting from physical, social and

environmental factors which determine the likelihood and damage

from the impact of a given hazard” (UNDP Annual Report, 2004)

“Vulnerability [. . . ] is a way of conceptualizing what may happen

to an identifiable population under conditions of particular risk and

hazards.” (Cannon et al. 2004)

“. . . the degree to which a system is susceptible to and unable to cope

with, adverse effects of climate change, including climate variability

and extremes. ” (The Intergovernmental Panel on Climate Change,

2007)
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Vulnerability formalization

Basic elements:

S -- set of states

Trj = List S or Trj = T → S -- trajectory

h : Trj → H -- harm along a trajectory
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Vulnerability formalization

“Possible” future:

[trj1, ..., trjn ] scenarios

or

[(trj1, p1), ..., (trjn, pn)] stochastic uncertainty

or

fuzzy, finitely additive probabilities, . . .

or

combinations thereof
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Vulnerability formalization

“Possible” future: F Trj for a functor F

p : State → F Trj

F h ◦ p : State → F H possible future harm

Vulnerability is a measure of this possible future harm:

m : F H → V for some preorder V
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Vulnerability formalization

v : S → V

v = m ◦ F h ◦ p

In Haskell, using “user-friendly” names:

vulnerability = measure ◦ fmap harm ◦ possible

Formalization as DSL creation.
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Monotonicity condition

Monotonicity condition for vulnerability measures:

For all f : H → H such that f is increasing, for all fh : F H , we have

m fh ⊑ m (F f fh)

or, if ⊑ is partial

¬ (m (F f fh) ⊏ m fh) -- for suitably defined ⊏

If every possible harm is increased, the total measure of possible harm

should not be decreased.
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Monotonicity condition examples

H = Nat ,F = List

1. V = Nat ,m = maximum works

2. V = Real ,m = average works

3. V = Nat ,m = most frequent value fails
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Monotonicity condition examples

H = Nat ,F = SP

1. V = Nat ,m = maximum value works

2. V = Real ,m = expected value works

3. V = Nat ,m = likeliest value fails
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Testing the monotonicity condition

Testing the monotonicity condition using QuickCheck:

testMonotonicity measure geninc fh = forAll geninc

(λinc → ((measure fh) ⊑ (measure (fmap inc fh))))

Problems:

we need to create a custom generator for every harm type (and every

preorder on the harm type)

pretty bad coverage for high dimensions
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Testing the monotonicity condition

Testing the monotonicity condition:

can fail because of overflow or round-off errors

hard to distinguish between “conceptual” and “implementational”

errors
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Proving the monotonicity condition

Formulating the monotonicity condition in Agda is like writing the

tests in QuickCheck.

record Preorder (A : Set) : Set where

field

le : A → A → Bool

LE : A → A → Set

LE a1 a2 = lift (le a1 a2)

field

reflexive : (a : A) → LE a a

transitive : (a1 a2 a3 : A) →

LE a1 a2 → LE a2 a3 → LE a1 a3
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Proving the monotonicity condition

record Functor (F : Set → Set) : Set1 where

field

fmap : {A B : Set } → (A → B) → (F A → F B)

....

LE : {A : Set } → (P : Preorder A) → (a1 a2 : A) → Set

LE P a1 a2 = lift (le a1 a2) where le = Preorder .le P

record Increasing (A : Set) (P : Preorder A) (f : A → A) : Set where

field

increasing : (a : A) → LE P a (f a)
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Proving the monotonicity condition

record VulnMeasure (H V : Set) (PH : Preorder H ) (PV : Preorder V )

(F : Set → Set) (Func : Functor F) (m : F H → V ) : Set where

fmap = Functor .fmap Func

field

mon : (inc : H → H ) → (Increasing H PH inc) → (fh : F H ) →

LE PV (m fh) (m (fmap inc fh))
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Proving the monotonicity condition

It is easy to construct a term of type

VulnMeasure H H P P List ListFunc maximum

for any harm type H .

Similarly for average, expected , etc. (with appropriate assumptions on

H ).

In constructing these proofs, some properties will be postulated (e.g.

associativity of addition on H ) which do not hold, e.g. of Float.
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Compatibility condition

Usually, different models for possible trajectories of the same system

have the same state space S and the same trajectory space Trj , but

differ in the choice of F , e.g. some give possible scenarios (List Trj ),

others stochastic information (SP Trj ).

When are two vulnerability assessments with models of different types

“compatible”?

The harm evaluation stays the same (h :Trj → H ), but the domain of

the vulnerability measure m : F H → V has to change.
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A related problem

Intuitively speaking, m1 : F H → V and m2 : F H → V are compatible

if they rank things in the same way:

∀ fh1 fh2 : F H

m1 fh1 ⊑ m1 fh2 ≡ m2 fh1 ⊑ m2 fh2

i.e. if the induced preorders on F H are order-isomorphic.
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Compatibility condition

We can “reuse” this idea if one of the representations of “possible”

can be embedded in the other, i.e. if there exists an injective natural

transformation from one to the other.

Let F1, F2 be two functors, τ : F1 → F2 an injective natural transfor-

mation, H a set, ⊑1 and ⊑2 preorders on F1 H and F2 H respectively.

Then ⊑1 and ⊑2 are compatible with respect to τ iff

∀ x1 x2 : F1 H

x1 ⊑1 x2 ≡ τ x1 ⊑2 τ x2
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Conclusions

The ability to easily formulate and prove high-level conditions is an-

other advantage of using a (dependently typed) functional program-

ming language for formalization of concepts.

Ideally, it would be as easy to prove these kind of properties as it is

to implement QuickCheck tests.

But. . .
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Conclusions

. . . we’re not there yet:

1. We lack a good enough tutorial

2. Agda standard library is intimidating

3. Not enough experience with proof reuse
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