IFL 2012, Oxford, September 1st, 2012

Dependently-typed Programming in Scientific
Computing

Cezar lonescu (Potsdam Institute for Climate Impact Research)
and
Patrik Jansson (Chalmers University of Technology)

IFL 2012, Oxford, September 1st, 2012

The Potsdam Institute for Climate Impact Research

PIK addresses crucial scientific questions in the fields of global
change, climate impacts and sustainable development.

Researchers from the natural and social sciences work to-
gether to generate interdisciplinary insights and to provide
society with sound information for decision making.

The main methodologies are systems and scenarios analysis,
modelling, computer simulation, and data integration.

PIK Mission, www.pik-potsdam.de, retrieved 2012-08-30

IFL 2012, Oxford, September 1st, 2012

The Potsdam Institute for Climate Impact Research
PIK addresses crucial scientific questions in the fields of global

change, climate impacts and sustainable development.

Researchers from the natural and social sciences work to-
gether

The main methodologies are systems and scenarios analysis,
modelling, computer simulation, and data integration.

PIK Mission, www.pik-potsdam.de, retrieved 2012-08-30

IFL 2012, Oxford, September 1st, 2012

The Potsdam Institute for Climate Impact Research

PIK addresses crucial scientific questions in the fields of global
change, climate impacts and sustainable development.

Researchers from the natural and social sciences work to-
gether to generate interdisciplinary insights and to provide
society with sound information for decision making.

The main methodologies are

PIK Mission, www.pik-potsdam.de, retrieved 2012-08-30

IFL 2012, Oxford, September 1st, 2012

The Potsdam Institute for Climate Impact Research

PIK addresses crucial scientific questions in the fields of global
change, climate impacts and sustainable development.

Researchers from the natural and social sciences work to-
gether to generate interdisciplinary insights and to provide
society with sound information for decision making.

The main methodologies are systems and scenarios analysis,
modelling, computer simulation, and data integration.

PIK Mission, www.pik-potsdam.de, retrieved 2012-08-30

IFL 2012, Oxford, September 1st, 2012

Computer simulation

“Simulation is a third way of doing science. Like deduction,
it starts with a set of explicit assumptions. But unlike deduc-
tion, it does not prove theorems.

Instead, a simulation generates data that can be analyzed
inductively. Unlike typical induction, however, the simulated
data comes from a rigorously specified set of rules rather than
direct measurement of the real world.”

R. Axelrod Advancing the Art of Simulation in the Social Sciences,
2003

IFL 2012, Oxford, September 1st, 2012

Computer simulation

“Simulation is a third way of doing science. Like deduction,
it starts with a set of explicit assumptions. But unlike deduc-
tion, it does not prove theorems.

Instead, a simulation generates data that can be analyzed
inductively. Unlike typical induction, however, the simulated
data comes from a rigorously specified set of rules rather than
direct measurement of the real world.”

R. Axelrod Advancing the Art of Simulation in the Social Sciences,
2003

IFL 2012, Oxford, September 1st, 2012

Correctness of computer simulations

The correctness of a computer simulation therefore depends on

IFL 2012, Oxford, September 1st, 2012

Correctness of computer simulations

The correctness of a computer simulation therefore depends on

> having explicit assumptions

IFL 2012, Oxford, September 1st, 2012
Correctness of computer simulations
The correctness of a computer simulation therefore depends on

> having explicit assumptions

» having rigorous rules to generate data

IFL 2012, Oxford, September 1st, 2012

Correctness of computer simulations

The correctness of a computer simulation therefore depends on

> having explicit assumptions
» having rigorous rules to generate data

» some relationship between the two

IFL 2012, Oxford, September 1st, 2012

Correctness of computer simulations

The correctness of a computer simulation therefore depends on

> having explicit assumptions
» having rigorous rules to generate data

» some relationship between the two

Sometimes, these conditions are not met. . .

IFL 2012, Oxford, September 1st, 2012

The Gintis model

“We thus provide, for the first time, a general, decentral-
ized disequilibrium adjustment mechanism that renders mar-
ket equilibrium dynamically stable in a highly simplified pro-
duction and exchange economy.”

“Our results should be considered empirical rather than theo-
retical: we have created a class of economies and investigated
their properties for a range of parameters.”

Herbert Gintis The Emergence of a Price System from
Decentralized Bilateral Exchange, 2006

IFL 2012, Oxford, September 1st, 2012

The Gintis model, ctd.

At PIK, the interest was fueld by

“The model has provided the conceptual basis for two major
studies commissioned by the German ministry for the Envi-
ronment, the first assessing the economic implications of Ger-
man climate policy, the second designing sustainable answers
to the financial crisis.”

From the homepage of the Lagom project,

In 2009, Mandel and Botta proved results for a simplified model
with stronger assumptions. Many features of the Gintis model
resisted mathematical analysis, and reproduction of the results
failed.

IFL 2012, Oxford, September 1st, 2012

The Gintis model, ctd.

Independently, Pelle Evensen and Mait Mardin investigated the
model and published results in An Extensible and Scalable
Agent-Based Simulation of Barter Economics M.Sc. Thesis,
Chalmers 2009.

Both groups discovered a serious bug in the implementation:

> PijXij
>_j Pijoj
was implemented as

> PijXij
>_j PijXij

This led to less variance in the computation of prices, and
consequently to fast convergence.

IFL 2012, Oxford, September 1st, 2012

The Gintis model, ctd.

Main problem: the “explicit hypothesis” were ambiguous, and the
relationship to the code unclear.

“The discrepancies between the description and the original
implementation of the barter economy confirm the impor-
tance of replication.”

Evensen and Mardin, 2009

“In practice, however, model re-implementation on the basis
of narrative descriptions is nearly impossible. For consistent,
independent model re-implementation, one needs unambigu-
ous mathematical specifications.”

Botta et. al. A functional framework for agent-based models of
exchange, 2011

IFL 2012, Oxford, September 1st, 2012

Specifications in scientific computing

We need specifications that

» ensure that “explicit hypothesis” and the “rigorously specified
set of rules” are not contradicting each other

» allow checking correctness of implementations, model
re-implementation, replication of results, etc.

We found little advice on specifications in scientific computing
(e.g. Writing Scientific Software — A Guide to Good Style (Oliveira
and Stewart, 2006) doesn't address specifications).

In many cases, the mathematical descriptions of their problems
and algorithms are insufficient as specifications (e.g. because of
discretization, approximations, introduction of arbitrary order of
operations ...).

IFL 2012, Oxford, September 1st, 2012

Constructive mathematics

The gap between mathematics and programming is too large and
we need to bridge it.

IFL 2012, Oxford, September 1st, 2012

Constructive mathematics

The gap between mathematics and programming is too large and
we need to bridge it.

“Now, it is the contention of the intuitionists (or construc-
tivists, | shall use these terms synonymously) that the basic
mathematical notions, above all the notion of function, ought
to be interpreted in such a way that the cleavage between
mathematics, classical mathematics, that is, and program-
ming that we are witnessing at present disappears.”

P. Martin-Lof, Constructive Mathematics and Computer
Programming, 1984

IFL 2012, Oxford, September 1st, 2012

Constructive mathematics and type theory

“[Type theory] provides a precise notation not only, like other
programming languages, for the programs themselves but also
for the tasks that the programs are supposed to perform.

Thus the correctness of a program written in the theory of
types is proved formally at the same time as it is being syn-
thesized.”

P. Martin-Lof, Constructive Mathematics and Computer
Programming, 1984

IFL 2012, Oxford, September 1st, 2012

Constructive mathematics and type theory

“[Type theory] provides a precise notation not only, like other
programming languages, for the programs themselves but also
for the tasks that the programs are supposed to perform.

Thus the correctness of a program written in the theory of
types is proved formally at the same time as it is being syn-
thesized.”

P. Martin-Lof, Constructive Mathematics and Computer
Programming, 1984

Test: formalize basic concepts of economics.

IFL 2012, Oxford, September 1st, 2012
Models of exchange: example
Typical example:

» Two agents, two goods: beer and wine.

v

For agent 1:

u(b,w)=if w<lthenOelse2x*b+ w

v

For agent 2:

u(b,w)=if b<3thenOelse b+2x%w

v

Agent 1 has 3 bottles of wine and 2 of beer.

v

Agent 2 has 1 bottle of wine and 7 of beer.

What can we expect after the agents trade?

IFL 2012, Oxford, September 1st, 2012

Basic economics: models of exchange

The quintessential economic situation: exchange of goods.

1. Np agents, Ng goods, X; units of good j.
2. Agent i has an endowment e; = (xi1, ..., Xing)-

3. The list of endowments (ey, ..., epn,) is called an allocation.
Agents have preferences over allocations.

4. Agents are allowed to exchange their goods in order to find a
better allocation (ey, ..., ey,). Only feasible allocations are

acceptable: Z/{V:A]_ xij = X;.

What is a good allocation?

IFL 2012, Oxford, September 1st, 2012

Pareto efficiency

Definitions of Pareto efficiency. A feasible allocation x is a
weakly Pareto efficient allocation if there is no feasible allocation
x’ such that all agents strictly prefer x’ to x.

Varian, p. 323

An allocation x is weakly Pareto efficient, if there exists no feasible
allocation that dominates it strictly everywhere.

IFL 2012, Oxford, September 1st, 2012

Formalization of Pareto efficiency

A feasible allocation x is a weakly Pareto efficient allocation if

there is no feasible allocation x’ such that all agents strictly prefer
/

x’ to x.

Allocation : Set
Feasible : Allocation — Set
Agent . Set

_strictlyPrefers_to_ . Agent —
Allocation — Allocation — Set

IFL 2012, Oxford, September 1st, 2012

Formalization of Pareto efficiency

A feasible allocation x is a weakly Pareto efficient allocation if

there is no feasible allocation x’ such that all agents strictly prefer
/

x’ to x.

WeakPareto : Allocation — Set
WeakPareto x = Feasible x N
= (3 (M(X" : Allocation) —
Feasible x' N
((a : Agent) — a strictlyPrefers x' to x)))

IFL 2012, Oxford, September 1st, 2012

Introducing prices

If goods have prices p; then an initial allocation w gives each agent
a budget:
Bi = 3% pjwi.
Assuming utility functions, an agent has to solve:
maximize u(e;) such that
> pixi = Bj

Whether the resulting allocation is feasible depends on the prices.

IFL 2012, Oxford, September 1st, 2012

Walrasian equilibrium

An allocation-price pair (x,p) is a Walrasian equilibrium if (1)
the allocation is feasible, and (2) each agent is making an optimal
choice from its budget set. In equations:

LYixi =i wi

2. If x’; is preferred by agent i to x;, then px’; > pw;.

Varian, Microeconomic Analysis, p. 325

First welfare theorem: Walrasian equilibria are (weakly) Pareto
efficient.

IFL 2012, Oxford, September 1st, 2012

Walrasian equilibrium

An allocation-price pair (x,p) is a Walrasian equilibrium if (1)
the allocation is feasible, and (2) each agent is making an optimal
choice from its budget set.

1. Feasible x
2. If x’; is preferred by agent i to x;, then px’; > pw;.

Varian, Microeconomic Analysis, p. 325

First welfare theorem: Walrasian equilibria are (weakly) Pareto
efficient.

IFL 2012, Oxford, September 1st, 2012

Walrasian equilibrium

An allocation-price pair (x,p) is a Walrasian equilibrium if (1)
the allocation is feasible, and (2) each agent is making an optimal
choice from its budget set.

1. Feasible x
2. If x’ is preferred by agent / to x, then px’; > pw;.

Varian, Microeconomic Analysis, p. 325

First welfare theorem: Walrasian equilibria are (weakly) Pareto
efficient.

IFL 2012, Oxford, September 1st, 2012

Walrasian equilibrium

An allocation-price pair (x,p) is a Walrasian equilibrium if (1)
the allocation is feasible, and (2) each agent is making an optimal
choice from its budget set.

1. Feasible x

2. If x’ is preferred by agent / to x, then the endowment of / in
x" has greater value (according to p) than the endowment of |
in w.

IFL 2012, Oxford, September 1st, 2012

Formalizing Walrasian equilibrium

1. Feasible x

2. If x’ is preferred by agent / to x, then the endowment of / in
x” has greater value (according to p) than the endowment of /

in w.

Price : Set

Value : Set

value : Endowment — Price — Value
> : Value — Value — Set

omega : Allocation

IFL 2012, Oxford, September 1st, 2012

Formalizing Walrasian equilibrium

1. Feasible x

2. If x’ is preferred by agent / to x, then the endowment of / in

x" has greater value (according to p) than the endowment of i
in w.

WalrasianEq . Allocation N Price — Set
WalrasianEq (x, p) = Feasible x A
((a : Agent) — (x' : Allocation) —
(a strictlyPrefers x' to x) —
value (endmt x’ a) p > value (endmt omega a) p)

IFL 2012, Oxford, September 1st, 2012

Formalizing Walrasian equilibrium

1. Feasible x

2. If x’ is preferred by agent / to x, then the endowment of / in

x" has greater value (according to p) than the endowment of i
in w.

WalrasianEq . Allocation N Price — Set
WalrasianEq (x, p) = Feasible x A
((a : Agent) — (x' : Allocation) —
(a strictlyPrefers x' to x) —
value (endmt x’ a) p > value (endmt omega a) p)

Question: if (x, p) is a Walrasian equilibrium, are all the agents “in
budget”?

IFL 2012, Oxford, September 1st, 2012

Formalizing the first welfare theorem

Walras = Pareto : (p : Price) — (x : Allocation) —
WalrasianEq (p,x) — WeakPareto x

Walras = Pareto p x (fx, weq) = fx, wpe where ...
We need

allOutOfBudget : (x : Allocation) — (p : Price) —
((a : Agent) —
value (endmt x a) p > value (endmt omega a) p) —
— (Feasible x)

IFL 2012, Oxford, September 1st, 2012

Mainstream economics

Refinements
» several agents

» production and consumption

v

iterated exchanges
» introduce agents representing banks, governments, ...

> ..

Most of the models used for policy advice are based on extensions
of this idea (it's a good place to start for specifications).

IFL 2012, Oxford, September 1st, 2012

Good news

We tested the expressive power of type theory by formalizing
different equilibria in Agda and Idris, together with the
relationships betwen them.

We could write specifications for certain kinds of economic agents
in Gintis-like models.

We had several sessions with Lagom modelers, and they found the
specifications understandable.

IFL 2012, Oxford, September 1st, 2012
Bad news

Therefore, it appears that we can express the “explicit hypothesis”
and the “rules” that drive our simulations. ..

IFL 2012, Oxford, September 1st, 2012

Bad news

Therefore, it appears that we can express the “explicit hypothesis”
and the “rules” that drive our simulations. ..

but not the relationship between them.
» Economic theory is mostly non-constructive (K. Vellupilai,
2002): the divide between mathematical specification and
implementations is still there.

» Most modelers are not numerical analysts: they want to use
external routines.

» No usable library of numerical methods for constructive reals.

» (Some) modelers are willing to write formal specifications, but
less willing to write formal proofs, let alone constructive
formal proofs.

IFL 2012, Oxford, September 1st, 2012

Good news

Having specifications is better than having no specifications.

Having specifications which can be partially machine-checked is
better than having specifications which cannot be machine-checked
at all.

Having classical proofs of correctness is better than having no
proofs of correctness.

Using type theory for specifications can also guide the efforts of
the constructive mathematics community.

And so on: just because we cannot now have fully verified models
should not prevent us from taking advantage of what we have!

IFL 2012, Oxford, September 1st, 2012

Some Fin functions

== _: forall {n} — Finn — Finn — Bool
zero == zero = true

zero == suc j = false
suc i == zero = false
Suc i==sucj =1i==j

toFin : (n : Nat) — Fin (suc n)
toFin zero = zero
toFin (suc n) = suc (toFin n)

IFL 2012, Oxford, September 1st, 2012

Maximizing utility over a finite set

We want

max : {n : Nat} —
(Fin (S n) — Float) — Fin (S n) A Float

such that

maxSpec : {n : Nat} — (u : Fin(Sn) — Float) —
(i = Fin (S n)) —
so (u (fst (max u)) = f snd (max u)) A
so (u i < snd (max u))

IFL 2012, Oxford, September 1st, 2012

Haskell-style implementation

x : {n: Nat} —
(Fin (S n) — Float) — Fin (S n) N Float
max {O}u =fO,ufO
max {S n} u= max' u (fO, u fO) fO

max’ {n} u (best, bestU) ¢’ =
let c = suc ¢’ in
let uc=ucin
if (¢ == toFin n)

then
if uc < bestU then (best, bestU)
else (c, uc)
else

if uc < bestU then max’ u (best, bestU) c
else max’ u (c,uc) c

IFL 2012, Oxford, September 1st, 2012

Agda is not Haskell

x : {n: Nat} —
(Fin (S n) — Float) — Fin (S n) N Float
max {O}u =fO,ufO
max {S n} u= max' u (fO, u fO) fO

max’ {n} u (best, bestU) ¢’ =
let c = suc ¢’ in
let uc=ucin
if (¢ == toFin n)

then
if uc < bestU then (best, bestU)
else (c, uc)
else

if uc < bestU then max’ u (best, bestU) ¢ -- |
else max’ u (c,uc) c --!

IFL 2012, Oxford, September 1st, 2012
Fins are Finicky

":{n: Nat} —

(Fin (S n) — Float) — -- utility

Fin (S n) A Float ~ — -- best-so-far

Fin n — -- count / candidate
Fin (S n) N Float -- optimum

max’ {n} u (best, bestU) ¢’ =
let c = suc ¢’ in
let uc =ucin
if (¢ == toFin n)

then
if uc < bestU then (best, bestU)
else (c, uc)
else

if uc < bestU then max’ u (best, bestU) ¢ -- !
else max’ u (c,uc) ¢ --!

IFL 2012, Oxford, September 1st, 2012

Trust me, I'm a professional

coerce’ :{AB : Set} - AB - A~ B
coerce’ refla = a

coerce :{AB : Set} - A —- B

coerce = coerce’ trustMe

max’ {n} u (best, bestU) ¢’ =
let c = suc ¢’ in
let uc=uc in
if (c == toFin n)
then
if uc < bestU then (best, bestU)
else (c, uc)
else
if uc < bestU then max’ u (best, bestU) (coerce c)
else max’ u (c, uc) (coerce c)

IFL 2012, Oxford, September 1st, 2012

Programming style

How do we specify that the outputs a program X — Y have to
be in the relation R with the inputs?

Nordstrom et. al.:
fo(x:X)—= 3y :Y) = R(xy))
Thompson:

FJNF X = Y) = (x: X) = R(x,fx))

IFL 2012, Oxford, September 1st, 2012

Optimization problems, continuous case

Current practice: use an external optimizer and assume it works.

IFL 2012, Oxford, September 1st, 2012

Optimization problems, continuous case

Current practice: use an external optimizer and assume it works.

maxSpec serves as a documentation of this assumption.

IFL 2012, Oxford, September 1st, 2012

Optimization problems, continuous case

Current practice: use an external optimizer and assume it works.

maxSpec serves as a documentation of this assumption.

Often, the type of the utility function is constrained to functions
for which maxSpec is less of a lie.

IFL 2012, Oxford, September 1st, 2012

Optimization problems, ctd.

E.g.: for elementary functions defined on “convenient” intervals
one can show that Newton-based methods converge. The result is
an interval guaranteed to contain the solution.

IFL 2012, Oxford, September 1st, 2012

Optimization problems, ctd.

E.g.: for elementary functions defined on “convenient” intervals
one can show that Newton-based methods converge. The result is
an interval guaranteed to contain the solution.

Even then, formalizing the proof in Agda is not trivial: standard
proofs are classical. Thus all we can usually show is that the
resulting interval cannot fail to contain the solution.

IFL 2012, Oxford, September 1st, 2012

Optimization problems, ctd.

E.g.: for elementary functions defined on “convenient” intervals
one can show that Newton-based methods converge. The result is
an interval guaranteed to contain the solution.

Even then, formalizing the proof in Agda is not trivial: standard
proofs are classical. Thus all we can usually show is that the
resulting interval cannot fail to contain the solution.

At the moment, we use external libraries for interval analysis
anyway. . .

IFL 2012, Oxford, September 1st, 2012

Doing a bit better. ..

Lots of future work:

» Specify more commonly used external routines, e.g. for
interpolation.

IFL 2012, Oxford, September 1st, 2012

Doing a bit better. ..

Lots of future work:

» Specify more commonly used external routines, e.g. for
interpolation.

» Improve notation for dependent-types, e.g. where-clauses for
type declarations.

IFL 2012, Oxford, September 1st, 2012

Doing a bit better. ..

Lots of future work:
» Specify more commonly used external routines, e.g. for
interpolation.

» Improve notation for dependent-types, e.g. where-clauses for
type declarations.

» Develop DSLs for specifications of economic, climate, etc.
models.

IFL 2012, Oxford, September 1st, 2012

Doing a bit better. ..

Lots of future work:
» Specify more commonly used external routines, e.g. for
interpolation.

» Improve notation for dependent-types, e.g. where-clauses for
type declarations.

» Develop DSLs for specifications of economic, climate, etc.
models.

» Implement interval analysis methods for validated numerics.

IFL 2012, Oxford, September 1st, 2012

Doing a bit better. ..

Lots of future work:

>

Specify more commonly used external routines, e.g. for
interpolation.

Improve notation for dependent-types, e.g. where-clauses for
type declarations.

Develop DSLs for specifications of economic, climate, etc.
models.

Implement interval analysis methods for validated numerics.

Prepare for the constructive mathematics revolution, e.g.
results from projects such as ForMath.

IFL 2012, Oxford, September 1st, 2012

A motto for increasingly correct scientific computing

“The road to wisdom? Well, it's plain
and simple to express:

Err

and err

and err again,

but less

and less

and less.”

Piet Hein (1905-1996), The Road to Wisdom, in Grooks (1966).

