

Community interactive webtool to explore Greenland datasets

Mahé Perrette (mahe.perrette@pik-potsdam.de)

Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany

GREENRISE Project members

Motivation

Marine-terminating, outlet glaciers are challenging to include in conventional Greenland-wide ice sheet models because of the large variation in scale between model grid size (typically 10 km) and outlet glacier width (typically 1-5km), making it a subgrid scale feature. A possible approach to tackle this problem is to use one-dimensional flowline models for the individual glaciers (e.g. Nick et al., 2013; Enderlin et al 2013).

Here we present a python- and javascript- based webtool to prepare data required to feed in or validate a flowline model. It is designed primarily to outline the glacier geometry and returns relevant data averaged over cross-sections.

point

Toolkit to edit lines and sample data underneath

Edit flowlines by hand to fix data error

Compute flowlines based

Mouse-click to define a starting

Flowlines computed based on

surface velocity field (Rignot and

on velocity field

Resample lines

Mouginot, 2012)

 Embedded panel to vizualize the data underneath, modify coordinates by hand

-139.3;-1357.4

-141.9;-1352.2

-144.6;-1347.1 -147.2;-1341.9

Google Map interface

- Visualization can be switched to Google Map interface, to compare with satellite images.
- Lines are editable in this view using Google polyline tools, which some might find more intuitive...

Export as 1-D geometry: mesh generation

- Requires three lines: left, middle, right (downstream looking)
- Generate orthogonal segments to the middle line at regular intervals, and find the intersection points with the side lines.
- Admittedly a crude approach, see webglacier1d/issues for interactive discussion.
- export as 1-D geometry by averaging along cross-sections
- download the result as netCDF4

Technical notes

• Nick, Faezeh M. et al. (2013), 'Future Sea-Level Rise from Greenland's Main Outlet Glaciers in a Warming Climate', Nature, DOI:10.1038/nature12068

• Rignot, E., and J. Mouginot (2012), 'Ice Flow in Greenland for the International Polar Year 2008–2009', GRL DOI:10.1029/2012GL051634

- project is hosted on github/perrette/webglacier1d, under the open-source MIT Licence.
- server-side written in python (open-source) using the web-framework flask (and also: netCDF4, dimarray, caropty...)
 client-side (javascript) makes use of the d3 library for interactive figures, and jQuery for requests, as well as bootstrap
- for now it only runs locally in a web browser, after downloading source code and datasets (not included)

Conclusions

- The tool is handy at exploring datasets and extracting relevant data to netCDF as 1-D geometry, for further study and modelling.
- It can be extendable to more datasets (digging a bit in the code)
- There is room for improvement and github offers an online platform for discussion under webglacier1d/issues
- Open question: how to improve mesh generation?
- Let's start modelling....come and see related posters!

Related posters (GREENRISE Project)

David Alexander: EGU2015-7677 (Y224)

Johanna Beckmann: EGU2015-6856 (Y223)

Mahé Perrette: EGU2015-6311 (Thu. 17:30, Y79)

https://github.com/perrette/webglacier1d