POTSDAM INSTITUTE FOR CLIMATE IMPACT RESEARCH PIK

VISUALISATION

VISUAL EXPLORATION AND EVALUATION OF CLIMATE IMPACT DATA

In climate impact research, heterogeneous, increasingly large data sets require flexible data analysis techniques. The Scientific Data Management Group provides a variety of interactive visualisation techniques and paradigms rarely used before now in climate impact research.

CHALLENGES

- Large measured and model output data sets
- Heterogenity of data sets with different characteristics (coupled multi-dimensional and multivariate scalar and vector data on different grids)
- Detection of possibly interesting, partly unknown features in the (multi-variate) data
- Evaluation and comparison of model simulations
- Combination of visualisation and statistical methods
- User support to identify appropriate visualisation techniques and parameters

APPROACH

Visualisation can go beyond

- data and result presentation and
- standard, uni-variate visualisation techniques and allows
- new insights by a high level of interactivity.

Consequently,

- we develop a library of tailored, interactive visualisation techniques from different environments (e.g. OpenDX, OpenGL), including
 - spatial and temporal scalar and vector data visualisation,
 - multi-variate visualisation,
 - visualisation of simulation experiment output, of clustered and PCA transformed data,
- integrate it into the easy-to-use framework SimEnvVis that
 - gathers and uses metadata,
 - utilizes user goals and user preferences,
 - supports users to generate appropriate visualisations for their current problem context,
 - and manages the analysis history, and
- reuse theses functionalities in derived applications (e.g. an OpenDX based visualisation online portal).

VISUALISATION TECHNIQUES

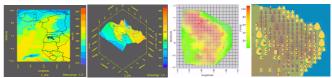


Fig.1: Visualisation of scalar data in 2D (left to right): coloured map, coloured height map with isolines, data comparison combining colour and transparency map, multivariate maize icon metaphors on a map

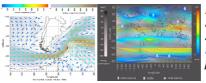


Fig.2: Flow visualisation:coloured streamlines with arrows (left) or critical point glyphs (right)

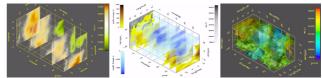


Fig.3: Visualisation of scalar 2D temporal data in 3D: parallel slices highlighting extreme values (left), extreme differences (centre), and transparent isosurfaces (right)

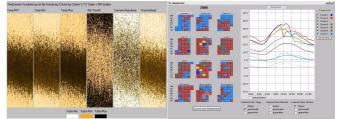
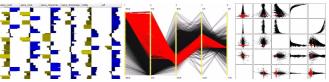



Fig.4: Visualisation of long time series: pixel-based visualisation of six daily weather variables (left), clustered temperature day profiles (right)

Fig.5: Multi-variate visualisation (left to right): graphical table, brushed parallel coordinates and scatterplot matrix

APPLICATIONS & PROSPECTS

Development of visualisation methods & tools for simulation experiments (SimEnv) & for large spatial/temporal multi-variate data (LPJ, Potsdam series, Climber-3).

Leibniz Gemeinschaft Data & Computation / Scientific Data Management Visualisation T. Nocke Nocke@pik-potsdam.de

