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Abstract

Avoiding dangerous climate change is likely to require policies to mitigate CO2 emissions that are substantially more

ambitious than those currently being considered. For such policies, the issue of endogenous technological change becomes

important, both to estimate the overall costs and to identify the intertemporally cost-effective combination of mitigation

options. In this paper, we first discuss the recent literature that evaluates the potential for endogenous technological change to

reduce mitigation costs, and the efforts to incorporate endogenous technological change into pre-existing integrated

assessment models. Then we formulate our own integrated assessment model, the Model of INvestment and Technological

Development (MIND), which allows analysis of the relationship between specific mitigation options and the costs of

ambitious climate protection objectives. Our model reveals two important results. First, the incorporation of technological

change in a portfolio of mitigation options can reduce the costs of climate policies substantially. Achieving the ambitious

policy goals necessary to avoid dangerous climate change becomes feasible without significant welfare losses. Second, the

different mitigation options are of different importance in achieving climate protection goals: improving energy efficiency

becomes too costly as a major mitigation option in the long run. In the long run, fossil fuels have to be substituted by

renewable energy sources because a backstop technology with the potential of learning-by-doing has the strongest impact on

reducing the welfare losses due to climate protection. Furthermore, Carbon Capturing and Sequestration can allow for further

reduction in the costs of climate protection and can postpone the need to transform the energy system from a fossil-fuel-

based one to a renewables one.

D 2005 Published by Elsevier B.V.

Keywords: Direction of technological change; Endogenous growth; Energy efficiency; Labour productivity; Climate change and protection;

Learning-by-doing; Renewable energy; Carbon Capturing and Sequestration
0921-8009/$ - see front matter D 2005 Published by Elsevier B.V.

doi:10.1016/j.ecolecon.2004.12.030

* Corresponding author. Tel.: +49 331 288 2565.

E-mail address: edenhofer@pik-potsdam.de (O. Edenhofer).
1. Introduction

Climate scientists and an increasing number of

policy-makers argue that avoiding bdangerousQ climate

change, a mandate of the United Nations Framework
4 (2005) 277–292
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Convention on Climate Change (UNFCCC), will

require the stabilisation of atmospheric carbon dioxide

(CO2) concentrations at some level near, or below, 450

parts per million (ppm). Achieving this goal requires

policies to reduce CO2 emissions that are ambitious in

comparison with any policy currently in effect or

proposed. Many economists (for example, Nordhaus,

2002) argue that such policies have a large negative

impact on economic growth, and hence on welfare,

even if induced technological change in the direction of

cleaner energy sources is taken into account. Others

(for example Popp, 2004a,b) suggest that a reasonable

climate policy would stimulate technological change to

an extent that would make these policies inexpensive.

Exploring the potential of technological change in

reducing overall mitigation costs is a necessary

prerequisite to developing a sound climate policy.

In this paper, we present results from a new model,

the Model of INvestment and Technological Develop-

ment (MIND), which addresses the issue of endoge-

nous technological change. We follow the general

approach of an intertemporal cost-effectiveness anal-

ysis, i.e. we calculate the impact of investments in

different mitigation options on the overall macro-

economic costs of climate protection measured in

terms of welfare losses.

Our results offer answers to two questions. First,

what are the mitigation costs of ambitious climate

protection goals if endogenous technological change

is taken into account? Second, what is the relative

importance of different mitigation options in reduc-

ing the costs of climate protection? We will show

that endogenous technological change lowers the

mitigation costs considerably; hence, even ambitious

climate protection goals can be achieved without

large negative impacts on welfare. Moreover, we will

rank the mitigation options according to their

potential for reducing the overall welfare losses of

climate policy.

In the next section, we review the literature on

endogenous technological change. Section 3 details

the structure of our model, focusing in particular on

the incorporation of endogenous technological

change. Section 4 discusses the calibration of the

model. In Section 5, we present simulation results and

discuss the role of endogenous technological change

in climate protection. Finally, Section 6 outlines some

caveats of the analysis, and future challenges.
2. Integrated assessment models and endogenous

technological change

In this section, we review empirical findings

suggesting investment decisions as a primary cause

of technological change. We also discuss current

efforts in modelling technological change endoge-

nously. These two themes are the foundation for our

own modelling effort, presented in the next section.

2.1. Technological change as an outcome of invest-

ment decisions

It is a robust empirical finding that labour

productivity grew faster than overall energy produc-

tivity over the last 200 years. This finding, albeit

increasingly recognized as a stylized fact of economic

growth, is not very well explained by economic

models. One possible explanation of biased growth of

factor productivities views technological change as an

outcome of investment decisions. Investments, in

turn, are viewed as reactions to scarcity of any given

resource (such as labour, energy or capital) and a

means to overcome these scarcities (Ruttan, 2001).

Historically, entrepreneurs have invested more in

increasing labour productivity because labour was a

scarcer resource than energy. Union power, the

welfare state and decreasing rates of population

growth have enabled workers to limit their labour

supply and to increase the wage rate.

In contrast to these dynamics in labour markets,

exhaustible resources such as oil, coal and gas have

become abundant and relatively cheap over the last

200 years, because technological progress in the

exploration sector greatly reduced the marginal costs

of using fossil fuels (Ruttan, 2001; Rogner et al.,

1993). In the foreseeable future, fossil fuels will

remain plentiful. Hence, the return on investment in

renewable energy and in energy efficiency improve-

ments will be too low to attract investments (see

Bauer et al., in press). Our results imply that

availability of relatively cheap exhaustible resources

increase the opportunity costs of climate protection

remarkably. Models ignoring these dynamics do not

provide an appropriate framework for exploring the

welfare implications of climate policy.

However, there is an important effect that reduces

the opportunity costs of climate policy. It is a well-
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known but often omitted fact that within the renew-

able energy sector, costs per unit of installed capacity

(in kW, for instance) decrease with the cumulative

installed capacity. The IEA (2000) report emphasizes

that there is overwhelming empirical support for such

learning-by-doing effects in all fields of industrial

activity, including the sectors that transform or use

energy. With every doubling of cumulative capacity or

cumulative energy production, the costs fall by a

constant fraction of the original costs. According to

WEA (2000, 16), typical learning rates within the

renewable energy sector are about 20% for photo-

voltaic (referring to cumulative installed capacity),

18% for wind energy (referring to cumulative installed

capacity) and about 15% for electricity from biomass

(referring to cumulative energy production; IEA,

2000, 21). It is open to debate whether learning-by-

doing has the potential to outweigh technological

progress in the exploration and extraction of coal, oil

and gas. The models used in integrated assessment

exhibit a broad range of answers.

To conclude, the net effect of technological change

on the costs of climate protection is ambiguous. We

believe that considering investment decisions as an

engine of technological change is essential to a

realistic understanding of these costs. In the next

section, we give a short overview of ways in which

technological change is incorporated in integrated

assessment models.

2.2. Incomplete understanding of endogenous tech-

nological change

Nordhaus (2002) introduces the R&DICE model to

enhance the global DICE model with induced

technological change. He compares two cases. In the

first, a carbon tax induces research and development

(R&D) in the energy sector, leading to a decrease in

carbon intensity (CO2 per GDP). In the second case,

the carbon tax induces a reduction in output while the

carbon intensity is reduced exogenously at a constant

rate. Nordhaus shows that improving energy effi-

ciency through R&D investments is less efficient in

reducing greenhouse gas emissions and minimizing

welfare losses than output reduction induced by a

carbon tax. It seems that this result is highly sensitive

to the chosen parameters and therefore has only

limited explanatory power in explaining how techno-
logical change can be induced by climate policy.

Buonanno et al. (2003) introduce technological

change into the RICE model. The model comprises

only one R&D sector, whose accumulated stock has

two effects. In contrast to R&DICE, R&D invest-

ments not only reduce carbon intensity but also create

an external effect increasing the total productivity of

the whole economy. Therefore, economic growth and

emissions can only be decoupled if the parameters are

chosen in such a way that the reduction in carbon

intensity overcompensates the growth-enhancing

effect of R&D investments.

In his model ENTICE, Popp (2004a) overcomes

these shortcomings by including a representative

energy technology whose efficiency parameter can

be improved by R&D investments without further

externalities. In a refined version – called ENTICE-

BR – Popp (2004b) includes a backstop technology.

He shows that introducing a backstop technology has

greater potential for reducing the costs of climate

protection than the improvement of energy effi-

ciency. However, these results are derived using an

exogenous time path for total factor productivity—

not a very convincing assumption because the time

path of total factor productivity is determined by

investment decisions. Moreover, the resource extrac-

tion sector, albeit crucial for determining the

opportunity costs of climate protection, is omitted

completely.

If learning-by-doing is incorporated in integrated

assessment models, the effect is unambiguous. All

models that include learning-by-doing find large

welfare gains from induced technological change

(Chakravorty et al., 1997; Goulder and Mathai,

2002; Manne and Richels, this volume; Gerlagh

and van der Zwaan, 2003). This result is confirmed

by many bottom-up energy system models—learn-

ing-by-doing within the renewable energy sector

reduces the costs of meeting specific concentration

targets (Manne and Barreto, 2004; Kypreos and

Barreto, 2000).

The existing studies clearly show that learning-by-

doing in backstop technologies reduces macroeco-

nomic mitigation costs. The studies reviewed in this

section also show that there is some conceptual

ambiguity in the potential pay-offs of R&D in

enhancing labour and energy efficiency. Moreover,

to our knowledge, there is no modelling effort
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evaluating the impact of learning-by-doing and R&D

investments in different sectors in one coherent

framework. In this paper, we evaluate how the entire

portfolio of mitigation options performs in reducing

welfare losses (i.e. the opportunity costs of climate

protection policy) in comparison with isolated miti-

gation options.
3. The structure of MIND

The model MIND represents an improvement

over past efforts to incorporate endogenous techno-

logical change in three respects. First, it includes

separate R&D sectors for both labour and energy

efficiencies. Second, it differentiates the physical

capital stock in the energy sector, which allows us to

study the internal dynamics of this sector. Third, it

enables a comparison of all relevant mitigation

options: energy efficiency, renewable energy sources,

and Carbon Capturing and Sequestration (CCS).

CCS has rarely been assessed together with the

other mitigation options within macroeconomic

integrated assessment models. At its current stage

of development, the model treats the world as one

unit, with no regional differentiation. While this

prevents us from examining the effects of interre-

gional trade, this is not an issue that we are

exploring at this stage. Fig. 1 depicts the general

structure of the model, and Appendix A describes the

parameters used. In the remainder of this section, we

describe the model structure and justify our choices of

variables and functional forms.

3.1. Welfare function and control variables

Like many other integrated assessment models,

MIND maximizes an intertemporal, aggregated social

welfare function (Eq. (1)).

W ¼
Z t2

t1

e�q t�t1ð ÞL tð Þ ln C tð Þ
L tð Þ dt; ð1Þ

Max
IA;Iren;Ires;Ifos;RD

A;RDB
W !

The utility per period is determined by per-capita

consumption C(t)/L(t), which is discounted at the rate
of pure time preference q. We assume inelastic labour

supply given by an exogenous population scenario.

The former implies that there is no trade-off between

labour and leisure time. The latter neglects the impact

of an ageing population on growth, saving rates and

innovation dynamics. While it seems obvious that an

ageing population ought to have a potentially large

impact on the costs of climate protection, we leave

this aspect to other simulation studies. Population

growth follows the SRES B2 scenario (Nakicenovic

and Swart, 2001), whereby the world population

reaches 10.4 billion people in the year 2100, roughly

stabilizing at this level. We also assume that all factors

used in production are fully utilized. For the remain-

der of this paper, time indices are omitted if no

confusion results from so doing.

The control variables are:

1. investment in the economy-wide physical capital

stock (IA);

2. investment in the renewable energy sector (Iren);

3. investment in the fossil resource extraction sector

(Ires);

4. investment in the fossil energy sector (Ifos);

5. investment in R&D improving labour productivity

(RDA);

6. investment in R&D improving energy productivity

(RDB).

The costs of Carbon Capturing and Sequestration

(CCCS) and of energy production from traditional non-

fossil energy sources (CTNF), which includes nuclear

energy, large hydropower and traditional biomass, are

included as exogenous paths. The CCS sector will be

endogenized in future studies. The model fulfils a

macroeconomic budget constraint (2) at every point in

time.

YA ¼ C þ IA þ Iren þ Ires þ Ifos þ RDA þ RDB

þ CCCS þ CTNF 2ð Þ

As Eq. (2) shows, the economy produces one generic

output (YA) that can be used for consumption (C) or

as a capital good for specific purposes in the different

sectors of the economy.

For the sake of readability, we use continuous

formulae in this section. In the numerical implemen-

tation, they are transformed into difference equations.
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For that purpose, the intertemporal welfare function is

optimized for the period 1995 to 2300. The time step,

Dt, is 5 years.

3.2. Macroeconomic production function

We assume a macroeconomic production function

with a constant elasticity of substitution (CES)

between the three factors used in production (see

Eq. (3)) – labour (LA), capital (KA) and energy (E).

The substitution parameter (qA) is determined by the

elasticity of substitution (rA). We choose a value

greater than zero and less than one (0brA=1/

(1+qA)b1) using the plausible assumption that all

factors are essential in production, hence none can be

fully substituted. Consequently, a Cobb–Douglas

function would not be appropriate for analysing the

macroeconomic aspects of energy use, because it

allows energy to be asymptotically replaced by capital

stock.

YA ¼ UA nLAðATLAÞ
�qA þ nEAðBTEÞ

�qA
�

þ nKA ðKAÞ�qA
�1=qA ð3Þ

In most integrated assessment models, technological

change is parameterized by total factor productivity,

which enhances the productivity of all production

factors. If a CES function is used, Harrod-neutrality

is no longer compatible with a constant growth rate

of total factor productivity. Therefore, we distinguish

efficiency parameters for labour and energy. Firms

have to choose the growth rate of labour productivity

(A) and energy efficiency (B). The parameter UA is

solely used for scaling the inputs to the dimension of

the output. It is not assumed here that UA is

increasing in time. This way, our model allows

analysis of a potential bias in technological pro-

gress—firms can increase labour productivity more

than energy productivity and vice versa. The

distribution parameters (nA
L, nA

E and nA
K) determine

the relative factor shares of labour, energy and

capital respectively.

In Eq. (4), the process of capital accumulation is

described with a constant depreciation rate (dA
K), as is

common in economic growth theory.

K̇KA ¼ IA � dKAKA; with KA t ¼ t1ð Þ ¼ K0
A ð4Þ
3.3. Energy system

According to Eq. (5), at every point in time, the

energy supply E comprises three components:

E ¼ Eren þ Efos þ ETNF ð5Þ

As Fig. 1 shows, energy can be delivered from fossil

fuels (coal, oil and gas), from modern renewable

energy sources (e.g. wind, biomass, solar and geo-

thermal energy) and from traditional non-fossil energy

sources (e.g. nuclear energy, traditional biomass and

large hydropower).

For energy production from the traditional non-

fossil energy sector ETNF, we adopt an exogenous

scenario from WBGU (2004), in which nuclear

energy is phased out by 2050; the scenario does

not include nuclear power as a backstop technology

because of its unresolved problems, such as the

deposition of nuclear waste and nuclear proliferation.

In the scenarios presented in this paper, the tradi-

tional non-fossil energy sector only plays a marginal

role in future energy production. Its total share

declines continuously from approximately 14% in

1995, depending on the increase in total primary

energy consumption.

3.3.1. Fossil energy generation sector

As Eq. (6) shows, secondary energy (Efos) is

produced from two factors: primary energy from

fossil fuels (PEfos) and capital (Kfos). We assume that

labour and land are not limiting factors in producing

energy from fossil fuels. The production of secondary

energy is modelled by a CES function with a

substitution parameter (qfos) and a total factor

productivity Ufos that describes the conversion effi-

ciency of the energy system. This latter parameter is

held constant over time. The parameter C is a scaling

factor.

Efos ¼ UfosðnPEfosðCPEfosÞ�qfos þ nKfosK
�qfos

fos Þ1=qfos ð6Þ

K̇K fos ¼ Ifos � dKfosKfos; with Kfos t ¼ t1ð Þ ¼ K0
fos ð7Þ

PEfos ¼ R=M ð8Þ

In Eq. (7), capital accumulation in the fossil fuel

system is modelled analogously to capital accumu-
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lation in the macroeconomy. In Eq. (8), primary

energy consumption equals the amount of extracted

fossil resources (R—in units of extracted carbon)

divided by the carbon intensity M. As MIND does not

resolve different fossil fuels, we have adopted the

fossil fuel mix scenario specified in WBGU (2004) to

prescribe M exogenously. The scenario assumes that

over the next century, coal and oil will be partially

substituted by gas, leading to a decrease in carbon

intensity of 20% (WBGU, 2004). This scenario has

been constructed for the case of an ambitious climate

protection goal as assumed in this paper. In the

further development of MIND, it would be desirable

to derive the change in the fuel mix endogenously,

enabling firms in the power generation sector to

choose the fuel carriers according to their relative

prices, which will be influenced by climate protec-

tion goals.

3.3.2. Fossil fuel extraction sector

The extraction of fossil fuels determines the

opportunity costs of renewable energy production.

If technological progress in this sector is high, and

secondary energy derived from coal, oil and gas

becomes less expensive, then climate protection

policies will become a more costly option. Eq. (9)

calculates the amount of resources that can be

extracted by a specific amount of capital. It

assumes that fossil resources are only extracted by

capital, and no other non-reproducible input is

needed. This assumption can be justified by the

fact that this sector is indeed highly capital

intensive. In order to calculate the average produc-

tivity of capital jres, two opposing effects have to

be analysed, as shown in Eq. (10). jres is

determined by a scarcity effect (jres,s) and a

learning-by-doing effect (jres,l).

R ¼ jresKres ð9Þ

jres ¼ jres;sjres;l ð10Þ

The scarcity effect is caused by increasing marginal

costs of extraction of coal, oil and gas; marginal

costs increase because coal, oil and gas are

exhaustible resources. The learning-by-doing effect

improves capital productivity as cumulative produc-

tion increases. In MIND, we do not assume – as
opposed to many other integrated assessment

models – that the fossil fuel sector has no potential

for learning-by-doing. The time path of the mar-

ginal costs of extracting fossil fuels emerges from

the interplay between the learning-by-doing effect

and the scarcity effect.

3.3.2.1. The scarcity effect. The marginal extraction

costs (Cres
mar ) decrease capital productivity according

to Eq. (11). The accumulated amount of extracted

resources (CRres; see Eq. (13)) increases the marginal

extraction costs (see Eq. (12); the equation and its

parameters are adopted from Nordhaus and Boyer,

(2000, 54)). The rationale behind the functional form

is an optimal sequence to exploit deposits — from

low-cost deposits to more and more expensive fossil

fuel reserves. The parameter v1 specifies the present-

day marginal extraction costs. The parameter v2 scales
the increase in marginal costs, while the parameter v4
determines its non-linear acceleration. The parameter

v3 refers to the remaining fossil fuel base as projected

today. It is estimated to contain around 3500–6000

GtC (Rogner, 1997). Moreover, Eq. (12) in combina-

tion with Eq. (13) reproduces the technological

assessment of Rogner et al. (1993) and Rogner

(1997). He shows that marginal extraction costs

increase with the cumulative amount of extracted

fossil fuels. The Rogner curve implicitly assumes that

there is technological progress within the extraction

sector of 1% which increases the amount of carbon

available.

jres;s ¼
v1
Cmar
res

ð11Þ

Cmar
res ¼ v1 þ v2

CRres

v3

�v4
�

ð12Þ

CRres tð Þ ¼
Z t

t1

R t Vð Þdt V;

with CRresðt ¼ t1Þ ¼ 0

ð13Þ

3.3.2.2. The learning-by-doing effect. We assume that

the capital productivity of the extraction sector can be

increased by learning-by-doing. This is expressed by
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Eq. (14), which determines the change in the

productivity factor jres,l which depends on the ratio

of actual resource extraction to initial resource

extraction. The factor bres,l (V1) in Eq. (14) dampens

the learning-by-doing effect. In the case of bres,l=1,

learning-by-doing would only be determined by the

cumulative resource extraction, as can be seen by

integrating Eq. (14). In the case of bres,lb1, energy

production also depends on the time path of the

extracted fossil fuels: a rapid increase in extraction

induces a loss in productivity gains relative to the

same increase in extraction spread over a longer time

period.

j̇jres;l ¼
jres;l

sres;ljmax
res;l

�
jmax
res;l � jres;l

��� Eres;l

E0
res;l

�bres;l

� 1

�
;

with jres;l t ¼ t1ð Þ ¼ j0
res;l ð14Þ

The term ((Eres,l /Eres,
0 )b res,l�1) becomes negative if

actual resource extraction drops below the initial

amount of extraction. This means that productivity

can decrease if actual resource extraction falls

below a critical limit, because part of the accumu-

lated knowledge will depreciate. Thus, if extraction

of fossil fuels is phased out, capital productivity

could drop below the initial value jres,l
0 . If a climate

protection policy were to lead to a phase-out of

fossil fuel extraction, some of the current knowl-

edge about resource extraction would then cease to

exist.

Maximum productivity in the extraction sector is

limited at the value jres,l
max . Eq. (14) shows that the

increase in productivity approaches zero as produc-

tivity itself approaches its maximum value. The time

scale sres,l determines the speed of learning in the

extraction sector.

Eq. (15) describes capital accumulation in the

extraction sector.

K̇K res ¼ Ires � dKresKres; with Kres t ¼ t1ð Þ ¼ K0
res ð15Þ

3.3.3. Renewable energy sector

The learning-by-doing effect is expressed in Eq.

(16), where the costs per unit of output decrease

approximately with the learning rate lr if the

cumulative installed capacity is increased by 1%.
The learning rate is directly related to kren according

to Eq. (17).

cost tð Þ ¼ cost t0ð Þ
�

CKap tð Þ
CKap t0ð Þ

��kren

ð16Þ

kren ¼ � ln 1� lrð Þ
ln2

ð17Þ

Eq. (16) describes the fundamental form of cost

reduction due to learning-by-doing as it is observed

for various renewable energy technologies. However,

it is by no means clear what kind of investment

decisions and market conditions are responsible for

such a stable relationship between cost reduction

and cumulative installed capacity, and how this

relationship for individual technologies affects

overall learning-by-doing in the renewable energy

sector.

We have used capital productivity as the vehicle

to link learning-by-doing effects with investment

decisions in the renewable energy sector. We assume

that renewable energy is only produced by capital,

which is justified if neither labour nor land is a

limiting factor in production. Obviously, land could

turn out to be a limiting factor, either globally or in

specific regions, for several of the renewable energy

options, such as biomass, wind, tidal or solar.

Considering the limits to renewable energy posed

by land availability and suitability would require

examination of regional climate conditions and the

potential to store energy for long periods of time or

transmit it over long distances. This is beyond the

scope of the paper.

Due to learning-by-doing, capital productivity in

the renewable energy sector grows with accumu-

lated installed capacity. We assume that its increase

is inversely proportional to the decrease in costs

for a unit of installed capacity associated with

increasing cumulated capacity (see Eq. (18)). In the

long run, we assume that productivity saturates at a

maximum value 1/cfloor. Far from this saturation

value, the decrease in the reducible part cren dominates

the increase in capital productivity. The change in cren
between two subsequent time steps is described in Eq.

(19). It is easy to see that for bren=0, Eq. (19) can be

directly derived from the fundamental form of cost
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reduction due to learning-by-doing as given in

Eq. (16).

jren tð Þ ¼ 1

cren t Vð Þ þ cfloor
ð18Þ

cren;t � cren;t�1 ¼ cren;0CKap
lren

ren;0

� CKap
�lren

ren;t � CKap
�lren

ren;t�1

� 	

�
�
CKapren;t�1

CKapren;t

�bren

;

with cren t ¼ t1ð Þ ¼ cren;0 ð19Þ

We have chosen lren as the learning factor and

1NbrenN0 in order to capture path dependence of the

learning-by-doing effect on investment decisions. The

factor bren in Eq. (19) induces a penalty for a rapid

expansion of cumulative capacity between two sub-

sequent time periods. The rationale behind this

assumption is that the learning effects are reduced if

the installed capacity is increased very fast. For

example, this effect has been observed in the German

wind energy sector, which has experienced a phase of

rapid growth because of public subsidies (Neij et al.,

2003). However, further research is needed to estimate

the penalty parameter.

It is important to note that interaction between the

learning parameter lren and the path-dependent

penalty bren gives rise to the observed relationship

between costs per unit capacity and cumulated

installed capacity described by Eq. (19).

Within the renewable energy sector, we assume a

vintage structure of capital. As Eq. (20) shows, the

capacity installed (Kapren) in a given year tV is derived
by multiplying the amount of investment Iren(tV) by

the productivity jren(tV)=1/(cren(tV)+cfloor) at tV. Thus,
the productivity of an investment depends on its age.

Learning-by-doing has an impact only on the most

recently installed capital.

Kapren tð Þ ¼
Z t

t0

x t � t Vð Þjren t Vð ÞIren t Vð Þdt V ð20Þ

Eren tð Þ ¼ FLH renTKapren tð Þ ð21Þ

CKapren ¼
Z t

t0

Kapren t Vð Þdt Vþ CKapren;0 ð22Þ
As the capital stock depreciates, only a proportion

x(t�tV) of the vintage at tV is available for energy

production (Eq. (20)) at time t. By multiplying the

installed capacity by the full load hours (FLH), we

get the amount of energy Eren(t) which can be

produced within the renewable energy sector (see

Eq. (21)). The cumulative installed capacity is derived

from Eq. (22).

3.4. R&D investments

As in endogenous economic growth models, we

introduce an R&D sector in order to model the

improvement of labour and energy efficiency. Eqs.

(23) and (24) show that we assume the same

functional form for both sectors. According to Eq.

(2), the R&D sectors are financed from the generic

output that is produced with a specific capital, labour

and energy intensity. Implicitly, we assume that the

R&D sector shares the same capital and energy

intensity as the aggregated output, a conservative

assumption given that some endogenous economic

growth theorists argue that the R&D sector is less

capital and energy intensive than the economy as a

whole. Because of this assumption, the R&D sector is

at the same time a growth engine that does not induce

additional energy consumption. Climate protection

would induce a reallocation of resources from energy-

intensive sectors to the R&D sector. Therefore, in the

long run, climate policy could enhance the growth rate

of the economy because the R&D sector can grow

without inducing additional energy demand.

The factors aA
RD and aB

RD in Eqs. (23) and (24)

parameterize the productivity of the R&D invest-

ments. The parameters cA and cB are understood as

the bstepping-on-toesQ effect, which decreases the

marginal productivity of R&D due to unproductive

work, unproductive patent races and unproductive

scientists.

Ȧ

A
¼ aRDA

RDA

YA

�cA

; with A t ¼ t1ð Þ ¼ A0

�
ð23Þ

ḂB

B
¼ aRDB

RDB

YA

�cB

; with B t ¼ t1ð Þ ¼ B0

�
ð24Þ

MIND calculates the social returns to R&D invest-

ments, implying that the intertemporal spillovers are



O. Edenhofer et al. / Ecological Economics 54 (2005) 277–292286
already internalized. In contrast to the R&DICE

(Nordhaus, 2002) model, we have not tried to

approximate the extent to which markets fail to

achieve the social optimal returns on investment. In

MIND, we derive a first-best solution.

3.5. Carbon Capturing and Sequestration (CCS)

In this analysis, the amount of carbon to be

sequestered, and the related costs of capturing it, are

given exogenously. The CCS scenario employed here

has been adopted from WBGU (2004): over the next

century, 200 GtC will be captured and sequestered.

The amount of CCS increases up to 2050 and then

declines until the end of the 21st century. Neither the

time path of the amount of CCS nor the cost path is

intertemporally optimal.

There is a remarkable lack of data for calibrating

an endogenous model of CCS. We have assumed

an energy penalty of 25% for capturing the carbon

in geological formations and no leakage rate of

carbon from the deposits. No reliable and valid

empirical estimates of leakage rates from different

geological deposits are available. We refer to our

study that assesses the sensitivity of gross world

product (GWP) losses and the amount of carbon to

be sequestered to the leakage rate and the learning

rate of the renewable energy sector (Bauer et al., in

press). Investments in CCS as well as the energy

penalty and the leakage rate are the crucial factors

determining whether Carbon Capturing and Seques-

tration are an option to buy time (Edenhofer et al.,

in press). Nevertheless, the inclusion of the

exogenously assumed carbon-capturing scenario

already shows that CCS can be an important

option.

3.6. Climate module

MIND includes a simple climate model that

translates the anthropogenic emissions of carbon

dioxide and sulphate aerosols into a change in global

mean temperature. The emission of sulphates is

directly linked to the combustion of fuels in the

fossil energy sector. In addition, the model takes into

account an exogenous scenario for the radiative

forcing of greenhouse gases other than CO2. We use

a simple energy-balance model to calculate the
response of global mean temperature to a perturba-

tion of the radiation balance at the top of the

atmosphere due to anthropogenic emissions of

greenhouse gases. For the basic model equations,

see Petschel-Held et al. (1999) and Kriegler and

Bruckner (2004). The model is tuned to reproduce

the short-term (100-year) behaviour of the climate

model MAGICC satisfactorily. MAGICC was used

as an emulator of complex atmosphere–ocean gen-

eral circulation models as well as a scenario

generator in the Third Assessment Report (TAR) of

the IPCC (Cubasch and Mehl, 2001). The climate

sensitivity of the model is set to 2.8 8C.
4. Calibration

We have chosen parameter values within plausible

ranges as suggested by the empirical literature. This

does not guarantee, however, that the whole system

exhibits sensible properties. Therefore, we have

ensured that MIND is able to reproduce the so-

called stylized facts of economic growth given the

chosen parameter setting. According to Kaldor

(1963), labour productivity grows at a constant rate,

capital productivity remains constant over time, and

the income shares of labour and capital are constant

in the steady state.

Unfortunately, these facts are not sufficient to

ensure that the model has sensible properties,

because energy as an input factor is completely

neglected. Therefore, we have included an additional

stylized fact that emerges from the macroeconomic

growth pattern of the last two centuries: over the

last 200 years, the growth rate of labour productiv-

ity (Y/L) exceeded the growth rate of energy

efficiency (Y/E). This benchmark is reproduced by

MIND for calibration.

We are convinced that this set of stylized facts is

not comprehensive. A better understanding of the

stylized facts on a sector-specific level is needed.

Moreover, it would be necessary to develop a

calibration procedure that ensures that the behaviour

of the model is in accordance with a predefined

comprehensive data-set. Therefore, a satisfactory

calibration of MIND needs further methodological

development. In the following, we justify our choice

of parameters sector by sector.
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4.1. Aggregate production sector

The CES production function and calibration of its

parameters play a central role in the model formula-

tion. The dispute about the elasticity of substitution

between production factors – especially between

capital and energy – has been going on for some

decades. In a review of several studies, Thompson and

Taylor (1995) found that the average substitution

elasticity identified in studies based on the so-called

Allen partial elasticity of substitution between energy

and capital is 0.17, while the so-called Morishima

elasticity of substitution is 0.76 on average. We favour

Morishima’s concept, because Allen’s concept is not

applicable to a production function with more than

two production factors (Blackorby and Russell, 1989).

In some integrated assessment models, the elasticity

of substitution between capital and energy is 0.4 for

developed countries and 0.3 for developing countries

(Manne et al., 1995). We have chosen an overall

elasticity of substitution for all three factors of

rA=0.4. We have set the ratio of the distribution

parameters nA
L:nA

E:nA
K=66:4:30 equal to the ratio of

the initial factor shares in 1995. The values of the

other parameters UA, A0 and B0 are chosen to

reproduce the initial factor shares under the additional

requirements for the initial period 1995 that YA=24.6

trillion $US, LA=5.7 billion people, E=271 EJ and

KA=49.2 trillion $US (adopted from the SRES

scenarios; see Nakicenovic and Swart, 2001). These

values correspond to a capital coefficient for industrial

capital of K/Y=2, which is adopted from the Penn

World Tables 6.1 and the OECD database on capital

formation. The aggregate capital stock is measured in

monetary units. In order to aggregate heterogeneous

capital goods in an index bcapitalQ, it is necessary to

assume a regular economy, i.e. the price-weighted

average of capital stock increments across steady-state

equilibria always decreases with an increase in the

interest rate (Burmeister, 1980). In the work pre-

sented, we make this regularity assumption.

4.2. Fossil energy generation sector

For the production function of the energy

generation sector, we set the ratio of the distribu-

tion parameters to nfos
PE:nfos

K =50:50 and the elasticity

of substitution to rfos=0.3. The parameters Ufos and
C are calibrated to reproduce the following data in

1995: PEfos=320 EJ contained in R=6.4 GtC fossil

fuels, and secondary energy Efos=231 EJ. The

initial capital stock is assumed to be Kfos
0 =6 trillion

$US.

4.3. Fossil fuel extraction sector

Following Nordhaus (2002), the marginal extrac-

tion cost curve is parameterized by v1=113 $US/tC,

v2=700 $US/tC, v3=3500 GtC andv4=4. The initial

resource extraction is R=6.4 GtC (SRES), assumed

to be produced by a capital stock of Kres
0 =5 trillion

$US. This allows us to compute jres,l(t=t1). We

assume that jres,l
max can achieve twice the initial

value.

4.4. Renewable energy sector

In order to estimate the initial vintage structure of

capital in the renewable energy sector, we assume a

total cumulative amount of modern renewable energy

production until 1995 of 40 EJ and a growth rate of

20% p.a. for renewable energy production from 1960

to 1995 (WEA, 2000). This leads to renewable

energy production of 8 EJ in 1995. In order to

calculate the capacity that has to be installed in each

period to achieve 8 EJ in 1995, we assume a

depreciation scheme for capital (weights x; see

Appendix A) and constant FLH of 2190 h per year.

In accordance with these assumptions, we calculate a

cumulative capacity in 1995 of 411 GW. The learning

curve is determined by two initial conditions—the

cumulative installed capacity in 1995 and the invest-

ment costs of ~1200 $US/kW (based on Nakicenovic

and Riahi, 2002). These investment costs consist of

floor costs and a reducible part. As a reasonable

number for the floor investment costs, we have chosen

500 $US/kW (also based on Nakicenovic and Riahi,

2002). Therefore the reducible part amounts to ~700

$US/kW. We set the learning parameter lren to 15%.

Because of a lack of empirical studies, we set

parameter bren to 0.4, rather than calibrating it.

4.5. R&D sector

The calibration of the initial values of A0 and B0 is

discussed above in the context of the industrial
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production function. The parameters ai
RD for both

R&D sectors are calibrated as follows. When 1% of

GWP is spent on energy R&D, the energy efficiency

parameter increases by 2.25%; when 2.5% of GWP is

spent on labour R&D, the labour efficiency parameter

increases by 2%. The parameters ci are estimated to

be 0.1 and 0.05 for energy and labour R&D

respectively. Estimates of the influence of R&D on

productivity growth are usually based on Hicks-

neutral technological progress (Griliches, 1998, chap-

ters 9, 10 and 12). These estimations cannot be used to

calibrate the R&D sector. Therefore, we have adopted

parameter values for the improvement in labour

productivity (see Appendix A) from our own prelimi-

nary calculations.
Fig. 2. Energy mix (a) and investment shares of GWP (b) in the CPP

scenario.
5. Welfare implications of technological change

In this section, we present the results of an

intertemporal cost-effectiveness analysis. We study

the optimal policy that achieves a predefined safe-

minimum standard for the climate at the least cost and

compare different assumptions about available tech-

nology options.

The safe-minimum standard is defined as follows:

in order to avoid dangerous climate change, the

increase in global mean temperature (DGMT) and its

rate (DGMT/decade) are limited to 2 8C and to 0.2 8C/
decade respectively. This is in accordance with a

bguardrailQ on climate change that was put forward by

the German Scientific Advisory Board on Global

Change (WBGU) in a special report for the first

conference of the parties to the UNFCCC in Berlin

(WBGU, 1995). Since then, the so-called WBGU

climate window has been a controversial issue. Some

regard it as being too ambitious from an economic

point of view, while others claim that it is not strict

enough to avoid dangerous anthropogenic interference

with the climate system. In any case, the WBGU

window provides an important example of a climate

protection goal that can be used to study the impact of

technological change on reducing emissions and

associated GWP losses.

The starting point of our analysis is a comparison

of a business-as-usual scenario (BAU) with a climate

protection scenario (CPP). The CPP scenario respects

the WBGU climate window which is comparable to
stabilizing the concentration of CO2 at around 420

ppm. Hence, the CPP scenario optimizes overall

welfare subject to the climate window.

Fig. 2a shows that in the CPP scenario, the

constraint of achieving the climate protection goal

induces a diffusion of renewable energy technologies

after 2050 which is preceded by a shortage of

secondary energy production and therefore by a

substantial improvement in energy efficiency. Due to

learning-by-doing, the opportunity costs of renew-

able energy technologies decrease and their share in

the global energy mix increases substantially after

2050. Fig. 2b reveals that the changed energy mix is

driven by a change in investment strategy. The share

of investments in the renewable energy sector

increases considerably after 2020 because the climate
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protection goal reduces the social return on invest-

ment within the fossil fuel sector and increases it

within the renewable energy sector. It is noteworthy

that bearly actionQ in climate policy in MIND does

mainly refer to a change in investment strategy and

not to an increase in the market share of renewables

or emission reductions.

Fig. 3 shows the impact of different mitigation

options on welfare losses, i.e. the relative difference in

welfare between BAU and scenarios in which one or

more mitigation options are activated. Economic

theory convincingly suggests that welfare changes

should be measured in terms of per-capita consump-

tion and not GWP, yet in many integrated assessment

studies GWP is used as a proxy for welfare. We

display and discuss both measures to maintain

compatibility with the integrated assessment literature.

In the first scenario (CPP), all mitigation options

are available and are used according to intertemporal

cost-effectiveness. Relative to the BAU path, the per-

capita consumption losses and the GWP losses are

about 1.13% and 0.81% respectively.

In the second scenario (EE), only the option to

improve energy efficiency is switched on. If only

investment in energy efficiency is possible, the

discounted GWP losses reach about 6.5% (see

Fig. 3). This indicates that improvement of energy

efficiency becomes quite costly as a major mitigation

option in the long run. In this scenario, per-capita

consumption losses are lower than GWP losses:

investment expenditures are reduced because their
Fig. 3. Cumulated GWP and per-capita consumption losses for

different mitigation options, discounted at a rate of 5%.
return – measured in terms of per-capita consumption

– is substantially lowered by climate protection, and

therefore consumption can be increased.

In the third scenario (REN), only the backstop

option with learning-by-doing is enabled. Fig. 3

shows that the substitution of fossil fuels by renew-

able energy is the most important single option for

reducing GWP and consumption losses. If the

substitution of fossil fuels by renewables can enter

the portfolio of mitigation options, welfare losses can

be reduced to a degree that makes climate protection

economically viable.

In the fourth scenario (CCS) , only Carbon

Capturing and Sequestration is switched on. This

exhibits some potential for reducing the welfare

losses. It turns out that CCS is an option that is used

temporarily, with the benefit of postponing the trans-

formation of a fossil-fuels-based to a renewables-

based energy system, and consequently allowing for a

smoother transition (not shown).

In the fifth scenario (NONE) , none of the

mitigation options is activated, which leaves only

factor substitution (which is available per se) as a

means to conform to the climate window. Time paths

in the renewable energy sector and in the R&D

energy sector are prescribed to follow the BAU

scenario, i.e. we assume that investment decisions in

these sectors will not be changed by a climate

protection goal. The CCS option is not available

here; firms only have the option of substituting

energy by labour and capital.

These results confirm to some extent those of Popp

(2004b), who concludes from the ENTICE-BR model

that adding a backstop technology (without learning-

by-doing) has the largest potential for reducing the

welfare losses of climate protection. In the scenarios

above, the impact on GWP is greatest for the backstop

technology, followed by CCS and then by energy

efficiency improvements. A fortiori, a backstop

technology with learning-by-doing further reduces

the GWP losses and welfare losses, measured in terms

of per-capita consumption, of climate protection.
6. Conclusion

Calculations with the MIND model show that

technological change in different sectors reduces the



Welfare

function

q 0.01 Pure time preference rate

t0 1960 First year of calibration

t1 1995 First year of optimization

t2 2300 Last year of optimization

Dt 5 Time step [years]

Production

function

rA 0.4 Overall elasticity of substitution

of production factors

nA
L 0.66 Distribution parameter for labour

nA
K 0.3 Distribution parameter for capital

stock

nA
E 0.04 Distribution parameter for energy

dA
K 0.05 Capital stock depreciation rate

KA
0 49.2 Initial capital stock [trillion $US]

R&D

function

aA
RD 0.024 Parameterization of R&D

investments in labour

cA 0.05 Stepping-on-toes effect for labour

aB
RD 0.036 Parameterization of R&D

investments in energy

cB 0.1 Stepping-on-toes effect for energy

Fossil

energy

sector

rfos 0.3 Elasticity of substitution

nfos
PE 0.5 Distribution parameter for primary

energy

nfos
K 0.5 Distribution parameter for capital

stock

dfos
K 0.05 Capital stock depreciation rate

Kfos
0 6 Initial capital stock [trillion $US]
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costs of climate protection substantially. Technolog-

ical change is triggered by investments in sector-

specific capital stocks. Reallocation of investment,

especially in the renewable energy sector and in the

CCS sectors, enables an economy to successfully

implement ambitious climate protection goals while at

the same time guaranteeing stable economic growth.

Backstop technology has a large impact on welfare

losses. Emission reductions imply much more severe

welfare losses in a situation without backstop tech-

nology and without learning-by-doing, because the

climate protection goal can only be achieved via a

reduction in economic output and by enhancing

energy efficiency. In the long run, improving energy

efficiency is too costly to be an exclusive option.

Limiting technological change to R&D investments

that improve only the efficiency parameters, as is done

in the top-down macroeconomic models reviewed in

this paper, is therefore inappropriate.

The results indicate that a better understanding of

technological change should be a priority on the

research agenda. In particular, it is open to debate

whether the concept of a blearning rateQ can serve as a

valid predictor of future development. More empirical

work, in cooperation with engineers, may enhance the

understanding of the underlying processes, such as the

interplay between path dependencies and learning-by-

doing, as well as learning-by-doing at the micro and

macro levels. We think that the MIND model

presented here is an important step forward in

assessing mitigation costs.

However, as it currently stands, the MIND model

has an important limitation: it is designed as a social

planner model. If the conditions of the welfare

theorems are fulfilled, equivalence exists between

social planner and market solutions (Becker and

Boyd, 1997, 213–241). There are at least two reasons

why the MIND model does not fulfil these conditions:

first, the private return on R&D investment diverges

from the social return on R&D investment; second,

there are increasing returns to scale within the energy

sector because of learning-by-doing. Decentralized

agents in the renewable energy market are not able to

realize the socially optimal rate of cost reduction

because learning-by-doing creates positive external-

ities for other producers. Therefore, designing a

general intertemporal equilibrium version of MIND

for a comparison with the social planner solution
would be the natural next step. With both versions at

hand, the design of optimal policy instruments

becomes a feasible task.
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Appendix A. List of parameters



Extraction

sector

sres,l 100 Year

jres,l
max 3.22 Maximum capital productivity

[GtC/trillion $US]

jres,l
0 1.61 Initial capital productivity

[GtC/trillion $US]

bres,l 0.4 Damping factor for

learning-by-doing effect

v1 113 Scaling of marginal cost curve

[$US/tC]

v2 700 Scaling of marginal cost curve

[$US/tC]

v3 3500 Resource base [GtC]

v4 4 Slope of marginal cost curve

dres
K 0.05 Capital stock depreciation rate

Kres
0 5 Initial capital stock [trillion $US]

Renewable

energy

sector

CKapren,0 0 Cumulative capacity in 1960 [GW]

cfloor 500 Floor investment costs [$US/kW]

cren
0 700 Initial learning investment costs

1995 [$US/kW]

lren 15 Learning parameter [%]

bren 0.4 Penalty factor

FLHren 2190 Full load hours p.a.

x1 1 Weight of vintage installed in

current period

x2 0.85 Weight of vintage installed 1

period ago

x3 0.7 Weight of vintage installed 2

periods ago

x4 0.5 Weight of vintage installed 3

periods ago

x5 0.3 Weight of vintage installed 4

periods ago

x6 0.15 Weight of vintage installed 5

periods ago

x7 0.05 Weight of vintage installed 6

periods ago
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