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How basin stability complements the
linear-stability paradigm
Peter J. Menck1,2*, Jobst Heitzig1, Norbert Marwan1 and Jürgen Kurths1,2,3

The human brain1,2, power grids3, arrays of coupled lasers4

and the Amazon rainforest5,6 are all characterized by
multistability7. The likelihood that these systems will remain
in the most desirable of their many stable states depends on
their stability against significant perturbations, particularly
in a state space populated by undesirable states. Here we
claim that the traditional linearization-based approach to
stability is too local to adequately assess how stable a state
is. Instead, we quantify it in terms of basin stability, a new
measure related to the volume of the basin of attraction. Basin
stability is non-local, nonlinear and easily applicable, even
to high-dimensional systems. It provides a long-sought-after
explanation for the surprisingly regular topologies8–10 of neural
networks and power grids, which have eluded theoretical
description based solely on linear stability11–13. We anticipate
that basin stability will provide a powerful tool for complex
systems studies, including the assessment of multistable
climatic tipping elements14.

Complex systems science relies heavily on linear stability analy-
sis, in which state of a dynamic system (more correctly, its dynamic
regime) is assessed basically by inspecting the dominant curvature
of the potential energy function in the state’s surroundings (as
expressed by Lyapunov exponents). The absolute value of the
curvature measures the speed of convergence or divergence after
a small perturbation, and its sign qualifies the state as stable or
unstable. Such linearization-based considerations are inherently
local; therefore, they are not sufficient to quantify how stable a
state is against non-small perturbations. Quantification of stability
in this sense requires a global concept: the basin of attraction B
of a state is the set of initial points in state space from which the
system converges to this state. Complete knowledge of the basin
would allow us to fully assess the state’s stability: one could classify
perturbations into the permissible and the impermissible. See Fig. 1.

However, basins are intricate entities15 and especially hard to
explore in high dimensions. Here we therefore focus on a single but
fundamental property: the basin’s volume. The authors of ref. 16
interpret the volume of a state’s basin of attraction as a measure
of the likelihood of arrival at this state, that is, as a measure of the
state’s relevance. Almost equivalently, we understand the volume
of the basin as an expression of the likelihood of return to the state
after any random—possibly non-small—perturbation. This yields
a second interpretation: the basin’s volume quantifies how stable a
state is. To the best of our knowledge, this interpretation has not yet
been employed in complex systems science.We refer to the quantifi-
cation of stability based on the basin’s volume as basin stability SB.

For climatic tipping elements14 it would be particularly useful
to know how stable the desirable (that is, present) state is against
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Figure 1 | Thought experiment: marble on a marble track. The track is
immersed in a highly viscous fluid to make the system’s state space
one-dimensional. Dashed arrows indicate where the marble would roll from
each position. A, B and C label fixed points. Only B is stable. The green bar
indicates B’s basin of attraction B. If the marble is perturbed from B to a
state within the basin, it will return to B. Such perturbations are
permissible. Perturbations to states outside the basin are impermissible.
The dashed parabola shows the local curvature around B, fitting the true
marble track poorly in most of the basin.

perturbations. One such tipping element is the Amazon rainforest,
which presumably possesses two stable states: the present fertile
forest state and a barren savanna state5,6. A transition would
emit huge amounts of carbon dioxide captured in the rich
vegetation. Amazonian bistability arises from a positive feedback:
deep-rooting trees take up water stored in the soil and transpire
it to the atmosphere. Thereby, forest cover in an area increases
overall precipitation and improves its own growing conditions.
Consequently, a rather arid area (that is, an area with weak
precipitation inflow) may still be supportive of forest growth if its
forest cover exceeds a certain critical threshold; were forest cover
pushed below this threshold, the areawould lose all of its trees.

This is summarized in a conceptual model (see Supple-
mentary Information),

dC
dt
= F(C)=

{
r(1−C)C−x C if C >Ccrit

−x C if C <Ccrit

Here, C is the relative forest cover that grows with the saturating
rate r if C >Ccrit and dies with rate x (assuming r > x > 0). Ccrit is
the critical forest cover threshold. This model has two equilibria,
the forest state CF = 1− x/r and the savanna state CS = 0. The
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Figure 2 | State diagram of a bistable stylized forest–savanna model.
Dashed arrows show where the system state, forest cover C, would move
from a certain initial state at given aridity A. The green (light yellow) area is
the basin of attraction of the forest (savanna) state CF (CS). Solid circles
indicate the emergence or disappearance of an equilibrium.

equilibrium CF (respectively, CS) exists and is stable if CF > Ccrit
(respectively, Ccrit > 0). Assuming that Ccrit increases linearly with
aridityA, we obtain the state diagram shown in Fig. 2.

Global warming may drive up aridity, pushing it eventually
beyond the bifurcation point Acrit where the forest state vanishes.
As aridity increases, the volume of the CF state’s basin of attraction
shrinks, indicating that the forest state becomes less stable against
perturbations. Indeed, owing to this reduced basin stability, a large
perturbation such as strong deforestation might push the system to
the savanna state long before aridity reaches Acrit. Crucially, none
of this is reflected by linear stability, which judges the forest state
CF only by the stability coefficient F ′(CF) = x − r that remains
constant as aridity goes up.

This implies, first, that there is no critical slowing down. Indeed,
linear early-warning signals17 can be absent in systems with strong
nonlinearities such as this model. Second, because of their highly
local perspective, linear stability and hence the small-perturbation
convergence rate do not indicate how stable CF is against non-small
perturbations. They are unreliable proxies, in contradiction to
previous observations17,18.

Note that both effects may also emerge in such simple mechan-
ical systems as a damped driven pendulum (see Supplementary
Information). Clearly, global stability concepts are needed.

Such global stability concepts could incorporate potential energy
functions: deeper valleys would correspond to more stable states
(Fig. 1). However, energy functions may not be available for
many relevant (dissipative) systems. Furthermore, the estimation
of energy levels on the basin boundary is numerically costly in
high dimensions. An alternative approach was suggested, globally
quantifying stability (or resilience, in the original nomenclature)
in terms of the width of the basin of attraction in a particular
direction19,20. This concept has inspired a host of studies on complex
socioecological systems. Yet the measure of stability it implies ‘‘is
not so easily quantified, even in models’’18. One reason is that,
in systems with many state variables, it is impossible to identify
the single most relevant direction along which the width of the
basin should be gauged. Our basin stability offers two important
improvements: first, it follows a volume-based probabilistic
approach that is compatible with the natural uncertainty about
the strength and direction of perturbations; second, it provides a
measure of stability that is clearly defined and easily quantified even
in high-dimensional systems (seeMethods).

Basin stability’s applicability to high-dimensional systems allows
us to tackle a puzzle that has long haunted complex networks
science. Researchers in this field strive to understand how a

network’s topology serves its function and robustness21,22. Special
effort has been put into multistable dynamic networks in which
a synchronous state competes with alternative non-synchronous
or partly synchronous states11–13,23. In a power grid, for instance, all
components have to be operated at the same synchronous frequency
to achieve steady power flows and to avoid damaging resonance
effects3. In the brain, both neural communication24 and memory
processes25,26 rely vitally on the synchronous firing of neurons. This
means that, although synchronization is also associated with patho-
logical states such as Parkinsonian tremor27, the functional ability to
support synchrony is as pivotal for the brain as it is for power grids.
The problem with both kinds of network is that their real-world
topologies look completely different fromwhat the theory predicts.

The theory is as follows. If the synchronous state of a dynamic
network is to bemaintained, it must be stable against perturbations.
A groundbreaking study11 based on linearization revealed that, for
a network of identical oscillators, the stability of the synchronous
state can directly be inferred from the Laplacian, a matrix that
reflects the coupling topology (see Supplementary Information).
Indeed, for many types of oscillator, the synchronous state is stable
if the ratio of the Laplacian’s maximum and minimum non-zero
eigenvalues, R = λmax/λmin, is smaller than an oscillator-specific
stability threshold, β = α2/α1, provided the coupling strength is
chosen from the stability interval, Is= (α1/λmin,α2/λmax). The ratio
R is known as the synchronizability of a network. Networks with
smaller R are considered more synchronizable12. To determine
what particularly synchronizable networks look like, researchers13
employed the Watts–Strogatz graph generation model8 and found
that, as the model is tuned from regular lattices (model parameter
p= 0) to random graphs (p= 1), synchronizability shows a strong,
monotonical improvement (Fig. 3a).

Consequently, according to linear-stability-based synchroniz-
ability, real-world networks whose function relies on synchro-
nization should ideally look like random graphs. However, neural
networks and power grids exhibit small-world topologies that,
from the Watts–Strogatz model’s perspective, are far more regular
than random graphs8–10. Indeed, when building well-functioning
synchronizable networks, nature and civilization seem to shun
the predicted randomness. This discrepancy between theory and
observation has left networks researchwith a long-standing puzzle.

Attempting to complement the theory, we applied basin stability
to ensembles of Watts–Strogatz networks consisting of paradig-
matic Rössler oscillators, inwhich the dynamics at node i obey

ẋi=−yi−zi−K
N∑
j=1

Lijxj (1)

ẏi= xi+ayi (2)

żi= b+zi(xi− c) (3)

with coupling constant K , Laplacian matrix L, a = b = 0.2, and
c = 7.0. Every such network has a synchronous state in which
all nodes follow the same trajectory. A network’s synchronous
state is stable if its synchronizability R < α2/α1 = 37.85 and
K ∈ Is = (α1/λmin,α2/λmax), where α1 = 0.1232 and α2 = 4.663.
However, the level of R does not quantify how stable the
synchronous state is against perturbations. To address this yet
unasked question, for each network we estimated the synchronous
state’s basin stability SB for several K ∈ Is and computed the mean
S̄B = mean〈SB(K )〉K∈Is (see Methods). Finally, we averaged S̄B
over the ensemble to obtain the expected basin stability 〈S̄B〉.
We found that, in sharp contrast to synchronizability, expected
basin stability declines exponentially fast as networks become more
random (Fig. 3a,b; for a qualitative explanation, see Supplementary
Information). Therefore, the synchronous state ismuchmore stable
in networks that are more regular.
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Figure 3 | Synchronizability and basin stability in Watts–Strogatz
networks of chaotic oscillators. a, Expected synchronizability 〈R〉 versus
the Watts–Strogatz model’s parameter p. The scale of the y axis was
reversed to indicate improvement on increase in p. b, Expected basin
stability 〈S̄B〉 versus p. The grey shading indicates± one standard
deviation. The dashed line shows an exponential curve fitted to the
ensemble results for p≥0.15. Solid lines are guides to the eye. The plots
shown were obtained for N= 100 oscillators of Rössler type, each having
on average k=8 neighbours. Choices of larger N and different k produce
results that are qualitatively the same. See Methods and Supplementary
Information for details and a qualitative explanation of the main
characteristics.

This adds a crucial piece to the puzzle and, we conjecture,
makes its solution emerge (Fig. 4): in synchronizing networks, the
functional need for the synchronous state to be as stable as possible
promotes topological regularity. Thus, during network evolution,
the optimization of synchronizability and the simultaneous opti-
mization of basin stability have acted as two opposing forces. Their
contest ended in a topological tradeoff: small-worldness.

Here, we have introduced basin stability, a newuniversal concept
of stability. We see many important applications, notably cell
regulatory networks, whose carcinogenic gene expression profiles
have been related to cancer attractors in a high-dimensional
multistable state space28. Like linear stability, basin stability is a
property of a deterministic system and contains no information
on the external perturbations that may affect it. Hence, it may
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Figure 4 | Topological comparison of ensemble results with real-world
networks. Circles represent the results for Watts–Strogatz networks with
N= 100, k= 10 and rewiring probability p∈ {0.05,0.1,0.15,...,1.0} (p
increasing from left to right). Circle area is proportional to the expected
basin stability 〈S̄B〉, and colour indicates the expected synchronizability 〈R〉.
Squares represent real-world networks reported to exhibit a small-world
topology (Supplementary Table S1). We chose ξL and ξC so that networks of
different sizes can be compared with respect to average shortest path L and
clustering coefficient C, quantities that characterize small-worldness8.
(ξL,ξC)= (0,0) labels a regular network whereas (ξL,ξC)= (1,1) labels a
random network. Small-world networks reside in the top-left quadrant. See
Methods and Supplementary Information.

often be promising to conceptually combine basin stability with
a non-uniform distribution of perturbations. Basin stability could
also be applied to stochastic systems by incorporating a suitable
probabilistic notion of basins.

Methods
Estimationof basin stability inWatts–Strogatz networks ofRössler oscillators. A
Watts–Strogatz network is constructed as follows8: starting from a one-dimensional
ring of N nodes in which every node is connected to its k nearest neighbours,
each edge is rewired independently with probability p by re-choosing one
of its endpoints randomly. A Watts–Strogatz network generated with p= 0
(p= 1) has a regular (random) topology. An intermediate value of p yields a
small-world topology.

In a given network, the dynamics at node i (i= 1,...,N ) are governed by the
coupled Rössler equations (1)–(3). For K ∈ Is := (0.1232/λmin,4.663/λmax), we
want to estimate the volume of the synchronous state’s basin of attraction B. High
dimensionality poses challenges. If B were a bounded convex set, its volume could
be estimated in O(n4) time steps with today’s best algorithm29, where n= 3N is
the dimension of state space. We have N ≥ 100, so this would be numerically very
expensive. In any case, B is not convex in Rössler networks (see Supplementary
Information). Thus, we retreat to something feasible: we estimate the volume of B
in a relative sense,measuring basin stability as SB ∩Q=Vol(B∩Q)/Vol(Q)∈[0,1],
where Q is a subset of state space that has finite volume.

More specifically, we integrate the system equations for T initial conditions
drawn uniformly at random from Q. We count the numberM of initial conditions
that arrive at the synchronous state (the other possible attractor being infinity) and
estimate SB ∩Q asM/T . Observing that this is a repeated Bernoulli experiment, we
infer that the estimate carries a standard error of

e :=
√
SB ∩Q(1−SB ∩Q)

√
T

At T =500, for example, e<0.023 in absolute terms.
In relative terms, e < SB ∩Q/10 for SB ∩Q > 1/6. Q should be chosen

such that values of SB ∩Q typically surpass this level. Our choice underlying the
results presented above is Q= qN with q= [−15,15]× [−15,15]× [−5,35].
Note that the Rössler attractor is included in q. We also studied other choices
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of Q—for instance ([−8,8]×[−8,8]×[−8,8])N—yet observed no qualitative
difference in the outcomes. Therefore, we suppress the subscript Q when
stating SB in Fig. 3.

For each network in the ensemble, we estimate basin stability SB for ten
different equally spaced valuesK ∈ Is and average to obtainmean basin stability S̄B .

The results are not qualitatively different for networks produced
by a two-dimensional Watts–Strogatz model and another model that
varies the link length distribution30. Details on this are provided in the
Supplementary Information.

Topological comparison of small-world networks of different sizes. The axes
of Fig. 4 were chosen so that different real-world networks can be compared,
without the distorting effects of network size, with respect to average shortest path
L and clustering coefficient C . L and C have been widely used to characterize
small-worldness8. We plot ξL against ξC , where ξX = 1− log(X/XR)/log(XL/XR)
with X = L or C . LR,CR (or LL,CL) are the values of the respective quantities
in random networks (or regular lattices) of the same size. ξX counts how many
orders of magnitude X is away from XL in relation to the count of orders
of magnitude between XL and XR. This way (ξL,ξC )= (0,0) labels a regular
network whereas (ξL,ξC )= (1,1) labels a random network. Small-world networks
have8 L≈ LR and C� CR and therefore reside in the top-left quadrant. See
Supplementary Information.
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