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Abstract

In the last decade, there has been a growing body of literature ddressing the utilization of complex
network methods for the characterization of dynamical system. “asec on time series. While both nonlinear
time series analysis and complex network theory are widely « ‘nsidered to be established fields of complex
systems sciences with strong links to nonlinear dynami~~ ~~" _tistical physics, the thorough combina-
tion of both approaches has become an active field of nc. linear time series analysis, which has allowed
addressing fundamental questions regarding the strr *-=al organization of nonlinear dynamics as well as
the successful treatment of a variety of applications t. yir a broad range of disciplines. In this report, we
provide an in-depth review of existing approache of ti. e series networks, covering their methodological
foundations, interpretation and practical considerat. . vith an emphasis on recent developments. After a
brief outline of the state-of-the-art of nonlinear “*me sc -ies analysis and the theory of complex networks, we
focus on three main network approaches, namely, ~hase space based recurrence networks, visibility graphs
and Markov chain based transition networks, all of which have made their way from abstract concepts to
widely used methodologies. These three oncd ~ts, as well as several variants thereof will be discussed in
great detail regarding their specific prop rties, pc tentials and limitations. More importantly, we emphasize
which fundamental new insights comp'ex 1. ‘wc k approaches bring into the field of nonlinear time series
analysis. In addition, we summarize ¢ zar ples trom the wide range of recent applications of these methods,
covering rather diverse fields like cli.. ~t- 10gv fluid dynamics, neurophysiology, engineering and economics,
and demonstrating the great pote .tials ¢. * me series networks for tackling real-world contemporary scien-
tific problems. The overall aim ¢ v. ‘s report is to provide the readers with the knowledge how the complex
network approaches can be applied to . 2ir own field of real-world time series analysis.
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Table 1: Nomenclature and abbreviations used in the manuscript

Nomenclature

A Adjacency matrix

by betweenness centrality of vertex p

Cp closeness centrality of vertex p

C global clustering coefficient

Cp local clustering coefficient of vertex p
D network diameter

D¢ clustering dimension

IA)T transitivity dimension

Ak excess degree of vertex p

Ayerkp relative excess degree of vertex p

At sampling time

5(+) delta function (§(z) = {1|x = 0;0]x #= 0})
€ radius of neighborhood

ép local efficiency of vertex p

E edge set

& global efficiency

F(k)  cumulative degree distribution function
GIC  graph index complexity

y power law exponent

H Hurst exponent

kp degree of vertex p

lpq shortest path between vertices p »»4 ¢
L average path length

A Lyapunov exponent; exponenti.’ scalin | factor
m embedding dimension

I coupling strength

N length of time series

s ordinal pattern

p(x)  probability density fu:.ction ~f x

RR recurrence rate

R assortativity coeffi- ient

r cross correlation coe.” ient

p edge (link) denc.ty of a network

Opq multiple short <t r aths oetween vertices p and ¢
T embedding delay

T transitivity

S Shannon e “tropy

O(-)  Heavisid~ fu.. v

)% weigh’ ed adj. "ency matrix

Q averag freque acy

Wpq transition. . cquency from vertex p to ¢
z estmat . fx

(x) avera 2 of x

|4 vertex . 2t

Abbreviations
ACF  auto-correla. » function
AR auto regre. "ive
B. P.  before » ~sent
COPTNcross ordiy .. »attern transition net-
work
CRP  crr _ recu.. ~nce plots
DVG  ( fferenc. visibility graph
ER E. 16s R¢ 1yi random network
fBm rractional Brownian motion
fGn “ act: »nal Gaussian noise
FNN  faler nearest neighbors
GS oeneralized synchronization
VG ) orizontal visibility graph
TRIN mter-system recurrence network
IS international sunspot number

JUP'I'N joint ordinal pattern transition net-

RN
KLD
KS
LIA
LPVG
Ma
oDpP
op
OPTN
PDF
PS
RGG
RN
RP
RQA
SF
SSA
SSN
SW
UPO
VG

work

joint recurrence network
Kullback-Leibler divergence
Kolmogorov-Smirnov test

little ice age

limited penetration visibility graph
million years

ocean drilling program

ordinal pattern

ordinal pattern transition network
probability density function
phase synchronization

random geometric graph
recurrence network

recurrence plot

recurrence quantification analysis
scale free

sunspot area

sunspot numbers

small world

unstable periodic orbits

visibility graph
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1. Introduction

Artificial Intelligence is generating data in new forms of complexity, leading to vhe nev. ~ra of big data
[1]. This brings big challenges for researchers from various fields working together t , e. tract patterns or new
structures from data of very high volume, high velocity, or high variety. Adva ced .nterdisciplinary data
analytics techniques help to capture the hidden structures amidst otherwise chaotic 1ata points, including
approaches from machine learning, data mining, statistics, natural language aunl text processing [2]. In
consequence, we transform the messy datasets into something that we can le rn . 3<t, wnich allows us making
better and faster decisions. Among these processes, there is ample scope r d .veloping new tools for data
analysis. In the context of dynamical systems and statistical physics, such . =thods are often associated
with concepts like complex networks [3-5] and complexity theory.

In this report, we focus on some particular subfield that has attrac‘ed gre: ; interest in the last years —
the application of various approaches from complex network theorv in 1..° -~ atext of nonlinear time series
analysis [6-8]. A time series is a sequence of data points indexed by the *'.. = of observations, which are made
at successive, in many cases equally spaced points in time. Hence, *".ne s/ ries data have a natural discrete
temporal ordering. Examples of such time series cover a great . wiet; i variables potentially relevant for
everyday life, including (but not being limited to) the following areas: ‘i) weather conditions, like surface-air
temperatures, sea level pressure, and wind speeds that are collec ~d frc n meteorological stations or satellites;
(ii) finance, e.g., the daily closing prices of stock market 1.7vices nke the Dow Jone Industrial Average,
individual assets, or exchange rates; (iii) bio-medical conditi~=~ " humans, for instance, physiological and
clinical data that are collected by electroencephalogram (r.7(3) monitoring or high resolution brain imaging
techniques like magnetic resonance imaging (MRI) e~ compused tomography (CT). Time series analysis
considers the study of the entire collection of observat. ns as a whole instead of individual numerical values
at several temporal instances.

The natural temporal ordering makes time seric™ a. alysis distinct from data analysis in the case of no
natural ordering of the observations (for inste~ce. cr.ss-sectional studies of explaining people’s wages by
reference to their respective education levels, o1 "natial data analysis accounting for house prices by the
location as well as the intrinsic characteristics of the aouses). In order to discover hidden patterns of such
more general large data sets from different - ,u. . ~s, data mining tools have been proposed in the research field
of computer science, which have also for ad man_ applications in the context of time series mining [9-11].
Here, time series mining focuses more nn 1. '=xi g, clustering, classification, segmentation, motif discovery,
and forecasting [9, 11]. In the recent lece de, tuere has been a considerable amount of rapid developments
of data mining tools initiated by the ~d-ent f big data and cloud computing reflecting the increasing size
and complexity of available datase.s. Own. rarticular example of such developments is to design algorithms
of high efficiency that can learn ‘.. » and make predictions on the large data sets in terms of supervised or
unsupervised learning methods |2]. Fu. hermore, there is an emerging trend to combine complex network
approaches with data mininr to ls, which provide many novel analysis concepts for discovering hidden
pattern in large data sets [1Z T e classification task of data mining allows for a rich representation of some
complex systems, for insta: ce, a . ~aningful reconstruction of functional networks from rather large data sets
by choosing feature vect rs ¢ lower dimension [13]. Hence, the application of feature selection algorithms
provides a complementa., ~.nde standing of the characteristics of network structures. There have been a
few successful applics ' ns o1 . idning tools for complex network analysis from synthetic and experimental
data, in particular, 1 slated v ith disease classification [13-15].

Despite the consiu ~rable practical relevance of time series mining algorithms, there has been practically
no overlap with t.c subject of nonlinear time series analysis by means of complex network methods, which is
the focus of this report. Jnlike most established data mining techniques, the time series network approaches
reviewed here ar. haser on the dynamical systems theory [6, 16] and present themselves as state-of-the-art
contributior *~ nonlinear time series analysis [17]. From the viewpoint of complex network research, the
topics review.1 ‘a this paper can be regarded as successful applications of network theory to tackling
synthetic as we. as experimental series from a diversity of fields of applications. We will discuss potential
generalizations of the different time series network approaches in the context of data mining tools wherever
appropriate.
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1.1. Nonlinear time series analysis

Time series analysis is essentially data compression [17]. Given a time series, we i-.ter, ot the underlying
dynamical system by a few characteristic numbers that are computed from a large s~mple ot ineasurements.
Therefore, the reduced information as represented by these characteristic num sers must highlight some
specific features of the system. Early approaches of time series analysis heavily . 1" :d on the linearity as-
sumption on the underlying processes, for instance, autoregressive (AR) and mc -ng a. rage (MA) models,
both of which result in almost exponentially decaying auto-correlation functi- . Ho. ~ver, it is by now well
accepted that the dynamical laws governing nature or human activities are seld ,..."-~ linear. Nonlinearity is
everywhere, for example: (a) phase transitions (e.g., the melting of the ic. ~ a glacier) are an important
signature of nonlinearity in physical systems; (b) animals behave diffr atly (¢ 2. hunting effort) during
times of short food supply versus times of abundant food supply; () for n any electronic devices (e.g.,
transistors) saturation velocity and current are well-known nonlinear 1. enom na; (d) in many engineering
problems, controlling the system to operate at desired states intr ,uuces various forms of feedback mech-
anisms. Accordingly, the development of nonlinear time series aalv.is I as been primarily driven by the
needs to overcome the corresponding limitations of linear mode's and me nods.

Nonlinear time series analysis is not as well established and far .. s well understood than its linear coun-
terpart [6]. The collection of ideas and techniques of nonline  time s ries analysis originates from the fast
development of dynamical systems theory or so-called “che ~s tne -, which explores system dynamics by
a set of nonlinear difference equations or nonlinear ordinary a..™rential equations. Techniques from chaos
theory allow to characterize dynamical systems in wh. -+ nonunearities give rise to a complex temporal
evolution, for instance, a sensitive dependence on initial con< *ions and strongly limited predictability. Im-
portantly, this concept allows extracting information v 'av < =9t be resolved using classical linear techniques
such as the power spectrum or spectral coherence.

Since its early stages in the 1980s [18], numerous ‘.« ~cep "1al approaches have been introduced for studying
the characteristic features of nonlinear dynamical s, ste..s based on observational time series [6-8]. The
mathematical beauty of this analysis framew. '« .. “* 1t we characterize the invariant measure in phase
space in a number of different ways. Generally sp aking, we quantify the system from either geometric
or dynamic perspectives. Important examnles include, but are not limited to the correlation dimension
(or, more generally, the spectrum of ger cralize ' fractal dimensions D, [19]) that has been suggested to
characterize the geometry of chaotic atu. ~ctors “1 phase space; the Lyapunov exponent as a measure for
stability of dynamics with respect to ip .nitesu. ~ perturbations; and the Kolmogorov-Sinai entropy (or other
information theory measures) to qu- atif* uncertainty about the future states of a chaotic trajectory. All
these techniques have in common *ha. hey Jquantify certain dynamically invariant phase space properties
of the considered system based o7 tempora.ly discretized realizations of individual trajectories.

One typical task is to perfc.m « “recise system characterization from a single time series, which is,
however, not the final goal of i+ time series analyses [17]. Here, we give just a few examples that nonlinear
time series analysis can contr’ yute ;0: (1) system characterization from a single time series; (2) discrimination
between a signal and some 0. r signals; (3) quantification of various bifurcation transition scenarios to
complex dynamics, includ .ng neric’: doubling, band merging, more general examples of subtle changes like
intermittency or other : nen mer 1 associated with chaos-to-chaos transitions, detection of general regime
shifts or tipping points in c. “er 1al dynamical properties; (4) testing for time series reversibility; (5) noise
reduction and filterir g; and (6) prediction of future time series values.

The aforementio. ed non near time series characteristics are based on univariate series, i.e., they can
be applied to single sig ~~'" measured upon individual dynamical systems. In contrast, bivariate measures
are used to ana';ze pal's of signals measured simultaneously from two dynamical systems. There has been
considerable int rest in . he study of the synchronization behavior of coupled chaotic systems, which have
been observed in .. , physical and biological systems [20, 21]. Thus, such bivariate time series analysis
measures ail. to. .. 2t and to distinguish transition forms from non-synchronized states to synchronization
(for instance, L hs to phase synchronization, lag synchronization, complete synchronization and generalized
synchronization). In different synchronization scenarios, it is important to extract not only the coupling
strength but also the direction of these couplings, i.e., identifying causal relationships between the studied
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sub-systems. Unraveling the governing functional interactions between sub-systems contained in a large
network of complex connectivity topology remains a big challenge in modern nonl e~ sciences [22, 23].
Various methods have been proposed to extract the statistical associations from data, for in. jance, Pearson
correlation, mutual information (including its time delayed version) [24, 25], C'.ang °r causality [26, 27],
transfer entropy [28, 29], or methods for detecting coupling directions from time -er’:s data [30-37]. More
generally, coupling functions can have various forms. We do not expand the cc ~espo. 1ing discussion here,
but refer the interested readers to several review papers on this topic [23, 38 29].

Nonlinear time series analysis provides a powerful toolbox of methods chat ~e useful for many appli-
cations, but also have some practical limitations. Some common problei. " o .ginating from experimental
measurements challenge the computations of nonlinear measures. For i=~tanc. most of the existing non-
linear methods are in practice only applicable to low-dimensional dyr amical “ystems. In reality, very few
real-world data sets are measured by perfect sensors operating on low-c mensic 1al dynamics. One has to be
aware of non-stationarity, proper choice of embedding parameters.  peuucace on finite data length (with
possibly rather short time series in many real-world situations), € fect” o1 noise, or irregular sampling [17].
Statistical concerns come also from algorithmic aspects requirine piroper ¢! oice of parameters. For instance,
scaling regimes should be pronounced for implementing linear lin. fittiug to estimate the numerical values
of dynamically invariant measures like fractal dimensions and Lyap nov exponents, the proper selection
of which often influences the results significantly. In addition, ~or putational complexity has to be well
evaluated since it varies significantly among these measures. U. “rently, the choice of algorithmic parameters
largely depends on the researchers’ experience.

In this review, we demonstrate that complex network a, ~roaches can contribute many aspects that we
have discussed above for nonlinear time series analysi . ~ "~re importantly, complex network approaches can
solve partially some fundamental and long standing p. ‘b ems not successfully addressed by other existing
methods so far, yielding a more robust estimation ¢ ‘vna. ical invariants, for instance, using the transitivity
dimension and local clustering dimension of recurren. = 1.. *works to approximate the fractal dimension of the
system [40]; or by computing the mean out-de_ .~ ~f ¢~dinal pattern transition networks or the associated
network diameter performing similarly well as the T vapunov exponent [41].

1.2. Complex network approaches

With the recent increase in available ~ompute sional capacities and rising data volumes in various fields
of science, complex networks have becc ne a.. ‘nt -resting and versatile tool for describing structural interde-
pendencies between mutually interac ing units [3, 4, 22, 42]. Besides “classical” areas of research (such as
sociology, transportation systems, co.. ™ .ter ciences, or ecology), where these units are clearly (physically)
identifiable, the success story of cc nplex n..’ work theory has recently lead to a variety of “non-conventional”
applications.

One important class of such non-tracitional applications of complex network theory are functional net-
works, where the considered com =ctivity does not necessarily refer to “physical” vertices and edges, but
reflects statistical interrelatic. <t ps between the dynamics exhibited by different parts of the system under
study. The term “functior al” wa. -riginally coined in neuroscientific applications, where contemporaneous
neuronal activity in diffe ent orair areas is often recorded using a set of standardized EEG channels. These
data can be used for study. o st .tistical interrelationships between different brain regions when performing
certain tasks, having .ue idea 1.1 mind that the functional connectivity reflected by the strongest statistical
dependencies can be taken as a proxy for the large-scale anatomic connectivity of different brain regions [43—
45]. Similar approach. - hav- been utilized for identifying dominant interaction patterns in other multivariate
data sets, such ¢, clim~te data [46-48)].

Besides func ional ni tworks derived from multivariate time series, there have been numerous efforts for
utilizing complex -~etv rk approaches for quantifying structural properties of individual time series. By
means of co. ... ~etwork analysis, the first step is to find a proper network representation for time series,
i.e., an algoriv r. defining what network vertices and network edges are. To this end, several approaches
have been prop.wed [41, 49-54]. Based on these network representations, the rich toolbox of complex
network measures [4, 22, 42] provides various quantities that can be used for characterizing the system’s
dynamical complexity from a complex network viewpoint and allow discriminating between different types of
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dynamics [54]. More importantly, complementary features of dynamical systems (i.e., p operties that are not
captured by existing methods of time series analysis) can be resolved. In this report w. ive an exhaustive
review on complex network approaches for nonlinear time series analysis. To this end, v 2 first provide
an overall impression of various complex network representations for time series, wi ich are illustrated in
Figs. 1,2 for the z-coordinate of one realization of the Lorenz system (Eq. (A.1)) v."*h ’ ne parameters r = 28,
o =10 and 8 = 8/3 (sampling time At = 0.02). In the following sections, wc will ¢. nand the discussions
on the reconstruction of these networks from given time series data and their . ~ulting characteristics.
Specifically, we will focus on some important transformation methods tbh .t h - ~ been widely applied to
various artificial as well as real-world observational or experimental data, i.. »a jicular, recurrence networks,
visibility graphs, and transition networks. In addition to these main ap~-oach. - we will also discuss some
algorithmic variants of these concepts and corresponding relevant netw hrk me. sures wherever appropriate.

(@ (b) © ) Adaptive Nearest
Cycle Network Correlation Network k—Nearest M :1ighbe* ”'otwork Neighbor Network

S A

30 y /

Time Time
® (h) Order Pattern
Visibility Graph Transition Network
30 5 200
0 £
..... 5
. g £ 190
- = -5 a N
2 5 100
-10 T !
© 50
-15
. ol
1 20 0 -15-10 -5 0 5 0 100 200
Time T ne Value Order pattern

Figure 1: Adjacency matrices correspo ding to «. .erent types of time series networks constructed from the z-coordinate of
the Lorenz system: (a) cycle networ} (.. = 40, critical cycle distance in phase space Dmaz = 5), (b) correlation network
(N = 654, embedding dimension m = 10 wiw.. delay 7 = 3), (c) k-nearest neighbor network (asymmetric version), N = 675,
m =3, 7 = 3, k = 10, correspondir , .. a recurrence rate of RR & 0.015 using Euclidean norm, (d) adaptive nearest neighbor
network N = 675, m =3, 7 = 3, ( ) e-r' currence network (N = 675, m = 3, 7 = 3, € = 2, maximum norm), (f) visibility graph
(N = 681), and (g) coarse-grainin,_ b’ sed transition network (based on an equipartition of the range of observed values into
N = 20 classes of size Az = 3 J, mini.. "m transition probability p = 0.2 during 3 time steps), (h) ordinal pattern transition
network (N = 240 neglecting tiscc .nected patterns, m = 6, 7 = 3). Modified from [54].

In this review we ;~ovia. a-depth discussions on complex network representations of individual or
potentially interrelat »d time series, which distinctively differ from existing dara minimg tools from computer
sciences [12] as discu "sed al ove in terms of the underlying motivation and methodology. Specifically, all
network approac’ .. discussed in this report provide different applications of complex network theory to
nonlinear time eries a. alysis. We do not further expand the discussion on the differences between time
series networks « ~d dat . mining tools to keep this report topically focused.

1.8. Transfor ma’.ons of time series into the compler network domain

In order to . ake time series accessible to complex network analysis techniques, we have to transform
them into a proper network representation. At a first place, this requires an algorithm defining network
vertices and edges. Depending on these definitions, there are at least three main classes of complex network
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Figure 2: Graphical representation of the different complex netwerl-e =~~~ g the adjacency matrices shown in Fig. 1. The

graphs have been embedded into an abstract two-dimensional spa. using a force directed placement algorithm [55], which
has been integrated into the graph toolbox of Matlab. For panels (a, ‘), the vertex color indicates the temporal order of
observations (from blue to green), for transition networks (pa = [ ")), colors correspond to the different partitions. Note
that in panels (b), (g) and (h) some individual disconnected . rt ces have been removed from the corresponding network
representations. Modified from [54].

approaches to the analysis of individual time sc. =5 I~ will be put in the focus of this review (see Tab. 2).
These three types of methods are based on differen. ~ationales, i.e.,

(i) mutual statistical similarity or metri- pro..‘mity between different segments of a time series (proximity
networks),

(ii) convexity of successive observati ms /visiL_iity graphs), and

(iii) transition probabilities betwesn " cret . states (transition networks).

The first important class of ti. ~ series networks make use of similarities or proximity relationships
between different parts of a dvnamical system’s trajectory [52-54], including such diverse approaches as
cycle networks [49, 56], corre atic 1 networks [57], and phase space networks based on a certain definition
of nearest neighbors [50]. Own. e pecially important example of proximity networks are recurrence networks
(RNs) [52, 53], which pror.de a ro ~terpretation of recurrence plots [58] in network-theoretic terms and are
meanwhile widely applie « in . variety of fields.

The second class are v. bilit ; graphs and related concepts, which characterize some local convexity or
record-breaking prop .«uy withui univariate time series data [51, 59, 60]. The standard visibility graph and
its various variants | ave imj >rtant applications, such as providing new estimates of the Hurst exponent of
fractal and multi-frac. ! ste nastic processes [61, 62] or statistical tests for time series irreversibility [63, 64].

The third i yortant class of network approaches are transition networks, which make use of ideas from
symbolic dynan ics and jtochastic processes. Transforming a given time series into a transition network is
a process of map, o ‘.ae temporal information into a Markov chain to obtain a compressed or simplified
representati « . *he original dynamics. More specifically, we first discretize the dynamics and then study
the transition v obabilities between the obtained groups in some Markov chain-like ways [65]. Depending
on the particula. choice of partitions, we obtain different versions of transition networks. For instance, we
can construct transition networks by threshold-based coarse graining of the underlying system’s phase space
[54] or based on ordinal patterns [41, 66].
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Table 2: Summary of the definitions of vertices and the criteria for the existence of edges in existing cor ~lex network approaches.

Method Vertex Edge Directedness
Proximity networks
Cycle networks Cycle Correlation or phase space distance ~ etw. :n cycles undirected
Correlation networks State vector Correlation coefficient between sta” » vect irs undirected
Recurrence networks
k-nearest neighbor networks State (vector) Recurrence of states (fixed neighue hood 1. iss) directed
adaptive nearest neighbor networks — State (vector) Recurrence of states (fixed nur “er ot « *~es) undirected
e-recurrence networks State (vector) Recurrence of states (fixed r ighb »"n0d volume)  undirected
Visibility graphs o
natural visibility graphs Scalar state Mutual visibility of states undirected
horizontal visibility graphs Scalar state Horizontal mutual visit' .vy of stai., undirected
Transition networks
threshold based networks Phase space partition Temporal succession directed
ordinal pattern networks Ordinal patterns Temporal successior directed

It may be interesting to note that both, proximity netwoi. ~ anc *. ansition networks, are somewhat
related with the concept of recurrence in one way or the other [54]. L. ‘s is particularly evident for proximity
networks, where connectivity is defined in a data-adaptive loca. vay, i.” ., by considering distinct regions with
a varying center at a given vertex in either the phase space 1. °If o1 «u abstract metric space where (pseudo)
distances measure similarities between states or sequences thei. ~f. In contrast, for transition networks,
the corresponding classes are rigid, i.e., determined by a “xed coarse-graining of the phase space, ordinal
patterns, or other related symbolic approaches. In thic regara, ‘he distinction between both classes of time
series network approaches closely resembles the dualit,- be ween phase space based approaches of nonlinear
time series analysis on the one hand, and symbolic tin. series analysis and related information-theoretic
approaches, which may both be used for estimat. ¢ ~im.iar dynamical invariants such as entropies and
mutual information [67].

Among the three classes of methods listed <" ave, vne largest group of concepts is given by proximity
networks, where the mutual closeness or similarity o1 lifferent segments of a trajectory can be characterized
in different ways. Consequently, there are - .."~us types of such proximity networks (see Tab. 2). However,
all these methods are characterized by t o com1 on general properties: Firstly, the resulting networks are
invariant under relabeling of their vertices 'n th- adjacency matrix. Hence, the topological characteristics
of proximity networks yield nonlinea- measurc. that are invariant under a permutation of their vertices.
In this respect, these network-theor tic .ppr aches are distinctively different from traditional methods of
time series analysis where the ter pora. ~vrer of observations does explicitly matter. Secondly, we point
out that especially proximity net . ~rks are spatial networks [68, 69]. In particular, recurrence networks are
embedded in the phase space of the co. ~idered system, with distances being defined by one of the standard
metrics (e.g., Euclidean, Mar .a. an, etc.), making them a specific type of random geometric graphs [40].
Similar considerations apply to ¢ her types of proximity networks as well. Moreover, also visibility graphs
and related concepts can he vi. ved as spatially embedded networks, for which the one-dimensional time
axis takes the role of a r :tric space in which the resulting network’s vertices and edges are embedded.

1.4. Outline of the rer-~t

The remainder o this re iew is organized as follows:

In Section 2, we *art vith a brief introduction on complex network theory, mainly focusing on the
characterization .1 che structural properties of networks based on the adjacency matrix. All relevant ter-
minologies of n twork n casures will be introduced in this section. We also discuss some concepts that are
particularly impc *ant “or transforming time series into network representations, particularly, the definitions
of network v _"*~=< and edges.

In Section ?, ve tocus on recurrence network approaches (RN). We will cover the theoretical background
of Poincaré recu rences in dynamical systems and the popular visualization technique of recurrence plots
[58]. Furthermore, we summarize the current state of knowledge on the theoretical foundations and potential
applications of RN approaches to nonlinear time series. We demonstrate that this type of time series networks
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naturally arise as random geometric graphs in the phase space of dynamical systems, w .ich determines their
structural characteristics and gives rise to a dimensionality interpretation of clustering .o« %icients and related
concepts. Beyond the single-system case, we also provide a corresponding in-depth discussic i of cross- and
joint recurrence plots from the complex network viewpoint. Moreover, we discuss son  recent ideas related
to the utilization of multiplex and multilayer multivariate recurrence network-bas. 1 a ,proaches for studying
geometric signatures of coupling and synchronization processes.

In Section 4, both the standard visibility graphs (VG) and horizontal vicibiln, oraphs (HVG) will be
reviewed. We start with discussing the main variants of visibility algorithny s ap -"'~d in the context of time
series analysis. Specifically, we summarize some conjectures of theoreticai ~re actions of (H)VG properties
in stochastic and deterministic processes. Some practical consideratio=~ whe applying (H)VG analysis
to experimental time series will be thoroughly discussed. In additio ., we v 'l discuss the generalization
of (H)VG analysis from univariate to bi- and multivariate time ser1 s, for 'astance, multiplex (H)VGs.
We further show that a decomposition of (H)VGs into time forwa~ > (ouvsw:ng) and backward (incoming)
directions helps to test irreversibility of the underlying time series

In Section 5, we introduce the construction of transition netwo.xs by proper coarse graining of phase
space and ordinal patterns. Specifically, the concept of ordinal p. ‘teru transition networks can be traced
back to identifying ordinal patterns of time series [70]. We perticularly review the ordinal pattern transition
networks of [41] and their generalizations to multivariate time » -ies 71], highlighting their great potential
for studies of experimental observation data from climate scic..~es |72].

In Section 6, we review several applications of netv _I. ... ..aches to different real-world time series.
The following Section 7 briefly summarizes existing softwarc “mplementations, with a particular focus on the
Python package pyunicorn that includes several met! .° “am poth, complex network theory and nonlinear
time series analysis, including several of the approaches 1°.cussed in this review, and unites them in a high-
performance, modular and flexible way [73]. Fin. ' Se *tion 8 summarizes the main topics addressed in
this report and puts them into a broader perspectiv . ~ecifically, we will outline a few important general
directions for future research. We emphasize tb . ~>nlv'ng complex network methods for time series analysis
is still an emerging field, and that there are nume. 's relevant topics from both the theoretical and applied
perspectives that still deserve further exploration.

2. Complex network theory

In this section, we provide the T ief atrcduction of the characterization of structural properties of a
network, focusing on definitions, no*at.. s, a- d basic quantities that are often used to describe the topologies
of networks reconstructed from t’ ne series. More comprehensive descriptions of complex networks can be
found in a number of review ar .icles '?. 4, 22, 42] and books [5, 74], which the reader may find useful to
consult.

2.1. Basic concepts

A complex network i- oft n represented as a graph G = (V, E) which consists of two sets V and F,
where V' is the set of ve."ice, (nc des or points) of G, and E is the set of edges (links or lines) representing
pairs of connected eleents € v [42]. Each vertex is identified by an integer index p = 1,..., N, and
each edge is identifir d by a »air (p,¢) connecting two vertices p and ¢g. A graph G is called undirected if
an edge from vertex » to ¢ s denoted by (p,q) is equivalent to the edge of (¢,p) from vertex ¢ to p, i.e.,
(p,q) € E< (q,r = E. C.the other hand, in a directed graph, typically (p,q) € E < (¢,p) € E. A graph
may contain loc ps, i.e., =dges from a vertex to itself, or multiple edges, i.e., pairs of vertices connected by
more than one € 'ge.

More gererally, cuges (p, ¢) may be attributed additional weights W,,. For convenience, one commonly
defines Wy, - - 0 s \p,q) ¢ E, In this case, a weighted directed graph can be completely described by its
weight matrix 7 so that each entry W, expresses the weight of the connection from vertex p to vertex g.
In this section, wv only consider undirected and unweighted graphs for the sake of simplicity, since there is
no need for discussing Wp,, in the context of most of the complex network approaches for time series analysis
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discussed in this review. A notable exception from this are transition networks, for w} .ch Weighted graphs
will receive a special attention in Section 5.

An unweighted graph can be naturally constructed by applying a proper threshold T to .he elements of
the weight matrix W of its weighted counterpart [42], resulting in the binary v atr - A. Specifically, we
have Apy =1 if Wy,q > T, otherwise, A,y = 0. The resulting matrix A is called t. ~ a jacency matriz of the
resulting unweighted graph, and each nonzero element A,, of A indicates the p.~sence ~f (p, ¢) as a member
of its edge set E. Further introduction of symmetry to A, i.e., identifying A, = A,, is characteristic of an
undirected graph. Such an undirected, unweighted graph is also called a si- iple -, *aph.

Depending on the particular mappings for transforming a given time s. “es mmto a complex network, the
resulting adjacency matrix A often depends on some algorithmic para=-ters, ‘or instance, the threshold
value ¢ of the recurrence network approach (Section 3). More import mtly, v » often have some particular
interpretations for network measures, for instance, in terms of the geo. etry o a dynamical system. In the
following, we first introduce some general measures for characteriz'__z so... important aspects of network
structures based on A. More specific discussions of network me: sure 1. terms of the particular network
transforming methods will be presented in later sections.

In addition to the concepts of vertices and edges, another impc “any concept in complex network theory
is the notion of paths. A path between two specified vertices » and ¢ is an ordered sequence of edges starting
at p and ending at ¢, with its path length [, given by the rumL - of :dges in this sequence. There are also
various measures characterizing the structural properties of n.wvorks based on paths, which will be briefly
reviewed here as well.

2.2. Network characteristics

2.2.1. Vertex characteristics

There are various measures to characterize the "v. ctu 2s of a complex network, quantifying the impor-
tance of either a vertex or an edge in terms of a pa.ticuiar network property. The conceptually simplest
measure characterizing the connectivity propei. s . - single vertex in a complex network is the degree (or
degree centrality)

N
hy = ZAPQ’ (1)

q=1

which simply counts the number of ed jes assoc. .ted with a given vertex p. It is also convenient to introduce

a normalized degree
1
= —Fk 2

as the local connectivity density of p. 1 +thermore, a topological characterization of the graph G as a whole
can be obtained in terms of ‘e legree distribution p(k), defined as the probability that a vertex chosen
uniformly at random has de_ree ', or, equivalently, as the fraction of vertices in the graph having degree k.
Note that the variable k 7ssun..~ non-negative integer values. The degree distribution p(k) is often used
to classify complex netw' rks. for instance, a scale-free network is characterized by p(k) ~ k=7, which will
further discussed in Sec. ~ 3 Fur hermore, one simple definition of a network entropy is based on the degree
distribution as S = — ], p(n, ogp(k), which can be computed straightforwardly [75, 76]. A more recent
survey of informatio  theore ic measures based on different network partitions of complex topology has been
presented in [77].

In order to cbh- . cteri.c the density of connections among the neighbors of a given vertex p, we can utilize
the local cluster ng coej, cient

1

K Ny

N
Z quAqrArpa (3)

q,r=1

which measures “he fraction of pairs of vertices in the neighborhood of p that are mutually connected.
While degree and local clustering coeflicient characterize network structures on the local and meso-scale,
there are further vertex characteristics that make explicit use of the concept of shortest paths and, thus,
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provide measures relying on the connectivity of the entire network. Two specific propr cties of this kind are
the closeness or closeness centrality

RN
Cp = <]V—1 qzllpq> 5 (4)

which gives the inverse arithmetic mean of the shortest path lengths [, betw ~n ve.tex p and all other
vertices ¢ € V, and the local efficiency

L X
-1
epzN_lzlpq’ ()
q=1

which gives the inverse harmonic mean of these shortest path lengths. Notabl = the latter quantity has the
advantage of being well-behaved in the case of disconnected network co. none s, where there are no paths
between certain pairs of vertices (i.e., I, = 00). In order to circ .mvent divergences of the closeness due
to the existence of disconnected components, it is convenient to a wa~ s se1 l,q to the highest possible value
of N —1 for pairs of vertices that cannot be mutually reached. Both ~. .nd e, characterize the geometric
centrality of vertex p in the network, i.e., closeness and local efficic. =y exhibit the highest values for such
vertices which are situated in the center of the networks.

Another frequently studied path-based vertex characteri. “ic is " . betweenness or betweenness centrality,
which measures the fraction of shortest paths in a network trav.-<ing a given vertex p. Let o4, denote the
total number of shortest paths between two vertices ¢ aw * 7 and o4, (p) the multiplicity of these paths that
include a given vertex p, betweenness centrality is defined as

N
b= S o) (6)
b N o
q,r=1, r ar

It is commonly used for characterizing the impo. ~nce of vertices for information propagation in networks.

2.2.2. Edge characteristics

In contrast to vertices, whose proper ies can be characterized by a multitude of graph characteristics,
there are fewer measures that explicitl” rei."= tc the properties of edges or, more general, pairs of vertices.
One such measure is the matching in ez, - thich quantifies the overlap of the network neighborhoods of two
vertices p and ¢:

N
N > r=1 AprAgr

Mpg = ~ .

kp + kq - Zr:l ApT'AqT

While the concept of mat’ ... 7 index does not require the presence of an edge between two vertices p
and ¢, there are other char cter stics that are explicitly edge-based. To this end, we only mention that
the concept of betweennes~ cew. -ality b, can also be transferred to edges, leading to the edge betweenness
measuring the fraction of sho' test paths on the graph traversing through a specific edge (p, q):

(7)

_ al Urs(paq)
bpg = >, (8)

O-TS
r,s=1;7,5%#p,q

where 0,.5(p, q) £ .ves the total number of shortest paths between two vertices r and s that include the edge
(p,q). If there i no edg between two vertices p and ¢, we set by, = 0 for convenience.

Finally, we n. ~tior the concept of network motifs [78] as another edge-based way to obtain proper
information ... ‘b~ meso-scale connectivity properties of a graph, which generalize the idea of the local
clustering coe.%c ent and are particularly useful for the study of directed networks. In this context, motifs
are small conne ted subgraphs consisting of a small fixed number of vertices (typically, 3 or 4 due to
their fastly increasing combinatorial variety and computational demanding), which represent specific local
connection patterns that allow classifying real-world networks into superfamilies according to the relative
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frequencies of different motifs [78]. In terms of time series networks, we focus on the frec aency distribution of
motifs which may serve as a sensitive indicator of specific type of network structures .u.* are reconstructed
by different methods, for instance, in Section 3.2.3.

2.2.8. Global network characteristics
Some, but not all useful global network characteristics can be derived by . erag. = certain local-scale
(vertex) properties. Prominently, the edge density

1Y 1 ol
PZNZPp:mZAm 9)
p=1 p,q=1

is defined as the arithmetic mean of the degree densities of all vertices > an< characterizes the fraction of
possible edges that are present in the network.

In a similar way, we consider the arithmetic mean of the loce c! .ster ng coefficients C, of all vertices,
resulting in the (Watts-Strogatz) global clustering coefficient [7C!

(10)

which measures the mean fraction of triangles that incluac *he different vertices of the network.

Notably, in the case of a very heterogeneous degre~ distribucion, the global clustering coefficient will be
dominated by contributions from the most abundant ty e .t vertices, the hubs. For example, for a scale-free
network with p(k) ~ k=7, vertices with small deg¢ e w. ' contribute predominantly, which can lead to an
underestimation of the actual fraction of triangles .~ ' network, since C, = 0 if k£, < 2 by definition. In
order to correct for such effects, Barrat and Weiot, [8.! proposed an alternative definition of the clustering
coefficient, which is nowadays frequently referrew “0 as network transitivity [22] and is defined as

r‘N
a ~ ~ngr=1 APquTATP' (11)
E Y AP‘ZA”’P

p,q,r=1
Finally, turning to shortest path-! asec characteristics, we define the average path length

1 N 1Y
= — lpg = — ~1 12
N(N— 1) Z Paq Np:1 Cp ( )

p,q=1

as the arithmetic mean of th = shc test path lengths between all pairs of vertices, and the global efficiency

/ 1 N -1 1 N —1
== -1 =| = e 13
(v o) - (h3e) 13

p,q=1 p=1
as the associated h: rmonic mean. Notably, the average path length can be rewritten as the arithmetic
mean of the inverse ¢ nseness, and the global efficiency as the inverse arithmetic mean of the local efficiency.
Furthermore, ba-__ on suortest path length, one often defines the diameter of a network as the longest
(maximum) of Il the «ilculated shortest paths in a network, D = max, 4l,,. In other words, once the
shortest path lew th frc a every vertex to all other vertices is calculated, the diameter D is the maximum of
all the calcv'~*ed patn lengths. Certainly, the diameter is representative of the size of a network.

2.8. Stylized fa.*s of complex networks

Erdos and Rényi [81] introduced a model to generate random graphs consisting of N vertices and M
edges. Starting with N disconnected vertices, the network is constructed by the addition of L edges at
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random, avoiding multiple and self connections. Another similar model defines N vert’ .es and a probability
p of connecting each pair of vertices. The latter model is widely known as the Erdos-T.e. - (ER) model. For
the ER model, in the large network size limit (N — o0), the average number of connection. of each vertex
(k) is given by (k) = ¢(N — 1), where ¢ is fixed and often chosen as a function of N 5 keep (k) fixed. For
this model, the degree distribution p(k) is a Poisson distribution.

In regular hypercubic lattices in d dimensions, the mean number of verti. s onc has to pass in order
to reach an arbitrarily chosen vertex, grows with the lattice size as N'/¢. Canve.. ~ly, in most real-world
networks, despite of their often large size N, there is a relatively short patlh bet - ~m any two vertices. This
property, which is shared by many real-world networks, is the so-called smai. o «d (SW) effect, that has been
first described as the outcome of studies on social interrelationships, pred~—ina.. 'v Milgram’s famous chain-
letter experiment in the 1960s [82]. In the spirit of the latter studies, th' term YW effect” originally denoted
the fact that average shortest path lengths £ (Eq. 12) in social network. but al o other real-world networks,
are much shorter than we would expect from random connectivity - . ifigu. wwions. Given the importance of
redundancy in such networks, Watts and Strogatz [79] suggested i iclu".ug the presence of a high clustering
coefficient C (i.e., higher than in random graphs) as a second criter.on for .dentifying the small-world effect
in real-world networks. According to their definition, small-woi.' newworks are characterized by having
both a small value of L, like random graphs, and a high clvstering c efficient C, like regular lattices. The
generative model introduced by them (WS model) is based on « ~rolabilistic rewiring of edges in a regular
ring lattice (i.e., each existing edge is rewired uniformly at ran~m with the same probability ¢) and is thus

situated between an ordered finite lattice (¢ = 0) and a _..lc... graph (¢ = 1), presenting the small world
property with short path length and high clustering coeffic.. °t at intermediate values of c.
Barabési and Albert [83] showed that the degree « .. ““tion p(k) of many real-world systems is charac-

terized by a heavy-tailed distribution. Instead of the v -t’ ses of these networks having a random pattern of
connections with a characteristic degree, as in the "R an ' WS models, some vertices are highly connected
while others have few connections, with the absence +t « ~haracteristic degree. More specifically, the degree
distribution has been found to follow a power-" .. for \ vge k, p(k) ~ k~7. These networks are called scale-
free (SF) networks, which are captured by a pro. ~unced linear regime in the double logarithmic plot of
p(k). In order to model the emergence of such network structures, the BA model has been proposed which
contains the two important ingredients of ietwe "k growth and preferential attachment. A proper statistical
identification of SF properties in real-we. ‘4 netwc ks is a non-trivial task because of effects originating from
finite size, intrinsic noise and finite sar .ple s. » ">4].

In addition, a large number of res .-wc Id networks are correlated in the sense that the probability that
a node of degree k is connected to « < .her aode of degree, say k’, depends on k. This problem can be
quantified by the average nearest * eighbor “egree of a vertex p, or, alternatively, the assortativity coefficient
R, i.e., the correlation coefficier ., 1 *ween the degrees of all pairs of mutually connected vertices [85]. In
assortative networks, the vertices tend to connect to their connectivity peers (R > 0), while in disassortative
networks vertices with low dr sree are more likely connected with highly connected ones (R < 0).

In the following sections, “h presence or absence of these stylized facts of complex networks will be
discussed in the respectiv. frame. ~rks when introducing different network construction algorithms based
upon possibly nonlinear .ime serirs.

2.4. Multiplex and m wdayer 1.etworks

Many complex sy 'tems in :lude multiple subsystems and layers of connectivity and they evolve, adapt and
transform through intc ~~' and external dynamical interactions affecting the subsystems and components
at both local ar d glok 1 scale. For example, the problem of information or rumor spreading on top of a
social network 1 ke Face rook must take into account the intricate interactions on different levels [86]. In
general, many inte.. 'lons in social networks can be understood as a combination of interactions at different,
independent 'eve. ., ich representing different social scenarios such as family, friends, coworkers, etc. The
actual relation. ' ips amongst the members of a social network must consider interactions mostly inside the
levels and their 1. fluences on the other layers. An individual’s behavior can be different in each level but
it is conditioned by other levels. Multiplex and multilayer networks explicitly incorporate multiple levels
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of social interactions and have been successfully applied to the study of disease spr:ading and diffusion
dynamics [87, 88] or the evolution of cooperation in the presence of social dilemmas o.]

Understanding and possibly predicting multi-scale and multi-component dynamics is a a..’icult challenge
to complex systems theory [86]. In this context, the issues posed by the mul i-sc le modeling of both
natural and artificial complex systems call for a generalization of the “traditiona. ne’ work theory, foremost
including the development of a solid theoretical foundation and associated tool. for sv. 1ying multilayer and
multi-component systems in a comprehensive fashion.

Here, we follow the formal definition of a multilayer network [86] as « pe= M = (G,C) where G =
{Go;aa=1,..., M} is a family of graphs G, = (V,,, E,) and

C:{EaggVaXVﬁ;OZ7BE[1,2,-..,M]'1755] (14)

is the set of interconnections between nodes of different layers G, ana 7'~ .ith o # . The elements of
each F, are called intra-layer connections of M as opposed to tho e of - ~h E,3 with a # [ that are called
inter-layer connections. By using the multilayer network represer. ~*.on, - «e simultaneously consider edges
that are located inside different layers and such that connect diffe. ntle, .s. A multiplex network is a special
type of multilayer network in which each layer shares the same set o. vertices, i.e., V3 = --- = V), and the
only possible type of interlayer connections are those in whicn  giver node is connected to its counterparts
in the other layers. In other words, a multiplex network c. ~sists of a fixed set of vertices connected by
different types of edges [86].

The readers are referred to [86, 90] for a more thoroug. review on multilayer networks. Furthermore, it
is important to remark that the concept of multilaye~ networn. has been extended to other relevant nota-
tions, for instance, network of networks, interacting or mte counected networks, multidimensional networks,
interdependent networks, multilevel networks, hyr ~rnetv. 'rks, etc., some of which are used as synonyms of
each other.

2.5. Coupled networks

2.5.1. Preliminaries

When describing multilayer and multi- iex 1. tworks in Section 2.4, we have introduced a corresponding
rather general framework. In the partic ‘ar case >f networks constructed from two or more possibly inter-
dependent time series, different perspe tives =r be taken with respect to the coupled system. Under some
conditions, it can be preferable to u?.lize che recently introduced framework of coupled or interdependent
network analysis for a corresponding '~ solor.cal characterization [91, 92]. The study of coupled networks
focuses on interrelationships betw’ en the . rerent subnetworks, i.e., on a dependency scenario in which ver-
tices in one network require conr .ct.. s to vertices in another subnetwork (e.g., in case of telecommunication
networks and power grids) [90]

Let us again consider an ar »itr: ry undirected and unweighted simple graph G = (V, E') with the adjacency
matrix A = {qu}fn\{ q=1- Furc er nore, let us assume that there is a given partition of G with the following
properties:

1. The vertex set V is '~ mp- sed into M disjoint subsets V,, C V such that U(I)\L/[:1 Vo=Vand V,NV3 =10
for all a = . T _ cara.. ity of V,, will be denoted as N,,.

2. The edge set L consist of mutually disjoint sets E,3 C E with Ufﬁ:l E.s = FE and E,pgNE,s = for
all (o, 8) # (~,9).

3. Let E,p C V,, x V . Specifically, for all @« =1,..., M, G4 = (V, Eqq) is the induced subgraph of the
vertex set v, wi*', respect to the full graph G.

Under these ¢ .tions, E,, comprises the (internal) edges within G,, whereas E,g contains all (cross-)
edges connecting G, and Gg.

We are now in a position to study the interconnectivity structure between two subnetworks G, Gg on
several topological scales drawing on the lineup of local and global graph-theoretical measures generalizing
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(@)

(b)

(c) G

Figure 3: Schematic illustration of some characteristics of i."exr. “nendent networks: (a) The cross-degree k?ﬁ (Eq. (15)). In
the example p®?# = 0.5. (b) The local cross-clustering coefficic 1t CS'B (Eq. (17)). In the example, the associated values are

C*P = 0.5 and CP* = 0, whereas T®¥ =1 and 7% = 0. ) 'I'ne cross-betweenness centrality bg’g (Eq. (20)). In the example,
p,q € Vy (red) have a large cross-betweenness, whereas the . ‘maining vertices p € V4 \ {p,q} from subnetwork G, do not

participate in shortest paths between G and Gg »~- therefore have vanishing values b,of'B = 0. Modified from [91, 93].

those used for single network characterizatic ~ (s e Section 3.9). In this context, local measures f;,"B charac-

terize a property of vertex p € V,, wit'. res sect to subnetwork Gg, while global measures F' B assign a single
real number to a pair of subnetworks = , Gy to quantify a certain aspect of their mutual interconnectivity
structure. Most interconnectivity haracu. “stics discussed below have been originally introduced in [91].

2.5.2. Vertex characteristics
The cross-degree (or cross dey ee centrality)

kgﬂ - Z Apqg (15)
9€Vs

counts the number of neig..' ors f vertex p € V,, within the subnetwork G, i.e., direct connections between
Go and Gg (Fig. 3/ ,. Thus, chis measure provides information on the relevance of p for the network
“coupling” between 5, ana Gg. For the purpose of the present work, it is useful studying a normalized
version of this measu. > the cross-degree density

(63 1 1 (e}
ppﬂ = Ni Z qu == kaﬁ. (16)
B qevy B

As for ti.~ su .. network case, important information is governed by the presence of triangles in the
network. Giver .wo subnetworks, the local cross-clustering coefficient

1
CF = g ApgAqrArp, (17)
TRk -1 ZV
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measures the relative frequency of two randomly drawn neighbors ¢, € Vg of p € V,, ar . mutually connected
(Fig. 3B). For k:;‘ﬂ < 2, we define C;“ﬂ = 0. In general, Cl‘f‘ﬁ characterizes the tenden y  vertices in G4 to

connect to clusters of vertices in Gg.
—1
P = 72’16% s (18)
p Ny

The cross-closeness centrality
(where l,, is the shortest-path length between p and ¢) characterizes the t< polc .. ~1 closeness of p € G, to
Gag, i.e., the inverse arithmetic mean of the shortest path lengths between p ~v 1 all vertices g € V3. If there
exist no such paths, {,, is commonly set to the maximum possible valr- ¥V — . ~iven the size of G. As in
the single network case, replacing the arithmetic by the harmonic mes 1 yields the local cross-efficiency

-1
b — 72‘]6‘/‘3 v (19)
)
P N
which can be interpreted in close analogy to cgﬁ.
As a final vertex characteristic, we generalize the betweenress conce >t to the case of coupled subnetworks,
which results in the cross-betweenness centrality

bof = > L (20)

o
q€Va,TEV3q,m#p ar

Note that o4, (p) and o4, are defined as in the case ot  single network. The bg‘ﬁ (Eq. (20)) measures the
fraction of shortest paths between vertices from s . ~etw. vks G, and Gp that traverse the vertex p € V,
(note that G, can coincide here with G, or Gg). Nou~ tu.t unlike the other vertex characteristics discussed
above, in the case of bg‘ﬂ, we do not require p . .5 to G, or Gg (Fig. 3C). The reason for this is that
vertices belonging to any subnetwork may have a 1. n-zero betweenness regarding two given subgraphs G,
and Gg, in the sense that shortest paths between ¢ € V,, and » € Vj can also include vertices in other
subnetworks.

2.5.3. Global characteristics
The density of connections betwr en t vo sbnetworks can be quantified by taking the arithmetic mean
of the local cross-degree density (Fq. 17 yi'uding the cross-edge density

1
LB _
= W.N > A (21)
PEVa,q€Vs

Since we consider here onlv u.. rected networks (i.e., bidirectional edges), p®? is invariant under mutual
exchange of the two cons’ tered subnetworks.
The global cross-cluc ~rir g co jficient

o 1
Cr 3 _ <Cpﬁ>peva — N7a Z

PEVa k2P >1

Zq,TEVB AP‘I AqTATP
Eq;ﬁrevﬁ APQATP

(22)

estimates the p obabilit - of vertices in G, to have mutually connected neighbors in Gg. Unlike p*8 (Eq.
(21)), the corres, ~ndir 5 “cross-transitivity” structure is typically asymmetric, i.e., C*? # C*. As in the
single netwc . ~e we need to distinguish C*? from the cross-transitivity

Zpe Vaiq,r€Vg quAqrAw

T =
Zpe Vaiq#reVa AZD(IATP

: (23)

19



O©CoO~NOUIAWNER

for which we generally have 7% (¢) # T'*(¢) as well. Again, we have to underline that ross-transitivity and
global cross-clustering coefficient are based on a similar concept, but capture distinct v. -~ different network
properties as global versus mean local network features.

Regarding the quantification of shortest path-based characteristics, we defi- e t. e cross-average path
length

o 1

oo Ly, (24

« BPEV(quVﬁ
and the global cross-efficiency
-1

1

B _ —1

&= N.N, Z lnq (25)

atp PEVa,q€V3

Unlike C*? and T8, £ and £*7 are (as shortest path-based neasrres) symmetric by definition, i.e.,
L8 = £P> and £*8 = £5, In the case of disconnected network ‘or poncats, the shortest path length dy;
is defined as discussed for the corresponding local measures.

In the same spirit as mentioned above, other single network che. acteristics [22, 42] can be adopted as
well for defining further coupled network measures. This inc*des m asures characterizing edges or, more
generally, pairs of vertices like edge betweenness or matchi. ~ inac _, further global network characteristics
(assortativity, network diameter and radius), mesoscopic structu. ~s (motifs), or even characteristics associ-
ated with diffusion processes on the network instead of su. “test paths (e.g., eigenvector centrality or random
walk betweenness). The selection of measures explicitlv mentic ~ed above reflects those characteristics which
have already been utilized in studying the interdepenc ~nce .. acture between complex networks in different
contexts [91, 92].

3. Recurrence networks in phase space

In this section, we introduce and discuss recurience networks (RNs) together with similar types of
phase space based complex network repres .... “ions of time series as an alternative framework for studying
recurrences in phase space from a geor etric pc'nt of view. We start with introducing the notion of a
recurrence plot (RP) [58, 94], which nrov.'es t.ie fundamental framework for the visual and dynamical
analysis of individual dynamical syster is. Subsequently, different types of related network representations are
introduced together with a detailed ¢ =cv .sior of the resulting network characteristics of recurrence networks
and their interpretation. In this ¢ ntexu, v highlight the capability of these networks to unveil geometric
characteristics associated with tb .. *ructural organization of the underlying system in its phase space, which
distinctively differs from other recurre. ~e based techniques like recurrence quantification analysis (RQA)
[95, 96], recurrence time stati,cic , or estimation of dynamical invariants from RPs. Finally, we close this
section by introducing and d cus ing different bi- and multivariate generalizations of the recurrence network
concepts and their respect’ /e inu. "retations, focusing on recent extensions of cross-recurrence plots [97, 98],
joint recurrence plots [99" anc multiplex recurrence plots [100].

3.1. Theoretical backr _ und

3.1.1. Phase space « nd attre -tor reconstruction

We start with a (1 =sibl- multivariate) time series {z;}}¥ ; with x; = z(¢;), which we interpret as a finite
representation o che trnjectory of some (deterministic or stochastic) dynamical system. For a discrete system
(map), the sam_ling of he time series is directly given by the map, whereas for a continuous-time system,
the time series va e« orrespond to a temporally discretized sampling of a finite part of one trajectory of
the system « ~vc. ~ined by some initial conditions together with the corresponding sampling rate.

In the case ~ observation functions not representing the full variety of dynamically relevant components,
we additionally . ssume that attractor reconstruction has been performed [6, 101-103]. More specifically,

when given a scalar time series {z;} (i = 1,...,N), we first convert the data into state vectors in some
appropriately reconstructed phase space. A common method from dynamical systems theory to define such
20
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a phase space is time-delay embedding [103]. In fact, the concept of a phase space - zpresentation rather
than a “simple” time or frequency domain approach is the hallmark of many met} ou = of nonlinear time
series analysis, requiring embedding as the first step. Here, we define Z; = (24, 7i_+, -+ Ti_(m-1)r) tO
obtain an m-dimensional time-delay embedding of z; with embedding delay 7 f' ¢ o\ taining state vectors
in phase space [103]. It has been proven that for deterministic dynamical syste. <. ’ae thus reconstructed
phase space is topologically equivalent to the original space if m > 2D g, wherc NDg 15 “he fractal dimension
of the support of the invariant measure generated by the dynamics in the trr~ (bu. ~ften at most partially
observed) state space. Note that Dp can be much smaller than the dime sioy ¢ the underlying original
(physical) phase space spanned by all relevant system variables.

From a practical perspective, when analyzing a scalar time series of »-atev. - origin, neither embedding
dimension m nor delay 7 are known a priori. The false nearest-neighbor (FNN, method [102] was introduced
to derive a reasonable guess of how to choose m based on studying whetl. ‘v or no proximity relations between
state vectors are lost when the embedding dimension is successive’, ncrew.cd. If a reasonable embedding
dimension is found, all dynamically relevant coordinates of the sys em - .e¢ . ppropriately represented, so that
all proximity relationships are correct and not due to lower-dimens.unal 1 ojection effects.

In a similar spirit, a delay 7 may be appropriate when the statis. ~al uependence between the components
of the embedding vector & approaches zero. For example, thi< can be chieved by choosing 7 corresponding
to the first root of the auto-correlation function (ACF) of a #ime . ~viec. This minimizes the linear correlation
between the components, but does not necessarily mean they a. independent. However, the converse is true:

if two variables are statistically independent they will b .. ... .ated. Therefore, another well established
strategy for determining 7 is to use the first minimum of ti.. time-delayed mutual information [101].
The aforementioned approaches to determining m ... = commonly work well for data from deterministic

dynamical systems. It is an important issue when deali. = vith experimental time series and we have to first
check if appropriate embeddings are applicable. Pi . *ical. -~ we need to show the dependence of any analysis
on the embedding explicitly. Let us first assume in t. < 1. "owing sections that a proper embedding has been

obtained, before discussing the possible effect ¢ ~mi~dding parameters on the reconstructed recurrence
networks in Section 3.6.2.

3.1.2. Recurrences and recurrence plots

Recurrence of states, in the meaning . ~at stat s become again arbitrary close to previous ones after some
time, is a fundamental property of det :rmin.. “i dynamical systems and is typical for nonlinear or chaotic
systems [16, 104]. From the set of (o .gin'« or reconstructed) state vectors representing a discrete sampling
of the underlying system’s trajectory | .., t} 2 chaotic attractor of a dissipative system), recurrences can be
visualized by recurrence plots (RP. [58], oi._mally introduced by Eckmann et al. [94]. The RP is a graphical
representation of the corresponcd ng . ~currence matrix R(g) that is defined in the standard way as

Rij(e) = ©(e — |7 — 7)), (26)

where ||-]| can be any normw ‘n phe. ~ space (e.g., Manhattan, Euclidean, or maximum norm). For convenience,
we will use the maximv a n rm in all following examples unless stated otherwise. A RP enables us to
investigate the recurrence. - the n-dimensional phase space trajectory through a two-dimensional graphical
representation R;; in * ..ms o: " 1ack and white dots indicating recurrent and non-recurrent pairs of vectors,
respectively. The al jorithm - parameter ¢ is a pre-defined threshold value which determines whether two
state vectors are clo.~ or r,t. The effects of £ on the resulting RP and their statistics will be further
discussed in Sect uu 3.6.1.

The basic p: nciple « £ a RP is illustrated in Fig. 4 for one realization of the Lorenz system (Eq. (A.1)).
Further more spe “ific a’ .ernative definitions of recurrences add dynamical aspects, such as local rank orders
or strictly pr ~"=l evolution of states (parallel segments of phase-space trajectory considered in iso-directional
RPs [105]). } r - more detailed overview, we refer to [58].

RPs of dyna. nical systems with different types of dynamics exhibit distinct structural properties, which
can be characterized in terms of their associated small-, medium- as well as large-scale features [58]. The
study of recurrences by means of RPs has become popular with the introduction of recurrence quantification
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Figure 4: Basic concepts beyond recurrence plots and the resulting recurrenc net .ork: (RNs), exemplified for one realization
of the Lorenz system (Eq. (A.1)) using the same time series as in Fig. 2(e). \a) A ¢ ate at time ¢ (red dot) is recurrent at
another time j (black dot) when the phase space trajectory visits its closc ~eigl..orhood (gray circle). This is marked by
value 1 in the recurrence matrix at (z,j). States outside of this neighborhood \ mall open red circle) are marked with 0 in
the recurrence matrix. (b) Graphical representation of the correspond. ~ recurre 1ce matrix (recurrence plot, Eq. (26)) and
adjacency matrix of the RN (modulo main diagonal). (c) A particul - pati. " * . RN for the same system embedded in the
corresponding phase space. Reproduced from [54] with permission by Wc '1 Scientific Publishing Co..

analysis (RQA) [95, 106]. The initial purpose of this fr»mework _.as been to introduce measures of complexity
which distinguish between different appearances of h™s '.ui,, since they are linked to certain dynamical
properties of the studied system. RQA measures use . e distribution of small-scale features in the RP,
namely individual recurrence points as well as di ou-al and vertical line structures. For instance, the
recurrence rate (RR) simply counts the density of recu ‘rence points of the matrix R(e) for a given threshold
¢ (Eq. (26)). RQA as a whole has been prove. to cuastitute a very powerful technique for quantifying
differences in the dynamics of complex systems ana has meanwhile found numerous applications, e.g., in
ecology [108], engineering [109], geo- and I sciences [110, 111], or protein research [112, 113]. For a
more comprehensive review on the pote .tials o1 this method, we refer to [58, 107, 114]. In addition, we
would like to remark that even dynamica. ‘nvar ants, like the K5 entropy, mutual information, or fractal
dimensions (i.e., the information and orrelatiow dimensions Dy, Ds) can be efficiently estimated from RPs
[58, 115]. Moreover, RPs have also ‘eer sucr ossfully applied to study interrelations, couplings, and phase
synchronization between dynamics . sysuw. ms (97, 99, 116-120].

In order to highlight different ~mains of recurrences in the RPs, some algorithms have been proposed
recently. For example, Pham et al. in.. ~duced fuzzy recurrence plots, which determine an optimal relation
between the observed states i p. 1se space and a number of predefined clusters [121]. This algorithm high-
lights the recurrence regions and thus, provides possibly clearer visualization of the underlying recurrence
structures. An alternative algo..*hm has been proposed in [122] to search for specific recurrence domains.
Here, intersecting e-balls aro .nd sampling points are merged into cells of a phase space partition, and a
maximum entropy princ., e .efir s the optimal size of these intersecting balls. This data-adaptive algorithm
for obtaining phase p- ‘“ition. 'as been found to perform better than techniques based on Markov chains,
which require an ad hoc pa tition of the system’s phase space. Along the same lines of research, another
algorithm has been 1 "oposer recently in [123] to capture the recurrence density structures in the RP.

3.2. Types of rc :urrenc. networks

3.2.1. e-recurren. > net jorks
The cruc . “~m of the recurrence network approach is to re-interpret the mathematical structure R(g)
as the adjacer. v matrix A of some adjoint complex network embedded in phase space by setting

A(e) = R(e) — 1w, (27)
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Figure 5: A graphical representation of the Lorenz attractor based on the re urr- .ce 1 atrix represented in Fig. 4. The color
of the vertices corresponds to their temporal order (from orange to bright grecn). Re oroduced from [54] with permission by
World Scientific Publishing Co..

where 1y is the N-dimensional identity matrix. The comple.. netw .« defined this way is called e-recurrence
network (RN), as opposed to other types of proximity-based netw ks in phase space making use of different
definitions of geometric closeness, e.g., considering k-nea. -t neighbors [54], which will be further discussed
below. Specifically, the sampled state vectors {z;} are interp. “ed as vertices of a complex network, which
are connected by undirected edges if they are mutuai. - civ e -0 phase space (i.e., describe recurrences). In
the remainder of this review, we will adopt the time indiw s 7, j, etc., of observations as vertex indices of the
corresponding time series networks to highlight the' (~uivalence whenever individual observations or state
vectors coincide one-by-one with the vertices of the ne . work representations (which is the case for recurrence
networks, but also visibility graphs and related .. ~tuo.. discussed later in this review). Notably, the binary
matrix A(e) retains the symmetry properties of Rz}, which implies that the RN is a simple graph, i.e., a
complex network without multiple edges o~ ~-loops (note that A;; = 0 according to definition (27)). We
show an example of such an unweighted -RN ne “work in Fig. 5.

One of the fundamental concepts of u."work heory is the notion of a path (Section 2.1). In an e-RN,
a path between two specified vertices and j 1. an ordered sequence of edges starting at ¢ and ending at 7,
with its path length I;;(¢) given by ‘e r amb r of edges in this sequence. An example of a path is shown
in Fig. 4(c). In the context of RN | we -an .hus understand a path as a sequence of mutually overlapping
e-balls Be(x;), Be(Tk, )s- .., Be(2, ), Belxj), where

l7'7./

Be(z) ={y[llz -yl <&}

is an open set describing a v.' .me with maximum distance ¢ (measured in a given norm) from z, and
B.(z;) N Be(zgy) # 0,.. , B {\xkl”‘ﬂ) N B.(xj) # 0. Note that e-balls refer to general (hyper-)volumes
according to the specif - nc.m c 10sen for measuring distances in phase space, e.g., hypercubes of edge
length 2¢ in case of the max. . norm, or hyperballs of radius ¢ for the Euclidean norm.

Following these ¢ onside: “tions, a shortest path is a minimum sequence of edges (connecting vertices in
mutually overlappin, e-balls between two fixed vertices (state vectors) ¢ and j. Note that a shortest path
does not need to »~ u.’ | .. In turn, due to the discrete character of a network, it is rather typical that
there are multif .e shor =st paths between some specific pair of vertices. In what follows, the shortest path
length will be dcnoted 2 I;;, and the multiplicity of such shortest paths as o;;, following the corresponding
general notation in.. cauced in Section 2.

We have "o e ..._asize that the network-theoretic concept of a path on a given graph is distinctively
different from " e trajectory concept that records the dynamical evolution of a system [53]. Furthermore,
RNs based on Eq. (27) can be generalized by withdrawing the application of a specific threshold, which leads
to weighted networks and unthresholded RPs (distance plots), respectively. For example, the unthresholded
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RP obtained from one trajectory of a given dynamical system may be re-interpreter as the connectivity
matrix of a fully coupled, weighted network in phase space.

Most of RN analysis has focused on the network representation using the adjacenc, matrix A(e)
(Eq. (27)) and the extraction of new network-theoretic measures, which will be re iew d below. We empha-
size that A (e) provides information on vertices and edges, but its graph structur.' lar outs can take variable
forms. Network visualization is a non-trivial task and there are many tools f_- tha, ~urpose in computer
science, e.g., spring-based layout systems, spectral layout method, tree layout algo. *hms, etc. These algo-
rithms have been well integrated in many popular network visualization pac.age | * ., Mathematica, Gephi,
and NetworkX. The network visualization shown in Fig. 5 has been create.' by the software package GUESS
using a force-directed placement algorithm. In [124], Yang et al. propos~ to .= a spring-electrical model
to explore the self-organized geometry of RNs. In this algorithm, the: simul. “e the recurrence network as
a physical system by treating the edges as springs and the nodes as . lectrice ly charged particles. Then,
force-directed node placement algorithms are employed to automat®__lly o._ wnize the network geometry by
minimizing the system energy. It has been shown that this self-ory aniz u  rocess recovers the attractor of a
dynamical system, which provides important insights for attractor 1cconst’ action from the adjacency matrix
[125, 126].

3.2.2. k-nearest neighbor networks
Besides the recurrence definition based on a fixed distance "hreshold € in phase space (i.e., equal neigh-

borhood volumes around all available state vectors), the: ... .i..native ways for defining recurrences and,
hence, RPs and RNs. For example, the original definition ~f a RP by Eckmann et al. [94] makes use of
k-nearest neighbors (i.e., a fixed probability mass ¢ .. - ~onsidered neighborhoods). Re-interpreting the

resulting recurrence matrix as the adjacency matrix o. a complex network leads to a different type of RN
[127], typically referred to as k-nearest neighbor n. . ork. “ince in this definition, the neighborhood relation
is not symmetric (i.e., x; being among the k neare:* n.'shbors of z; does not imply z; also being among
the k nearest neighbors of x;), the resulting n ..~~ks  ve in general directed graphs, and the local density
of unidirectional edges (as opposed to bidirectiona. "nes) is related to the gradient of the invariant density.

3.2.3. Adaptive neighbor networks

In order to circumvent the directedn -s of k-1 :arest neighbor networks, Xu et al. [50, 128] proposed an
algorithm for balancing the neighborho d rei.. *o ships in such a way that they become symmetric again. The
resulting networks embedded in phase spar 2, sometimes also referred to as adaptive nearest neighbor networks
[54], are conceptually more similar . tass’:al (e-)RNs, but still exhibit somewhat different topological
characteristics. In particular, this approac. helps to understand the superfamily phenomena of time series,
which concern the relative preval .nc. ~f motifs of the resulting networks. In particular, the motif distribution
of adaptive nearest neighbor networks ha., been empirically shown to allow a discrimination between different
types of dynamics in terms ¢ a ¢ flerent motif ranking [50]. Consequently, this approach has been mainly
used for such discriminatory . <k, including applications to turbulence phenomena, instrumental music [54],
fractional Brownian motic as ana . ~ultifractal random walks [129].

While these superfar .ly r aencmena have been found in time series from various origins, no fundamental
theories have been proposc ~ so f . in the literature to explain the corresponding empirical findings. Khol et
al. provide a heuristi explanav.on of superfamily phenomena by examining the dependence of the attractor
dimension on motif >revaler te [130]. Since the constructed networks inherently capture the proximity of
states, motifs represei. sver’ic arrangements of states in space, some of which are more or less likely to occur
as dimension ch .nges. Therefore, they found that the relative prevalence of motifs is strongly dependent
on the local dir ension f the space from which the state vectors are taken. Further evidence is given by
identifying compe ~hl= superfamily phenomena in networks constructed from states randomly distributed
in spaces of ‘a., >~ dimensions [130].

3.2.4. Algorithn. '« variants
A detailed discussion of the differences between e-RNs, k-nearest neighbor and adaptive nearest neigh-
bor networks introduced above has been recently provided in [54]. While these three classes of time series
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networks exhibit very strong conceptual similarities (the same applies to the correlati m networks [57] dis-
cussed in Section 3.11.2 if interpreting the correlation coefficient between two suffici n. - high-dimensional
state vectors as a generalized distance), the approach proposed by Li et al. [131-134] can be understood as
being derived from the RN idea. Here, for a set of m-dimensional embedding vec’ ors, all mutual Euclidean
distances are computed. Based on the maximum distance value d,,q.(m), the o ~es’i0ld distance of a RN
is taken as (m) = dpqaz(m)/(N — 1). This procedure is repeated for differc. + m, .nd the critical value
of the embedding dimension for which the resulting network gets completely disco.. ~acted is interpreted as
a complexity index [133]. However, it has not yet been demonstrated the  thi ~leorithmic approach has
any conceptual benefits in comparison with the classical RN measures lin. tr .nsitivity (see Section 3.5.5)
obtained for a fixed embedding dimension. Moreover, we note that the maxu. *m distance d,,q, between
embedding vectors may depend on the embedding dimension in some »jeculia. form, e.g., may be indepen-
dent for the supremum norm while increasing monotonically for most sther ¢ ymmon norms [135]. In this
regard, it is commonly recommended to study fixed quantiles of t' _ disvw..ce distribution function rather
than fixed multiples of some location parameters (like mean, med an ¢ u.ximum) of the latter [135].

Another conceptual approach loosely related to RNs provides .ue fo .mdation of the frequency-degree
mapping algorithm introduced by Li et al. [136]. Here, the re. -lting time series networks contain two
types of edges: (i) temporal edges connecting subsequent points in tin. 3, and (ii) proximity edges containing
observations of similar values, where similarity is defined bv an ™iti .1 grouping of the data into a discrete
set of classes, and observed values being connected if and oni, f they belong to the same class. Note that
this is conceptually related to the idea of coarse-graining ' ... ..wasition networks that will be discussed in
Section 5.3. Here the definition of a class is equivalent to a . ~currence interval that is defined by amplitude
quantization, for instance, the recurrence interval le ;' T = A/Q where @ is the quantization level and
H is the amplitude range of the time series. Notably, v e .atter approach combines the classical recurrence
idea and basic concepts of symbolic dynamics [13% ‘see . ~ction 5.1). In this spirit, the resulting network’s
adjacency matrix is given as the recurrence matrix asoc. *ed with a symbolic recurrence plot [122, 138, 139]
plus a “stripe” around the matrix’ main dia_ .. ~! The frequency-degree mapping algorithm has been
successfully applied to characterizing signatures o. ~arious types of ventricular arrhytmias in human heart
beat time series [136], stock markets [133], and air quality indices [134].

In order to highlight the recurrence d smai. ~ in networks, the fuzzy recurrence network approach has
been proposed in [140], which shares m v simi wities with fuzzy recurrence plots [121]. Furthermore, a
grammatical rewriting algorithm over the .. -1 cence matrix has been proposed to search for recurrence
domains in [122], which presents a s ymb Jlic description of the recurrence properties of a time series. It
is interesting to see that this algor..™» yir.ds an optimal symbolic recurrence representation revealing
functional components of brain si¢ 1als [12.' Note that the computation of the recurrence matrix is the first
step of this grammatical algoritt m.

The computation time of a RN is proportional to N2 where N is the number of time points, which calls
for more efficient algorithms or ¢ mstructing RNs for long time series. In this case, on the other hand, we
are more interested in the ev.'1*.on of the RN over time. To this end, sliding window techniques are often
suggested but require che «ing tu. dependence of the corresponding results on the window size [141, 142].
Another idea is to perfor n cc arse sraining of the original RNs [123], which originates from the idea of meta-
recurrence plots [143]. In * t4], .ne authors proposed to first divide the original long time series into short
segments and RNs ar _ vnen coustructed for each piece. The next step is to build joint recurrence networks
for each pair of winc >wed se, ments. Then, the long-term dynamics is characterized by the variations of the
network properties co. *nuts 4 for these meta-time series.

3.8. Complex n twork ¢ raracteristics of RN

Based on the 1. int~ pretation of the recurrence matrix R(e) as the adjacency matrix of an adjoint RN, we
can utilize tl - ...~ toolbox of complex network measures (see Section 2.2) [3, 4, 22, 42] for characterizing the
structural org. 0" zation of a dynamical system in its phase space. Notably, this viewpoint is complementary
to other concep. * of nonlinear time series analysis making use of RPs. For example, RQA characterizes
the statistical properties of line structures in the RP, which implies an explicit consideration of dynamical
aspects (i.e., sequences of state vectors) [58]. In turn, RNs do not make use of time information, since network
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properties are generally invariant under vertex relabelling (i.e., permutations of the ¢ der of observations)
[53]. In this spirit, RN analysis provides geometric instead of dynamical characte s.'~s. This idea of a
geometric analysis is similar to some classical concepts of fractal dimensions (e.g., box-countiw,, or correlation
dimensions), where certain scaling laws in dependence on the spatial scale of resol itio  (corresponding here
to €) are exploited. In turn, RN analysis can be performed (as RQA) using c.'v - single fixed scale (¢)
instead of explicitly studying scaling properties over a range of threshold valu. - We -ill further elaborate
on this idea in Section 3.5.5.

The distinction between dynamical and geometric information implies “nat * case of RN analysis, the
typical requirement of a reasonable (typically uniform) temporal samplii., of the considered trajectory is
replaced by the demand for a suitable spatial coverage of the system’s att-~cto. "~ phase space. Specifically,
under certain conditions the latter could also be obtained by consider ng an . 1semble of short trajectories
instead of a single long one. If the trajectory under study is relat. 7ely de isely sampled, trivial serial
correlations can lead to a selection bias in the set of sampled state . :ctoi., vhe latter could be avoided by
reasonable downsampling. In the same context, the possibility ¢ uti’.z1. ¢ Theiler windows for removing
edges representing short-term auto-correlations (e.g., recurrence pomts ¢ ose to the main diagonal in the
RP) should be mentioned as another strategy based on a someww. * duierent rationale [53]. However, from
a conceptual perspective, downsampling can provide an unhiased sa1 pling of the attractor as long as the
fixed sampling time does not correspond to any integer multiple ¢ so e of the system’s natural frequencies.
As an alternative, bootstrapping from the set of available su. ‘e vectors provides another feasible option,
which should be preferred if a sufficiently long time ser” _ . «.uuable. In general, numerical experiments
and different applications suggest that stable estimates of 1.7 characteristics can often already be obtained
using a sample size of N ~ O(10%...10%) data point: 2" 142).

In Section 2.2, we have provided a general review o. v .rious network measures characterizing the struc-
tural properties of a complex network as denoted . the adjacency matrix A. In this section, we further
discuss the physical interpretations of these measure. in ‘~rms of phase space properties as captured by RN
representations. In what follows, we will denc . ~~me basic properties computed from a RN consisting of
a finite number N of state vectors as f , pointing .~ the fact that they are estimated from a given sample
of state vectors but shall characterize the entire trajectory of the system under study. In other words, we
have specific finite sample estimates for V.gs. \/)-(12). Furthermore, we will discuss a corresponding con-
tinuous framework describing all networ - charac eristics described below in terms of some fully analytical
theory in Section 3.4. In order to focu the . 'lc #ing discussion, we review only the possibly most relevant
characteristics associated with RNs. "JMor details including further measures can be found in [53, 145].

When considering the quantitativ. < iara‘ ceristics of complex networks (see Section 2.2), different clas-
sifications of measures are possib': [53, 1~.7,. First, we may distinguish measures based on the concept of
graph neighborhoods from those na. ‘ng use of shortest path-based characteristics. This is not an exhaustive
classification, since it potentiallv neglec.s other important network measures, e.g., such based on diffusion
processes or random walks o. th: network. Second, network measures can be classified into such making
use of local, meso-scale and ' al information. This scheme is widely equivalent to the first one in that
local information refers t- prope. ‘“es determined by the graph neighborhood of a given vertex, whereas
global information takes cor ribvtions due to all vertices of the network into account, which is common
for shortest path-based m. <ure . Finally, we can differentiate between measures quantifying properties of
single vertices, pairs . vertices, and the network as a whole. In the following, we will utilize the latter way
of classification, sin e it ap} sars most instructive from the applied point of view (i.e., we are commonly
interested in either t. ~ loc .1 or the global geometry of an attractor or, more generally, some trajectory
in phase space). rurthermore, we emphasize that in practice, the phase space properties captured by the
estimates of Rl charac eristics are obtained for a particular value of €. The effects of varying € on the
resulting network +ati gics will be further discussed in Section 3.6.1.

In the fi .. ">~ we will adopt the notation of indexing each vertex of a RN with the time index 4
(respectively,  «, etc.) of the corresponding state vector &; (etc.) instead of using the general vertex
indices p, ¢, r, s, 2tc. used in Section 2.2. From here onward, we will adopt this notation whenever vertices
can be uniquely identified with a point in time (respectively, the corresponding state or reconstructed state
vector), which will also apply to the visibility graph based methods to be discussed in Section 4, but typically

26



O©CoO~NOUIAWNER

(a) 0.03 (b) 1.00
0.02 0.71

0.01 0.42

0.00 0.13

0.14 7.04

0.12 5.19

40 0.09 3.35
30 0.06 1.50

-20 Y

20

Figure 6: Spatial distributions of vertex characteristics of the =-r.'" obtained for the Lorenz system (Eq. A.1) at the canonical
parameters (using the maximum norm with 5 = 0.01, »” — 20,0.9 and sampling time At = 0.1): (a) k;(e), (b) C;i(e), (c) &(e),

(d) bi(e). Modified from [53].

not to the transition networks reviewed ir Sectic ® 5. Moreover, some other types of proximity networks like
cycle networks and correlation networks, ~hich vill be introduced in Section 3.11, do not allow a unique
identification of individual states (ste e vecto., with specific nodes of the networks, so that we will also
adopt the more general index notati a tl sre.

3.8.1. Vertex characteristics

From the perspective of rect..renc. - it is reasonable to replace the degree k;(¢) (Eq. 1) of a vertex by a
normalized characteristic, the ae, -ee density p;(c) = ];\}(fi, which corresponds to the definition of the local
recurrence rate of the state %. 7 nis means that p;(¢) quantifies the density of states in the e-ball around
Zj, i.e., the probability th-t a 1. ~domly chosen member of the available sample of state vectors is e-close
to z,. An illustration of .his act for the Lorenz system is presented in Fig. 6(a); here, phase space regions
with a high density of p.'~t (i.e, a high residence probability of the sampled trajectory) are characterized
by a high degree dens* .

The local cluster: vg coefy ~ient (Eq. 3) Ci (€) measures the fraction of pairs of vertices in the e-ball around
#; that are mutually ~-close For vertices with k;(¢) < 2, we define C;(¢) = 0. It has been shown that the
local clustering ¢ .c.dcieny 1n a RN is associated with the geometric alignment of state vectors. Specifically,
close to dynami :ally inv wiant objects such as unstable periodic orbits (UPOs) of low period, the dynamics
of the system is « Fectiv Ly lower-dimensional, which results in a locally enhanced fraction of closed paths of
length 3 (“t "~»oles”) and, thus, a higher local clustering coefficient. The latter behavior is exemplified in
Fig. 6(b) for he Lorenz system, where we recognize certain bands with higher values of ¢ corresponding
to the positions of known low-periodic UPOs [53]. The deeper reasons for this behavior will be further
addressed in Section 3.5.5.

For estimating the closeness (Eq. 4) & () and local efficiency (Eq. 5) é;(¢), we again set d;; to the highest
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possible value of N — 1 for pairs of vertices that cannot be mutually reached. Both neasures exhibit the
highest values for vertices which are situated in the center of the RN (see Fig. 6(c® 1c. an illustration for
the Lorenz system).

The betweenness (Eq. 6) b;(e) of nodes in a RN can be interpreted as indi atir ; the local degree of
fragmentation of the underlying attractor [53]. To see this, consider two densely , ~n» lated regions of phase
space that are separated by a poorly populated one. Vertices in the latter will “huna. ” the shortest paths
between vertices in the former ones, thus forming geometric bottlenecks in -~ Riv. Tu this spirit, we may
understand the spatial distribution of betweenness centrality for the Lorenz s yste . ‘Fig. 6(d)) which includes
certain bands with higher and lower residence probability reflected in lowe. =v 1 higher betweenness values.

3.83.2. Edge characteristics

The matching index (Eq. 7) m;;(e) quantifies the overlap of the net. ork ne ghborhoods of two vertices i
and j. From the above definition, it follows that /m;;(e) = 0 if ||#; — *;}] > ze. In turn, there can be mutually
unconnected vertices ¢ and j (A;; = 0) with € < ||Z; — Z;|| < 2¢ th» ha e some common neighbors and,
thus, non-zero matching index. In the context of recurrences in puase s ace, m;;(¢) = 1 implies that the
states Z; and Z; are twins, i.e., share the same neighborhood in pha. ~ space [146]. In this spirit, we interpret
1;;(€) measures the degree of twinness of two state vectors Note th it twins have important applications
in creating surrogates for testing for the presence of compl v sy.. hr nization [146, 147].

As the node betweenness of a RN, the associated edge betwe. "ness (Eq. 8) l;ij (€) characterizes the local
fragmentation of the studied dynamical system in its pl.. & space.

For the specific case of e-RNs, we emphasize that there .. no simple correspondence between matching
index and edge betweenness, since both quantify di. -wuc.” 'y different aspects of phase space geometry.
Specifically, there are more pairs of vertices with non-ze. >~ matching index than edges, even though there are
also pairs of vertices with Bij(a) > 0 but 7;;(e) = “i.e., “here is an edge between ¢ and j, but both have
no common neighbors). However, for those pairs of v rtices for which both characteristics are non-zero, we
find a clear anti-correlation [53]. One interprev. ~w.. ~* his finding is that a large matching index typically
corresponds to very close states in phase space; suc.. nairs of RN vertices can in turn be easily exchanged as
members of shortest paths on the network, which implies lower edge betweenness values. A similar argument
may explain the coincidence between hig) edge . etweenness and low non-zero matching index values.

3.3.3. Global network characteristics

The edge density (Eq. 9) p(e). Twotably, “or a RN the edge density equals the recurrence rate RR(e)
of the underlying RP. Strictly spesking this is only true if the recurrence rate is defined such as the main
diagonal in the RP is excluded ir the same way as potential self-loops from the RN’s adjacency matrix. It
is trivial to show that p(e) is a nonc. -mically increasing function of the recurrence threshold e: the larger
the threshold, the more neight .~ can be found, and the higher the edge density.

The arithmetic mean of +.e Ic :al clustering coefficients C;(¢) of all vertices i (Eq. 10) defines the global
clustering coefficient C() in tu. 1sual way (see Section 2.2). Given our interpretation of the local clustering
coefficient in a RN, ¢ (€) can be interpreted as a proxy for the average local dimensionality of the dynamical
system in phase space. . mal gou.y, the network transitivity (Eq. 11) 7'(5) characterizes the effective global
dimensionality of the svste.. 7. Section 3.5.5, we will further expand this discussion by introducing the
corresponding conce ts of ¢'ustering and transitivity dimensions.

The average patl length Eq. 12) L exhibits an inverse relationship with the recurrence threshold, since
it approximates (~~nst. *' distances in phase space in units of ¢ [53]. More specifically, the average phase
space separatior of sta.s (d;;) serves as an e-lower bound to L, namely,

(dij) < eL. (28)
Interpreted gec - .etrically, this inequality holds because L approximates the average distance of states along

geodesics on the RN (which can be considered as the geometric backbone of the attractor) in multiples of
¢, while (d;;) gives the mean distance of states in R™(¢) as measured by the norm || - ||.
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3.4. Analytical theory of RN

As we will demonstrate in the following, the properties of RNs can be also desc ibe!" analytically sup-
porting their better understanding and, hence, applicability. For this purpose, we ~an exp.oit the formal
equivalence of RNs and random geometric graphs (RGGs), a well-studied concept m g aph theory and com-
putational geometry. In this section, we motivate this equivalence and demonstr. ~ aow the variety of RN
characteristics can be reformulated in the continuum limit N — oo for any fin. » € |1 *5]. This framework
allows gaining deep insights into the geometric organization of chaotic attract = by < »loring the multitude
of characteristics provided by complex network theory. Moreover, these .nals ... ' considerations will be
extended to inter-system recurrence networks in Section 3.9.

3.4.1. Preliminaries: random geometric graphs

Random geometric graphs [148] are based on a (finite) set of ve ‘ices ~andomly positioned in a d-
dimensional (d € N*) metric space according to some probabilit: aensity function p(#). In general, the
connectivity among this set of vertices is taken to be distance-de; en ¢nt, '.e., for two vertices ¢ and j, the
probability of being connected in the RGG has the form P(4;, = 1) = *||# — &;||) with some predefined
function f, which is monotonically decreasing. As a consequence, vatially close vertices are more likely
to be connected than distant ones. A particularly well stud: 1 specie case is f(6) = O(e — ) (4 denoting
here the distance between any two points in the considere’ met. - .pace as in Eq. (26)), often referred to
as RGG (in the strict sense). Notably, the latter definition ha. fundamental real-world importance (e.g.,
in terms of ad-hoc communication networks or, more g. “eral, contact networks) and matches that of the
adjacency matrix of a RN (Eq. 27) if we identify p(&) with v. ~ invariant density of the phase space object
under study (e.g., some attractor in case of a dissip. f1ve ., “em), and take the space in which the RGG
is embedded as that spanned by the respective dvnam, .l variables of the system. In this respect, for all
following considerations, it is sufficient to restric. v a.‘ention to the support of p(Z) (respectively its
closure), which is described by some manifold S = su»p(p) embedded in the considered metric space (e.g.,
the attractor manifold).

From a practical perspective, the spatial coverag. of p(Z) by the RGG’s vertices can be strongly affected
by the sampling, leading to a spatial clustering of vertices if the sampling frequency is close to an integer
multiple of the chaotic attractor’s charac’ eristic requency. In such a situation, it is advantageous to follow
alternative sampling strategies for p(Z). . ~te th .t for ergodic systems, sampling from one long trajectory,
ensembles of short independent realize 1ons o1 .* ¢ same system, or directly from the invariant density should
lead to networks with the same prcoert'ss a’ sufficiently large N. In practice, generating the RGG/RN
representation based on bootstrapring -om .he ensemble of available state vectors is often to be preferred
over a regular sampling of a giver trajectoiy, as discussed in Section 3.3.

As outlined above, the impor .ance ~f RGGs for the considerations on RNs is that some of their properties
(like the degree distribution [1 '2' or transitivity [150]) have been intensively studied for the generic case of
a hard distance threshold in ; ap . arbitrary probability density functions p(Z) for metric spaces of various
integer dimensions. For exam, ' Hermann et al. [149] give a closed-form expression of the degree distri-
bution for arbitrary p(Z) whereas Dall and Christensen [150] provide a deep discussion of the transitivity
properties of RGGs. Nc ablr, the iatter aspect has become particularly relevant in the interpretation of RN
properties (see Section 2.5.5, 28 well as those of some of their multivariate generalizations, as will be further
discussed in Section ,.9.

3.4.2. Analytical 7=scr., ** . of e-recurrence networks

By making 1 se of ti » fact that RNs are a specific type of RGGs, all relevant graph-theoretical measures
for RNs can be =een as discrete approximations of more general and continuous geometric properties of
a dynamical svstew. . underlying attractor characterized by a set S together with an associated invariant
density p(Z), ¥ ¢ .. This point of view allows obtaining deeper insights into the geometric meaning of
the network q. «ntifiers introduced in Section 3.3 and enables us to establish surprising connections to
other fields, e.g., the close relationship of tramnsitivity measures like the local clustering coefficient and
transitivity to the local and global fractal dimension of the dynamical system’s attractor, respectively [40]
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Figure 7: Schematic illustration of a set S (gray), where g(Z, %) denotes the geodesic dista. ~ between &,y € S (after [145]).

(see Section 3.5.5). In the following, we review a corresponding analy. ~al frs mework for general spatially
embedded networks which is specifically tailored for defining con’.uuous variants of the common discrete
complex network characteristics [145].

General setting. Let S be a compact and smooth manifold witi. » non-vanishing continuous probability
density function p : S — (0,00) with fs dZ p(Z) = 1. For the purpo e of the present work, we identify S
with the set of points defining the attractor of a (dissipative® dyi. mirc .l system. In case of chaotic attractors
in time-continuous systems, we obtain a closure of the open auv. active set by considering its union with the
set of (infinitely many) unstable periodic orbits embedd ... v.c attractor.

Continuous analogs of the discrete complex network cha. ~cteristics introduced in Section 3.3 should be
approximated by taking the limit N — oo and ¢ — . [_ ~*~ that the latter limit may not be assessible in
the case of fractal sets S, which we will not further cou i- er in the following). Here, “continuous” refers to
a network with uncountably many vertices and ec_.~ wh ~h is determined by the adjacency function

A(Z,g) = €= =l — 7)) — 6(F — 9) (29)

for all Z,§ € S, which is a continuous analog of the adjacency matrix (Eq. 27). In the latter expression,
0(Z —g) =1if £ = ¢, and 0 otherwise.

Shortest paths and geodesics. A large va. ~ty of omplex network characteristics introduced in Section 2.2
relies on the concept of shortest path . Exai. ~.es include closeness and betweenness centrality, local and
global efficiency, and average path le.gth In the continuum limit, we consider a path in S as a closed curve
described by a properly parametrized . 1ctir f :[0,1] — S, and define the associated path length

= s IS e fe)

n>0{t;} _, ;=1

0:t0§t1§-~-§tn:1}e[o,oo] (30)

where d(-) denotes some metr.. sed for defining distances on S. The geodesic distance between two points
Z,y € S, which serves as ' ae analog of the shortest path length on a network, is then defined as (cf. Fig. 7).

gt =inf {1(f) | F:[0,1] > 8, flo) =& f(1) =7} (31)
f
A path of length ¢g(Z, 7) is ca' ed a global geodesic on S. Depending on the specific geometry of the considered
set .S, the multip!” Uy o1 o.obal geodesics connecting £ and i may differ, including no, one, or even infinitely
many distinct g obal ge desics.
Regarding a ontinv «n limit for RNs, we note that shortest paths in such networks approximate global
geodesics or the unuerlying invariant set S in the limit of ¢ — 0 and N — oco. Specifically, in the latter
limit the sho. “est pach length [;;(e) between two points &;, ; € S behaves as

e lij(¢) = 9(%i, 7)) (32)
independently of the chosen metric [145].
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For defining betweenness centrality, we do not only require information on the lengt} s of global geodesics,
but also their total multiplicity o(¥,2;¢) as well as their multiplicity conditional ¢ . « +hird point Z € S
being part of the curve, denoted as o(¥, Z|%;¢e) in the following. The definition of the lav.>r quantity is,
however, not unique for a given finite €. Two possible, yet generally not equivaler ¢ ex dressions read [145]

o1(y, 217 €) (33)

|
\
&
O«)
E‘*

UQ(Q: Z]f, 6)

/ dt O — | Fu(t) -z, (34)

where f(;(t) denotes the family of global geodesics between ¢ and z. Note t' at this family can have un-
countably many members (to see this, consider, for example, the s7. of gevuesics between the two poles on
a sphere). In this case, the sum in Egs. (33) and (34) should be epls _ea by an integral. Furthermore, we
emphasize that the e-dependence in the multiplicities of shortest pauus is * nplicit rather than explicit, since
the chosen discretization level € can affect the effective “shape” . S and, hence, the positions of possible
edges in the considered space.

Local (vertex-based) measures. The local vertex measures as _~troauced in Section 2.2 can be derived ana-
lytically [145]. More specifically, the continuous e-degree dom i+

p@e) = duy) (35)
Jo(@
gives the probability that a point ¥ € S randc 'v dr.wn according to p falls into an e-neighborhood
B.(Z) ={g € S|||¥—9| < e} around Z. Its discrete ~si. nator is given by the classical degree density p;(¢).
Here, we adopt the notion of an invariant mee -~ d.y) = p(¥)dy adjoint to the invariant density p(:) in
order to shorten our notation.
In order to quantify the density of closed paths o1 length 3 in the network, we consider the continuous
local e-clustering coefficient

J L e n@) du() O — 7 )
p(Z;€)?

This measure characterizes the prohav." v tF at two points 3 and Z randomly drawn according to p from the

e-neighborhood of & € S are mut’ ally closc. than e. Its discrete approximation is provided by the classical

local clustering coefficient C;(¢) Eq. ™.
Let i € S be drawn randor-'r accoraing to p. For a fixed & € S, the continuous e-closeness centrality

- ( [ duta g(i‘”)) B (37)

(o) = [ autiy (1% :‘7))1 (39)

give the inverse e __acteu geodesic distance and the expected inverse geodesic distance of ¥ to some fixed &,
respectively. He 1ce, bo.1 measures quantify the geometric closeness of Z to any other point in S according
to the probabili. - dens'sy function p. By making use of RNs, they can be approximated by the classical
closeness cer*=ality ¢;(e) (Eq. 4) and local efficiency é;(¢) (Eq. 5).

Finally, ti » p obability that a point x lies on a randomly chosen global geodesic connecting two points
i,z € S accordi. ¢ to p is measured by the continuous e-betweenness centrality

//du du(z (1(/’2“: j). (39)

. (36)

and the continuous loca. <-e jicie .cy
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Its discrete estimator is given by the standard RN betweenness centrality b;(¢) (Eq. ») with the different
possible expressions for o (¢, Z]Z; ) (Egs. (33,34)) [145].

Pairwise vertex and edge measures. The continuous e-matching index

Jb.@n5. 5 W)
Is.@us. 7 W)

m(@.jie) = (10)
quantifies the mutual overlap between the neighborhoods of two vertices &, 7 € 5. In other words, m(Z, ¥; )
is the probability that a point Z' € S randomly chosen from B, (Z) accorr*'“g tu  is also contained in B (%)
and vice versa. For & — ¢, we have B.(Z) — B.(¥) and, consequently, r «(Z, ¢; .\ — 1, whereas m(Z, ¢;¢) =0
if |& — g]| > 2¢. As in the case of the other measures described above m(Z,7,¢) can be approximated by
the discrete RN matching index ;;(¢) (Eq. 7).

Note again that m(Z, ¥; ) does not require mutual e-closeness detv e & and ¢ (L.e., || — 7| € (e, 2¢) is
possible). In contrast, the continuous e-edge betweenness

e (Hv ’éﬂ\fv g;g)

(with o(Z, Z’|Z, 7;¢) denoting the number of global geodesics b. "ween Z and Z’ containing both Z and ¥
under the condition ||Z — ¢]| < e, and o(Z, Z’;¢) the tou.' number of global geodesics between Z and Z’)
is a measure whose discrete estimator by (e) (Eq. 8) i« relateu to the presence of an edge between ¥; and
Z;, ie., |Z; — &;|| < e. However, although this proper v I s veen originally introduced as an explicit edge
property, it can be understood in a more general vav as  two-vertex property such that b(Z, ¥; ) measures
the probability that two specific (not necessarily ¢ ~ic2) points & and § both lie on a p-randomly drawn
global geodesic connecting two points 2,2 € S and re mutually closer than e. Further generalizations
towards n-point relationships are possible, but 1. * msu uctive within the scope of this work.

Global network measures. The continuous -~ ~Jae density

v = [ au@ ol (12)

is the p-expectation value of the conuv. "1 us ¢ degree density and approximated by the discrete edge density
p(e) of a RN (Eq. (9)).
In the same spirit, the contir 4o~ global e-clustering coefficient

Cle) = /S dp(F) C(:e) (43)

is the p-expectation valur of *he continuous local e-clustering coefficient. Its associated discrete estimator
is the classical global { Vat s-St ogatz) clustering coefficient C(¢) (Eq. 10). As an alternative measure
characterizing geometric tra. ~it vity, we define the continuous e-transitivity

! ¥)d, Oe—|Z—-9)OE—-|ly—2|) B —|z-%
T(e) = S Js @ u( ) (e—| yll)ﬁ( - 19 II)A( - I ||)7 (44)
fffsdu (@ du() 8 - 7 — 1) (e — 17— 7I)
which gives the yrobabi ty that among three points Z, %, 2’ € S randomly drawn according to p, ¥ and 2" are
mutually closer tL. = given they are both closer than e to #. The corresponding discrete estimator is the
RN transitiv vy , [ (Eq. 11).
As examplc  of shortest path-based characteristics, we define the continuous e-average path length
L 9(Z,7)
£ = [ [ du(@) du(e 2 (15)
s
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and the continous global e-efficiency

£(e) = ( [ [ aute) autan (9(”)> (46)

which measure the expected geodesic distance and the inverse of the expectel invei. > geodesic distance,
respectively, both measured in units of € between two points x,y € S drawn »  dom., according to p. Their
discrete estimators are given by the classical RN average path length ﬁ(a) (".q. 1, .~d global efficiency E (e)
(Eq. 13), respectively. Notably, we can reformulate £(e) as the p-expectatio.. 7 due of the inverse continuous
e-closeness centrality,

£6e) = [ duta) e@ie) (47)

and £(g) as the inverse p-expectation value of the continuous loca’ e-eff ‘ency

-

£ = ( [ auta) etz ) (1)

Further characteristics. The selection of measures discusse. abov ' far from being complete. Continuous
versions of further complex network characteristics, such as ass. “tativity, network diameter and radius, as
well as network motifs are discussed in [145], where als, "ome outlook on corresponding generalizations of
other measures like eigenvector centrality or random walk be -veenness have been given. Here, we restrict
ourselves to the measures discussed above (Eqs. (35, ‘40 , ‘nce they have been most commonly used in
recent applications of the RN framework.

3.5. General properties of recurrence networks

With the general RN framework (Section 3.3) ¢ ~d tuc associated analytical treatment of RNs (Section 3.4)
in mind, it is possible to study the properties of Riv., as well as their multivariate generalizations from a
solid theoretical basis. In the following, we ..." first discuss some general aspects of complex networks often
found in real-world systems, such as sma’.~world ffects, the emergence of scale-free degree distributions, or
assortative mixing (i.e., the tendency of ver. ~es t , connect with other vertices that exhibit a similar degree),
regarding their presence or absence ir RN-. Suusequently, we will turn to the transitivity characteristics of
RNs, motivating their particular usc “ln ss fc - detecting geometric signatures of qualitative changes in the
dynamics of a single system.

3.5.1. Degree distributions of KE.Ns

A general analytical expr:ssi n for the degree distribution p(k) of a RGG has been given by Her-
rmann et al. [149]. For thic ~ur ose, let us make the following assumptions: (i) The system under study
is ergodic. (ii) The sampl- d tra, ~tory is sufficiently close to its attractor, i.e., we exclude the presence of
transient behavior. (iii) "che sampvling interval is co-prime to any possible periods of the system. If these
three conditions are mey, *'.e ve tices of the RN can be considered as being randomly sampled from the
probability density fu- _lion p ") associated with the invariant measure u of the attractor [151].

For a RGG with an arbi. -ary p(Z), the degree distribution p(k) can be derived from p(Z) in the limit of
large sample size N « -

p(k) = / 47 p(E)e P (ap())* /k! (49)

(representing an 7. i nsional integral in case of an n-dimensional system) with a = (k) / [ dZ p(Z)? [149].
In order to ‘wua.. *~nd this relationship, note that for each Z, the probability that a sampled point falls
into the e-bali ~ atered at & is approximately proportional to p(Z). Hence, the degree of a node at Z has a
binomial distribv “ion. For sufficiently large N, the latter can be approximated by a Poissonian distribution
with the parameter ap(¥), leading to Eq. (49).
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Figure 8: (a) Complementary cumulative distribution function F'(k) = > 77_ =".) fo RNs obtained from the z-component
of the first return map of the Réssler system (with a = b = 0.2, ¢ = 5.7 "~ Eq. (A 7,) through the y = 0 plane, using edge
densities p1 = 0.02% (o), p2 = 0.03% (e), p3 = 0.05% (>), and ps = 3% (+). *U curves have been obtained as mean values
taken from 5 independent realizations of the system with length N = 2 x 10% a1 1 using the Euclidean norm. For p1 to p3,
we find power-law behavior with a characteristic exponent of v = 2.16 = = 93, w! :reas no clear scaling region is found in the
denser RN with edge density ps4. (b) PDF of the x values, where pow. law s...ped singularities are observed. Redrawn after
[153].

The degree distribution p(k) of RNs for a specific .. ~ of one-dimensional maps (i.e., the Logistic map),
Eq. (49) can be explicitly evaluated, leading to a gener. | - naracterization of the conditions under which SF
distributions can emerge in RNs [152], as shown . Fig. 8(a). When projecting higher-dimensional time-
continuous systems to such one-dimensional maps . v .. aking use of appropriate (Poincaré) return maps,
the corresponding considerations can be gener '~~d tc such systems, given the specific Poincaré surface is
“representative” for the system’s geometric strucv. ~e (Fig. 8(b)). A detailed discussion has been presented
in [153]. To this end, we only recall the main result tnat when the system’s invariant density p(Z) exhibits
a singularity with a power-law shape, Eq. +v) . nplies that the resulting RN’s degree distribution must also
display a power-law in the limit N — ¢ - for sut ciently small €. In turn, if € is chosen too large, the SF
behavior cannot be detected anymore. since * i masked by too large neighborhoods of the points close to
the singularity. Figure 8 demonstrate , thr latter effect for the specific case of the Rossler system (Eq. A.2).

Notably, it is not trivial to p ovide «. exhaustive characterization of the conditions under which SF
distributions can emerge for hig’ e1 'imensional systems. As a consequence, generally applicable necessary
and sufficient conditions for the presenc: of power-laws in the degree distributions of RNs have not been
established so far. Based on .he egree distribution p(k), some higher-order statistics have been proposed
in [154] quantifying heteroge. ~it" properties of the connectivity.

We note that in gener .« comp’ ~x systems, the emergence of power-laws is often associated with a hier-
archical organization rel .ted .o certain fractal properties. In contrast, for RNs it has been shown that the
presence of power-laws is .. - dir ctly related to some (global) fractal structure of the system, but rather the
local shape of its invs ant dencity. Consequently, although there are examples of dynamical systems where
the scaling exponent of the ¢ >gree distribution coincides well with the associated fractal dimension, there is
no such relationship .. genr al. It will be a subject of future studies under which conditions regarding the
structural organ’_ation ot the attractor, fractal structure and power-law singularities are sufficiently closely
related so that he RNt degree distribution allows quantifying the system’s fractal properties.

3.5.2. Smal . ' effect

Since smau v orld networks are characterized by both, a high clustering coefficient and short average
path length, it 1. clear that RNs cannot obey small-world effects [155-157]: although they may exhibit a
high degree of transitivity (typically depending on the specific system under study), for any fized value of
e, the average path lengths can only take specific values, which become independent of the network size IV
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in case of sufficiently large samples. On the one hand, for any chosen pair of vertices ¢ «nd j at positions &;
and #;, the shortest path length is bounded from below as di; > [[|Z; — ;| /€] (ves se. “ively, the geodesic
distance on the attractor S divided by the recurrence threshold €). Specifically, each shortest , ath length will
converge to a finite value for N — oco. On the other hand, due to the finite diamr :ter »f chaotic attractors,
the average path length £(¢) cannot exceed a maximum value of [max; ;{||Z; —.” I} €] independent of N.
Hence, the average path length is bounded from above by a value independent ~f N, -hich is distinct from
the common behavior of SW networks (ﬁ ~ log N) [79]. Moreover, as another imme."*ate consequence of the
latter considerations, we observe that £ ~ e~ [53]. This implies that by t.nin - ~ it is possible to achieve
any desired average shortest path length L; this fact notably reduces the ~vo'inatory power of this global
network characteristic. Adding sufficient amount of noise or increasing **e tn. *<hold & comparable to the
attractor size, SW properties may be numerically observed for RNs [1" 6, 158;

3.5.8. Assortative vs. disassortative mixing

Unlike SW effects and SF degree distributions, there are hardly any .va. able results regarding the mixing
properties of RNs. In general, RNs often obey a tendency towards suowir | assortative mixing (i.e., vertices
tend to link to other vertices with similar degree), which is reas. ~abie in situations where the invariant
density p(Z) is continuous or even differentiable, which is surnorted L r recent numerical results [53, 142].

3.5.4. Path-based characteristics

One main field of application of RQA as well as o. <1 yuautitative approaches to characterizing the
distribution of recurrences in phase space (e.g., recurrence ‘me statistics) is identifying and quantifying
different degrees of dynamical complexity among reai «a... - ~f the same system under different conditions
(e.g., different values of the control parameter(s)), or eve » within a single time series given the system is non-
stationary [58]. While the line-based characterist. ~ ~f KA are founded on heuristic considerations (e.g.,
the higher the predictability of the observed dynamu. s, . e longer the diagonal line structures off the main
diagonal should be), we have argued in Section £ - .I.>* » Ns have an analytical foundation in RGGs. Notably,
the corresponding characteristics are based on the s.. me binary structure (the recurrence matrix) as the RQA
measures. Hence, both concepts allow deriving a similar kind of information, with the important difference
being that RQA quantifies dynamical pror erties, whereas RNs encode topological /geometric characteristics.
However, since both aspects are ultimatc - linkec in the case of chaotic attractors, this general observation
suggests that RN analysis is in princir .e sun.™': for characterizing dynamical complexity in the same way
as other established concepts. There’ore, one natural question arises: How do RN measures perform in this
task, and which of the multiple possiL.~ netv ork measures are particularly suited for this purpose?

The latter questions have bee « the ma.a motivation behind much of the early work on RNs focussing
on numerical studies of various paic 'igmatic model systems for low-dimensional chaos [52-54, 152, 159—
161]. These studies suggest the* for characterizing dynamical complexity, global network characteristics are
conceptually easier to use a’ d cc ald provide potentially more stable and distinctive results than certain
statistics over local network . -~ erties such as the distributions of vertex degrees [162] or local clustering
coefficients [161]. Among ’ae set o1 ossible global RN measures, two properties have been found particularly
useful: network transitiv .ty ~ an’ average path length L.

Regarding L, the disci. nin sory skills concerning different degrees of dynamical complexity can be
understood by the fr ¢t tha* for time-continuous systems, chaotic systems can display different degrees of
spatial filling of the “popula ed” hyper-volume in phase space, i.e., a high (fractal) dimension of a chaotic
attractor close to the 'mte or) dimension gives rise to a more homogeneous filling than lower ones, which
has a natural ge metri- consequence for the possible path lengths between pairs of sampled state vectors on
the attractor. I owever, it needs to be noted that quantifying dynamical complexity by means of L suffers
from two importa..’ ' uwbacks:

On the «ne .. 7, the measure is not normalized and depends crucially on the choice of . Hence,
working in difi. ~ :nt methodological settings (e.g., using fixed recurrence thresholds € versus fixed recurrence
rates RR = p) ca > provide potentially ambiguous results, since numerical values of L cannot necessarily be
directly compared with each other.
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On the other hand, the system’s dynamical complexity influences the qualitative } chavior of L, which
further depends on whether the system is a discrete map or time-continuous. In the ia.or case, a periodic
orbit would result in a higher £ than a chaotic one, since a chaotic attractor is a “spau. ly extended”
object in phase space on which there are “shortcuts” between any two state - ecti rs connecting points
corresponding to different parts of the trajectory [53]. In turn, for discrete map. = - eriodic orbit contains
only a finite set of p mutually different state vectors, so that for sufficiently 1.~ ¢ a.. ! large N, the RN is
decomposed into p disjoint, fully connected components. In such a situatior witn. ~ot just single isolated
vertices, but a completely decomposed network, a reasonable redefinition < £ - nld be summing up only
over pairs of mutually reachable vertices in Eq. (12). Consequently, we =0 oach the minimum possible
value of £ =1 [52], whereas chaotic orbits typically lead to larger L.

According to the above observations, there is no fully developed thec etical . nderstanding and description
of the influence of attractor dimensionality on the resulting L beyond he gen ral considerations presented
in Section 3.4. Corresponding further investigations might be an ir’ _ estu., subject for future studies.

3.5.5. Dimension characteristics by clustering and transitivity

As mentioned in Section 3.5.1, the scaling exponent of a possi.'» power-law degree distribution has no
direct relationship to the fractal dimension of the system [1521. In tur \, such a relationship naturally exists
when studying the corresponding integrated measure (i.e the ~de- density p(e)) in terms of its scaling
properties as the recurrence threshold is systematically varie. The latter approach has been extensively
discussed in the literature in connection with the estimat’ ... v. uyuamical invariants from RPs [115, 163] and
gives rise to estimates of the correlation dimension Dy. Nota.'v. one of the classical approaches to estimating
D5 from time series data, the Grassberger-Procaccia wg. *hm [19, 164], makes use of the correlation sum,
which can be easily formulated as a special case in terw s of the recurrence rate or RN edge density [163].

The relatively high computational complexity ¢ the latter approaches to estimating the correlation
dimension from a RP stems from the fact that a sequ mce of RPs for different values of € needs to be studied
for obtaining a proper scaling relationship. Ir ...~ = shown in [40], network transitivity 7 provides an
alternative approach to defining and estimating a 'ifferent notion of fractal dimension. For this purpose,
note that for a classical RGG embedded in some integer-dimensional metric space, the expected T (which is
numerically estimated as the ensemble me «n ov. - sufficiently many realizations of the stochastic generation
of the RGG) is an analytical function of he dime 1sion m, which decays (exactly when using the maximum
norm, otherwise approximately) expor ntian, w.th m [150]. This analytical relationship can be generalized
to attractor manifolds with non-inte jer f actal dimensions, which can in turn be estimated from the RN
transitivity by inverting this function.

Transitivity dimensions. For the ge. ~ral case, the idea formulated above leads to a pair of quantities referred
to as upper and lower transitivity dime..sions [40],

uw log(7 (¢))
Dy = hmesup m, (50)
Dy = hmainfm, (51)

where the two defin tions o1 ginate from the fact that certain systems (in particular, chaotic maps whose
attractors form Cant. - sets a at least one direction in phase space [40]) can exhibit an oscillatory behavior
between some uy per and lower accumulation point of 7 () as the recurrence threshold e is varied (Fig. 9(a)).
For systems wi hout suh fragmented structure, the upper and lower transitivity dimensions practically
coincide, which «''ows :stimating them from the sample RN transitivity with reasonable accuracy using
only a single .. “vark instance with one suitably chosen value of €. A detailed analytical investigation of the
qualitatively *ff' rent behavior of the RN transitivity for chaotic attractors with continuous and fragmented
invariant densit. s in dependence on ¢ will be subject of future work. Note that in the above definition, we
do not explicitly consider a scaling behavior for e — 0, since the definition does not explicitly contain € (as
it is the case for other classical notions of fractal dimensions), but makes use of normalized characteristics
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Figure 9: (a) Transitivity dimensions D7 of the Hénon map (Eq. A.4 f~r one rea. zation with initial condition (z,y) = (0,0),
the first 1000 iterations have been removed from the trajectory to avoid ti. <ient sehavior) for different N. Dashed horizontal

lines indicate numerical estimates f)g—’l (Egs. (50, 51)). (b) Same for v. ~ Rossler system (Eq. A.2) with different lengths N
(sampling time At = 0.05, first part of the trajectory removed to avoid noss " le transient dynamics). Note the different scale
on the z axis. Modified from [40].

with a probabilistic interpretation (cf. Section 3.4). . ~nis spirit, the fraction on the right-hand side of
the Egs. (50) and (51) is a well-defined object fo. =ch \~lue of ¢ (i.e., the specific scale under which the
system is viewed) individually. Figure 9 shows the . en. -ior of the scale-dependent transitivity dimension
estimate D(¢) = log(T(€))/log(3/4) for the "-~n 1. ap (Eq. A.4) and the Rossler system (Eq. A.2) for
three different RN sizes. We note that very long rea. =ations are typically required to numerically capture the
local features of the chaotic attractor of the Hénon map with reasonable confidence as shown in Fig. 9(a). The
larger N, the better the estimated values of ti.'z measure obtained for fixed € approach stationary values
corresponding to the upper and lower ! ansitivi y dimensions. In contrast, for too small NV, we observe
significant deviations from the asympt sticaw., e timated values, which becomes particularly important for
e —0.

In the case of the Rossler systen., ~ 2 ob ain similar results shown in Fig. 9(b). We clearly recognize
that ZA)T(e) assumes approximate! ; stable [ .e., N- and e-independent) values if the recurrence threshold is
chosen sufficiently large. In gene a1, “here exist two limits that need to be taken into account: For too large
recurrence rates, the RN chara~teristics lose their discriminatory skills, since too many edges are present
masking subtle small-scale p-opes sies of the attractor [40, 160]. In turn, if ¢ is too low (e.g., if p is below
the RN’s percolation thresho. ™ 145], the network decomposes into mutually disjoint components, and the
resulting network charact cistics « n become ambiguous. In the considered example of the Rossler system,
this decomposition is m .unly cau~ed by the rare excursions of some cycles towards larger z values, which
give rise to a poorly popu. ted egion (low p(Z)) of the attractor. In order to properly cover this part of
the attractor for a gi en €, mauy samples (i.e., a large network size N) are necessary. Otherwise, the edge
density p starts sati -ating a e gets smaller (at least in the regime where most vertices close to the z = 0
plane are still conneci. 1 cf  Fig. 9(b)), and the transitivity dimension estimates strongly deviate from their
expected values

Notably, the analyt1 al relationship in Egs. (50), (51) between the effective (geometric) dimension of
chaotic attractors ~»4d (N transitivity provides the theoretical justification and foundation for applying T
as a charact ... Jiecriminating between high and low dynamical complexity of chaotic attractors. Unlike
for [Z, the trai i 1vity shows qualitatively the same behavior for discrete and time-continuous systems and
is normalized, sc that its values can be directly used as a quantitative measure of dynamical complexity
associated with the effective geometric dimensionality and, hence, structural complexity of the attractor in
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phase space.

Local clustering dimensions. With the same rationale as for the global network transitivi. -~ we can make
use of the local clustering properties of RNs for defining local measures of attractc. a. nensionality, referred
to as upper and lower clustering dimensions [40]:

log(C(%;¢))

Dg(z) = limssupm, (52)
DLF) - nmeinfw. (53)

Following the same argument as for the (global) transitivity dimensi ns, we lo not need to consider the
limit € — 0 here.

With similar considerations regarding the possible existence of two . *inct accumulation points of C(&)
as € varies, we may utilize this framework for characterizing the . * -wis : dimension of chaotic attractors
in a unique way without making explicit use of scaling characte. “tics __ 1 the common point-wise dimen-
sions [40]. However, we need to keep in mind that the considered « »ncept of (geometric) dimensionality
is largely affected by the profile of the invariant density, e.g., “he ex stence of sharp attractor boundaries
or supertrack functions [40, 53, 159]. For example, if the « ‘racior has distinct tips (e.g., in the case of
the Hénon system [40, 53]), the geometric dimension at theee n~ g is effectively reduced to zero, which is
reflected by C; = 1 for state vectors Z; sufficiently close to “he tips. A similar behavior can be observed for
the logistic map at the attractor boundaries and the ~nertrac.. functions [40, 53, 159].

The latter observations point to a prospective a Hlic stion of the local clustering properties of RNs.
In case of chaotic attractors of time-continuous d- ~amic 'l systems, it is known that an infinite number of
unstable periodic orbits (UPOs) provide the skeletoi. o1 “he chaotic dynamics and they are densely embedded
in the attractor. The localization of such UP(Q«< is, huwever, known to be a challenging task. Since UPOs
are relatively weakly repulsive (from a practical . ~speciive, those UPOs with low periods are typically least
unstable), a trajectory getting close to the vicinity o. an UPO will stay close to this orbit for some finite
amount of time [165]. As a result, the dyr ... < close to UPOs is quasi one-dimensional, and state vectors
sampled from the trajectories approxim- ce some lower-dimensional (in the limiting case one-dimensional)
subset of the attractor manifold. In such a -se. .he above theoretical considerations suggest that the local
clustering coefficient C; of vertices i ¢! Jse +5 low-periodic UPOs should be higher than the values typical for
other parts of the chaotic attractor. Th', cor ceptual idea is supported by numerical results from [53, 160]
(cf. also the band structures wit} incre. e . C; in Fig. 6(b)), but has not yet been systematically applied
to the problem of UPO localizati ,.. Notably, the detection limit of UPOs should be ultimately determined
by the recurrence threshold € in conju.. *ion with the RN size N. Specifically, for every finite € > 0, there
are infinitely many UPOs inte sec ‘ing with the e-neighborhood of some point Z; in phase space, whereas we
will (for a finite sample of s! ‘te * ectors) only resolve the signatures of the least unstable orbits.

3.6. Practical considerat ons

The impact of severai gori nmic parameters such as recurrence threshold e, embedding parameters,
sampling rate, or eve’ wue selec.ion of variables in multi-dimensional systems has been extensively discussed
in previous works [1 i0, 166|, focusing mostly on deterministic systems, but also addressing stochastic ones
recently. In the follo, ing, ~ e will summarize the main findings that should guide corresponding method-
ological choices * 1 practical applications of RN analysis.

3.6.1. Choice of . ~~ur~.nce rate or threshold

The mos .. ‘~1algorithmic parameter of recurrence-based time series analysis is the recurrence thresh-
old e, which L s peen discussed extensively in the literature [58, 145, 156, 160]. The empirical choice of &
often depends o1 *ime series embedded in phase space. Too small € causes very sparsely connected RNs with
many isolated components; too large ¢ results in an almost completely connected network. Several invariants
of a dynamical system, e.g., the second-order Rényi entropy K5 can be estimated by taking its recurrence
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properties for ¢ — 0 [19, 164], which suggests that for a feasible analysis of RNs, a ! w ¢ is preferable as
well. This is supported by the analogy to other types of complex networks based o.. =patially extended
systems, where attention is usually restricted to the strongest links between individual verv. es, i.e., obser-
vations from different spatial coordinates for retrieving meaningful information ab' ut i :levant aspects of the
systems’ dynamics. In contrast, a high edge density, does not yield feasible info. ~at’on about the actually
relevant structures, because these are hidden in a large set of mainly less impc “ant « 'oes [145, 156, 160].

As a consequence, only those states should be connected in a RN that ar= clos.'v neighbored in phase
space, leading to rather sparse networks. Following a corresponding rule of ;hur-' confirmed for recurrence
quantification analysis [167], one common choice of € would be correspon. g co an edge density p < 0.05
[52, 53], which yields neighborhoods covering appropriately small regio~~ of p. ~se space. Note that since
many topological features of recurrence networks are closely related to t 1e loca. nhase space properties of the
underlying attractor [53], the corresponding information is best preserv d for s ch low ¢ unless the presence
of noise requires higher ¢ [167].

The heuristic criterion selecting e as the (supposedly unique) t rnir . pint of the plot of p versus e [168]
is not generally applicable (as discussed in [160]). In particular, ..1s he aristic criterion cannot attribute
certain network features to specific small-scale attractor propertic. in pnase space [160]. Moreover, besides
our general considerations supporting low e, application of *he turni g point criterion can lead to serious
pitfalls. We have to emphasize that various typical examples ..~ be.h discrete and continuous dynamical
systems are characterized by several turning points. Depend’ng on the particular types of signals from
real measurements from civil engineering structures, a .. _ .. assisted method for choosing an optimal
threshold by searching for a turning point of a properly defin. 1 quality loss function might be a good solution
[169].

For meaningfully estimating path-based and other . ig aer-order structural properties of recurrence net-
works it is important that the recurrence network . -ssess s a giant component and, hence, nearly all nodes
are reachable from nearly all other nodes. At the same ““me, € should be as small as possible so that geo-
metrical fine structure of the underlying attrar .- i< il reflected in the recurrence network. Donges et al.
propose to make use of this insight and suggest 1. <et the recurrence threshold just above the percolation
threshold e, of the random geometric graph corresponding to the invariant density underlying the dynamical
system under study [145]. This approach .dow. *o connect the problem of choice of recurrence threshold to
insights from the theory of random geor =tric gr. phs [150, 170, 171] and, more generally, spatial networks
(68, 69, 172] on the percolation thresh Jld €. ~r .he more frequently critical mean degree z.(¢.) in random
geometric graphs. In this way, the r.eth d allows to make use of analytical results on z. that have been
obtained for various geometries ana v ariar ¢ densities [150]. These show that the percolation threshold
ze = 1 of Erdés-Rényi graphs is rot a tig..' lower bound for random geometric graphs, i.e. also not in the
case of RNs, but that the true ¢ itic ! mean degree tends to be larger due to spatial clustering effects. For
example, Dall and Christensen150] emyp.irically find a scaling law

ze(d) = ze(00) + Ad™Y (54)

for the d-dimensional bo. S - - [0.1]¢ with uniform probability density p, where z.(c0) = 1, v = 1.74, and
A = 11.78. Alternativei, #. car be obtained from the available data point cloud by numerical methods,
e.g., efficiently by k-d * ze aly ithms.

One of the prob ems p1 venting a uniform choice of € across different time series is that the size of
the attractor after ¢ nbeddi ig is arbitrary. To overcome this, Jacob et al. [158, 173] proposed first to
normalize the tir _ series wto a unit interval so that the size of the attractor gets rescaled into the unit cube
[0,1]™ where m is embc 1ding dimension. Then, their choice of ¢ has been based on empirical results from
numerical compu “ations such that the following two criteria are fulfilled [173]: (a) the resulting RN has to
remain mos''> as “one single cluster” (see also [145]) and (b) the measures derived from the RN should
uniquely repr se’ ¢ tue underlying attractor. The first condition fixes the lower bound for € which ensures
that the networ. becomes fully connected. The second one fixes the upper bound. Furthermore, Jacob et al.
showed that the apove two conditions together provide an identical optimum ¢ range for time series from all
chaotic attractors. However, recent findings point to the fact that this range may still depend on the specific
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system under study and, more importantly, on the embedding dimension m controllir g the distribution of
pairwise distances between state vectors in phase space, which should guide the cr.1. monding threshold
selection [135]. Moreover, it should be noted that the above choice of the critical range  { € is, in fact,
conceptually related to the selection of a scaling region in the conventional non’.nee - time-series analysis
for computing dynamical invariants like the correlation dimension Do [164], the. hv elieving the potential
advantage of RN properties providing scale-local characteristics related to sucl. dyna. ical invariants [40].

The above strategies for choosing ¢ based on normalizing the underlying time s “es or fixing the recur-
rence density help us to overcome the problem of sliding-window-based a .alys~ of systems with varying
amplitude fluctuations (as coming from different dynamical regimes or non *at onarities). However, in real-
world applications, time series are usually not always smooth. When c~=side. g time series by studying
their RN representations, extreme points (very high rises or falls in the ductua ions) in the time series could
break the connected components in the network since the distance b tween n extreme point and other
points would be larger than the threshold value [174]. These unce .- ectew. components would cause prob-
lems for some complex network measures, since some of them neec a ¢ . cted network to be computed for
the entire network. For example, even if we have just one node tu.. is vt connected to the network, the
average path length will always be infinite for the entire network -nless employing the artificial definition
of l;; = N for vertices in disconnected components. In such # situatio. , the normalization method of Jacob
et al. [158, 173] would result in non-optimal recurrence thresho. ' bi' sing the recurrence analysis. An even
more important motivation for avoiding isolated components 1. ~ RN is that the RN provides a large amount
of information about the dynamics of the underlying sy<' ..., ...uough it contains only binary information.
To find a sufficiently small threshold e that fulfills the desire." condition of connected neighborhoods, Eroglu
et al. proposed to use the connectivity properties ¢ '~ network. In particular, here the value for ¢ is
chosen in such a way that it is the smallest one for th. F.N to be connected. The connectivity of a RN is
measured by the second-smallest eigenvalue Ay ol .“e L« ~lacian matrix associated to the RN’s adjacency
matrix [174]. Note that this criterion for choosing ¢ ‘u ..~ adaptive way shares the same idea as [173, 175].
In the special case where the phase space cor "~ of  averal disjoint partitions, the method guaranteeing
the connectivity might not be feasible, for instanc. the support of the invariant density is not continuous
when the control parameter is in the periodic or even chaotic regimes before the band merging crisis of the
logistic map. Another example for such a veha. or is the standard map, where there exist several spatially
disjoint components of periodic dynamic in phas > space [160, 176]).

Note that modular regions of RNs -1ay ¢ e pond to a trajectory bundle, which can be associated with
the existence of metastable states. ¢ mal’ variations of € may lead to very different modular structure in
the associated RN, which poses a big ' alle’ ge for identifying metastable states in real-world time series.
Choosing an inadequate recurrenr 2 thres.. .d can hide important geometric information related to the or-
ganization of a system in its phrse . ~ace. In [177], it was suggested that an adequate recurrence threshold
should lie in a range of values nroducing RNs with similar modular structures. This means that there is
a range of recurrence thresh: ids or which the associated RNs describe reconstructed state space objects
with equivalent topology. Ho -ov or, this region of values depends on the distribution of the particular time
series data, which might .ot be . ~iform. Therefore, they define a filtration procedure to self-adaptively
set an adequate ¢ from ".Ns ,hat are associated to a set of recurrence thresholds. The adequate & belongs
to the subset of values in e fi ¢ration for which the modular structures of their associated RNs are the
least dissimilar. Fur’.iermote, m searching for metastable states [177], the authors suggested to compute
modular similarity 1 easures like the adjusted rank index, which may further help to identify an adequate
recurrence threshold . Fir ully, a more recent alternative approach to the threshold selection problem in
RNs has been ¢ .ggested by Wiedermann et al. [178] in terms of analyzing the statistical complexity of
the resulting R.'s basec upon the Jensen-Shannon divergence between their mean random-walker entropy
SEW — > ;logk;, Mles N —1) and that of ER random graphs. Specifically, they argued that the threshold
could be che .. —~~h that the resulting RN structure becomes most informative, which could be measured
in terms of th. - - pecific complexity measure. However, it might be questioned if the most complex network
structure also cc responds to the most informative one, e.g., when considering the selection of the corre-
sponding edge density as a statistical model selection problem with the network’s statistical complexity as
the target function to be optimized and the number of links as an analog to the number of degrees of free-
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dom that should be used for penalizing the target function. Additional theoretical w rk will be necessary
to further address this problem.

3.6.2. Dependence on embedding parameters

Two other important algorithmic parameters of the RN approach are the -~arumeters of time-delay
embedding, i.e., embedding dimension m and delay 7. Note that alternative =pprc ches of phase space
reconstruction are possible, particularly so-called derivative embedding, whir®> are . ~wever often harder to
use and would just replace the embedding delay by other parameters porsibly I volved in more complex
algorithms [179]. For this reason, we will not further discuss these alterna.. e ipproaches here.

As mentioned in Section 3.1.1, our discussion so far has assumed th-' prop. - embeddings are available
for the given time series. For instance, embedding dimension m aid dela - 7 could have been chosen
properly by means of the FNN and ACF method, respectively, which ommeo .ly works well for data from
deterministic dynamical systems. In turn, proper embeddings dr ..ot ea.ov for non-stationary processes
though they are more ubiquitous in real time series analysis, fcr ir .aw e, fractional Brownian motions
(fBm) and related processes arising from an integration of stationary procr sses (e.g., fractional Lévy motion,
(F)ARIMA models, etc.). More specifically, we have to keep in muw. 7 that some severe conceptual problems
may appear when applying them to non-stationary processes: First, fi ite estimates of D are spurious due
to the finite amount of data used. The latter result is reasmnab.. <ir e an infinite amount of data (i.e., the
innovations at each time step) are necessary to fully describe e evolution of a stochastic process. Thus,
from a conceptual perspective, the embedding dimensior ..cu.u we chosen infinitely large. In turn, finite m
will necessarily cause spurious results, since the full comple. ‘ty of the system’s (discrete) trajectory is not
captured.

On the other hand, the embedding delay 7 is not ¢ » 1dered in the mathematical embedding theorems
for deterministic dynamical systems. Embedding. -ith e same embedding dimension m but different 7
are topologically equivalent in the mathematical sens |v;, but in reality a good choice of 7 facilitates further
analysis. If 7 is small compared to the releva - _-*~m.al time-scales of the system, successive elements of
the delay vectors are strongly correlated. This leaw. to the practical requirement that the embedding delay
should cover a much longer time interval than the largest characteristic time-scale that is relevant for the
dynamics of the system. However, in {B' 1 arn. rarily long time-scales are relevant due to the self-similar
nature of the process [180]. This makes Snding . feasible value of 7 a challenging (and, regarding formal
optimality criteria, even theoretically # aposs.”Ir; task.

We emphasize that in the case /[ nca-stationary fBm, the fundamental concepts of phase space re-
construction and low-dimensional dy. ~ aics do not apply (not even approximately) anymore. Therefore,
the corresponding RN results as iave bec . presented in [181] hold only for the particular choices of the
algorithmic parameters (for inst .nce, 'ength of time series, embeddings etc), showing limited physical inter-
pretations. In [180], it has beem demonsirated that RN analysis can indeed provide meaningful results for
stationary stochastic process s, g en a proper selection of its intrinsic methodological parameters, whereas
it is prone to fail to unique,, v ctrieve RN properties for intrinsically non-stationary stochastic processes
like fBm. In cases of nor station. -ity, a proper transformation is required to remove the particular type
of non-stationarity from the dat:. This can be achieved by additive detrending, phase adjustment (de-
seasonalization), difference 'ter'ag (incrementation) or other techniques, with the one mentioned last being
the proper tool for t'.e particwar case of fBm transforming the original process into stationary fractional
Gaussian noise (fGr . Furtl ar numerical results on the RN analysis for f{Gn will be presented in Section
3.7.3.

3.6.3. e-depend nce of ;N properties

In order to eve. "=’ the robustness of the topological properties of RNs, their dependence on the free
parameter o. wue ~ *hod, €, has to be explicitly considered. In particular, we show in Fig. 10 the effects of
€ on network 1. - asures /3 and C. The scale dependence of T has been briefly reviewed in Section 3.5.5 and
further results o1 T and R can be found in [40, 53]. In the following, we briefly summarize the main findings
for the three model systems Hénon map (Egs. A.4), Rossler (Egs. A.2), and Lorenz system (Eqs. A.1).
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Figure 10: Dependence of the average path length £ (a-c) and the _'~bal clustering coefficient C (d-f) for the Hénon
map (Egs. A.4), Rossler (Egs. A.2), and Lorenz system (Eqs A ™ ‘-  left to right). Dashed lines in the plots on
L(¢) indicate the approximate presence of the theoretically ex, ~ted 1/ dependence of L. Reproduced from [54].

As we already discussed associated with Eq. (28) in S tion 3.3.3, there is an inverse relationship between
£ and the threshold ¢, which has been numericali- « ~nfir aed in Fig. 10(a, b, ¢). However, for the global
clustering coefficient é, the dependence on ¢ is more -omplicated and depends on the specific properties of
the considered system (Fig. 10(d, e, f)). In pc micw.. while for too small e, problems may occur, since
the RNs will generally decompose into different disc. ~nected clusters for a length N of the considered time
series, for intermediate threshold values, an ~~nroximately linear increase of C with ¢ seems to be a common
feature of all three examples.

3.6.4. Stability and robustness agains’ noise

The results presented in Section 1.5.F togr ther with the numerical findings for model systems that will
be presented in Section 3.7 show t'.at . N & yproaches are able to clearly distinguish between periodic and
chaotic dynamics under noise-frer ~ondition. However, in experimental time series, one is always confronted
with measurement errors. Hence, it 1. necessary to analyze the influence of noise on the constructed RNs.
In the framework of recurrer .. ~lots, choosing a larger £ has been suggested to overcome the effect of
additive noise [182], e.g., us ng ¢ threshold e that is at least 5 times larger than the standard deviation
o of the observational Garssia. noise can yield reliable statistics. This criterion is based on an analytical
computation of the prob- oilit ; of a recurrence point in the RP to be correctly recognized in the presence
of observational noise. % "= g .gge ., to use this criterion if weak observational noise is present as it has been
found that the choice < ~ 50 "= Hptimal for a wide class of processes [182].

It is interesting t » visua ‘ze noise effects on the reconstructed RNs, which have been presented in [158].
In this work, the authors for ad numerically that RNs retain much of the information regarding the shapes
of the attractor ~—~n w... moderate addition of both, white and colored noise. Their numerical results
suggest that the topolc 'y of RNs may completely change if the noise contamination level is above 50% of
signal-to-noise 1. tio. Fi sthermore, it has been shown in [183] that the influence of noise on the clustering
coefficient C can be .unimized by an appropriate choice of p(e) (e.g., by setting p(¢) > 0.02), while the
influence on  he ve.age path length £ is independent of p(e). However, for noise levels greater than 40%
in case of C an' 20% in case of £, the RN measures fail in distinguishing between noisy periodic dynamics
and noisy chaotic dynamics. As the noise level reaches 50% or more, the structural characteristics of RNs
present a smooth transition to those of random geometric graphs [156]. In particular, Jacob et al. have
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numerically shown that these transitions hold for degree distributions, clustering coe .dcients and shortest
path length [156]. The cross-over behavior of RNs towards random graphs has als . ~n observed if ¢ is
increased towards the system size [156]. For large e, the degree distributions tend to bec. me Poissonian
and both, clustering coefficient and shortest path length tend to be 1, which are - aar. cteristics for random
networks with very high edge density.

By no means one can avoid noise effects when applying RN measures to disc ‘mine ~ different dynamical
properties from experimental time series. In order to test the efficiency of RN me. res as discriminating
statistics, hypothesis testing using surrogate technique has been recently srop- ~d [157]. For instance, a
hypothesis that the data are derived from a linear stochastic process h.- b .en employed in [157]. The
numerical results show that the clustering coefficient C is not a good ~i~crin.. ~ating measure if the data
involves colored noise whereas the shortest path length L is effectivi in the presence of both white and
colored noise. We have to emphasize that the specific choice of th hypot esis is fundamental to the
interpretation of such results.

More generally, the consideration of uncertainties plays a cruci | ro' . 1 * experimental time series. There
are various sources of uncertainties, including measurement errors, noise irregularly distributed sampling
times, etc. The importance of considering the type and magnituu. of vne uncertainties of an observable in
time series analysis cannot be stressed enough. In [184], Goswami et a: introduced a framework that merges
the analysis of the measurements with that of their uncertaini. ~ ir cluding uncertainties in the timing of
observations, and shifts the focus from knowing the value of a. observable at a given time to knowing how

likely it is that the observable had a specific value at tF . (... .n this case, since we consider time series
with uncertainties, it is not possible to give a precise ans. ~r to the question whether time points ¢ and
j recurred, in the sense that we cannot answer this ,. ~*an with a 1 or 0 as in a traditional recurrence

analysis. We estimate instead the probability that the ~b ,ervations at times ¢ and j are contained in their
respective e-neighborhood. A further point of di = vence with traditional recurrence analysis is that, till
date, there does not exist any meaningful way to .m. 1 a time series of probability densities, and one
thus estimates the recurrence probabilities in .- fnllc wing without embedding. This novel framework of
recurrence probabilities helps to track abrupt traiw. ‘*tions in real time series with much improved statistical
significance [184]. We emphasize that uncertainties bring a huge challenge to complex network approaches
to nonlinear time series analysis in genera’. We wvill continue the corresponding discussions when reviewing
the visibility graph methods in Section / ?.

3.7. Numerical examples

RN approaches have been widelv u. 1 for disentangling different dynamical regimes in different times of
both, time-discrete and time-cont auous disipative systems [40, 52-54, 152, 160]. Specifically, as discussed
above, discriminating qualitati cly « “Ferent types of dynamics can be achieved in terms of measures of
complexity, dynamical invaria~' - or even structural characteristics of the underlying attractor’s geometry
in phase space. In the con’ext f RN, local vertex-based network characteristics of time series can be
visualized in the correspondin, shase space as shown in Fig. 6 [53]. For instance, phase spaces of discrete
logistic and Hénon maps. 1s well a. the chaotic Rossler and Lorenz system have been color coded by vertex
degrees l;:i, local cluster ag roeffi ient C; and betweenness l;i, respectively [40, 53, 54, 159]. Furthermore,
global network measures lik. *ro sitivity T or average path length L have been applied to identify dynamical
transitions in the los.stic w ap when the control parameter is changed [52]. In addition to such stationary
settings, the effect ¢ * driftin ;| parameters on such characteristics has also been studied for classical model
systems in terms of so.. ~ <".ding window analysis [142].

In the follov ing, w will briefly review some “non-classical” numerical examples illustrating to which
extent the afore. vention: d studies can be generalized to the contexts of higher-dimensional parameter spaces,
Hamiltonian or eve.  .ochastic dynamics.

3.7.1. Parame. " space in the Rdossler system

In order to fu. ther illustrate the performance of RN transitivity 7 and average path length L as tracers
for qualitative changes in the dynamics of complex systems, we briefly recall results originally obtained by the
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Figure 11: RN transitivity 7 (A) and average path length £ (B) for a “wo-dimens nal intersection (a = b) of the three-
dimensional parameter space of the Rossler system (Eq. A.2), displaying “shru. -7 structures (i.e., self-similar periodic windows
with complex shape). For details, see [152].

authors of [152]. In the latter work, the RN properties have bee.. “uccessfully used to discriminate between
periodic and chaotic solutions in a two-dimensional subs, ~ce of the complete three-dimensional parameter
space (a,b, c) of the Rossler system. As Fig. 11 reveals, there . ~e sequences of transitions between periodic
and chaotic solutions. Specifically, we clearly see th.t ty - _criodic windows are characterized by higher
values of 7 and £ than the chaotic solutions, which 1. in agreement with the general considerations in
Sections 3.5.4 and 3.5.5. Specifically, for the perioa.~ . “nd. ws, we find T close to 0.75, the theoretical value
for periodic dynamics (i.e., a system with an effective diniension of 1).

In a similar way, we may use the RN framew. "« 10, _apturing the signatures of qualitative changes in the
attractor’s shape and invariant density as a single co. trol parameter is varied systematically. In a previous
study using the Rossler system, the RN p»- -~rties across the transition from the classical phase-coherent
Rossler attractor to the non-coherent fu-.nel reg me have been investigated in [161]. Our results indicate
that phase coherence — in a similar spirit a. “racte . dimension — can be characterized from a geometric rather
than a dynamics viewpoint. However, as of 1. «ay there is no single RN-based index for phase coherence
that has been explicitly derived fror the reti al considerations.

3.7.2. Hamiltonian dynamics

In [176], the validity of the N ap, =oach for achieving the same goals in low-dimensional Hamiltonian
systems has been demonstrat_u. Using the standard map as a paradigmatic example, RN analysis was
applied to distinguish betwe u re ;ular and chaotic orbits co-existing in the same phase space. Specifically,
it was shown (see below) that . ‘cky orbits of the standard map (Egs. A.7) can have a distinct geometric
organization that can be detr cted reliably by RN analysis of relatively short time series (say, N = 1,000
or 5,000 points). Note ."at this model is probably the best-studied chaotic Hamiltonian map and can be
interpreted as a Poinc-% sec.’~ 1 of a periodically kicked rotor [185, 186].

As in other Ham itonial systems, the phase space of the standard map presents a complicated mixture
of domains of chaotiu traject ries coexisting with domains of regular ones. The regular component consists
of both periodic = _ ! quao.-periodic trajectories, while the irregular one contains one or more chaotic orbits.
A typical chaot : trajec ory needs a long time to fill its corresponding domain in phase space. Due to the
existence of per. dic is! «mnds, once a chaotic orbit gets close to such an island, it can stay close to it and
be almost re~vlar 1 1ts motion for a rather long time. After this transient period it escapes again to the
large chaotic ea >uch a long-term confinement of the trajectory close to the regular domain is commonly
referred to as su -kiness [186, 187], which has been accepted as a fundamental property of many Hamiltonian
systems.

The corresponding results for the three global RN measures 7,C and L are shown in Figs. 12. Here,
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Figure 12: Phase space of the standard map (Eq. A.7T) characterized by thre. RN aeasures for the standard map
using fixed RR = 0.02. (a) 7, (b) C, (c) L. Reproduced from [176].

we choose 200 initial conditions distributed randomly within the . main of definition of the standard map,
(z,y) € [0,1] x [0,1], and use the canonical parameter value of kK = 4 in Eqgs. (A.7). All trajectories are
computed for 5000 time steps. Since we were aiming for a “man..“2t* e comparability of RN characteristics
(which can depend on RR), we adaptively choose ¢ such thar "he RR has the same fixed value [176]. We
observe that the overall structure of the phase space wit’ .vs wuveriningled regular and irregular components
is captured well by all three measures. Further dynamical .1 geometric measures have been discussed in
[176]. Specifically, quasi-periodic trajectories are ch vu.' “i#ad by larger values of 7 and C, while filling
chaotic ones exhibit smaller 7" and C values (Fig. 12(a, ™).

Unlike periodic or quasi-periodic orbits, chaou . ‘raje tories can fill the complete domain of chaos (as
t — 00). In turn, regular ones are distinct and mut. aliy nested. Since the RN measure £ depends clearly
on the size of the orbit, the corresponding pat -... *» 17 g. 12(c) is strongly influenced by the selection of a
unique threshold ¢ for all studied trajectories. In t.. ™, when fixing RR (as done here) the effect of different
spatial distances on the estimated RN averaee path length £ is essentially removed (Fig. 12(c)).

3.7.83. Non-stationary deterministic syst. ms

While the aforementioned results ave L. obtained for stationary deterministic systems, i.e., inde-
pendent realizations of the system ¢, fix .d parameter values, tracing temporal changes in the dynamical
complexity of non-stationary systems . anot.aer interesting field of application with numerous examples in
the real-world. Using model syste s with «.ifting parameters such as the Lorenz [142] or Réssler systems, it
is possible to systematically eval tate “e performance of RN characteristics in a sliding windows framework,
underlining their capabilities fr- discriminating between qualitatively different types of dynamics and differ-
ent degrees of complexity in 10n- tationary (transient) runs as well. For the example of a linearly drifting
control parameters of the log. *'c map and the Rossler system (Egs. (A.2)), Donges et al found that the
values at which bifurcatic as betwe.n periodic and chaotic behavior occur in the non-stationary system do
well coincide with the r .me’.call' estimated bifurcation points of the autonomous system, indicating that
in the considered example, . -an’ .ent dynamics close to the bifurcation points does not play a major role as
long as the considere «+ RNs are still sufficiently large to obtain a reliable statistics.

3.7.4. Long-range cor. '~*, stochastic systems

Another cat: gory ¢” non-stationary processes comprises long-term correlated stochastic dynamical sys-
tems, for instar -e, frac ional Brownian motion (fBm) as already discussed in Section 3.6.2, which needs
special care when «, _ ying recurrence based network analysis. In the case of non-stationary fBm, the funda-
mental concu s « ., hase space reconstruction and low-dimensional dynamics do not apply anymore [180].
One solution v the problem could be transforming the process in a way so that it becomes stationary
[180]. In recent « plications to non-stationary real-world time series [141, 142], the authors have removed
non-stationarities in the mean by removing averages taken within sliding windows from the data. In the
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particular case of fBm, the underlying stochastic process c.~ be wransformed into a stationary one by a
first-order difference filter, i.e., by considering its incremente ~- ;. The transformed series is commonly
referred to as fractional Gaussian noise (fGn) in analogy -ith the classical Brownian motion arising from
an aggregation of Gaussian innovations. Notably, f“'» retai., the long-range correlations and Gaussian
probability density function (PDF) from the underlyiv ~ ff m process.

Because of its stationarity, for fGn the ember 1ing | ~rameters can be chosen more properly than for
fBm. Following the discussion in Section 3.6.2, we ~1.. 7se the embedding delay 7 according to the decay
of the ACF. For H < 0.5 (where H is the Hrrst ex, onent of the process), the estimated ACF drops to
negative value at lag one resulting from subseque..* values being negatively correlated for the anti-persistent
process. Therefore, we choose 7 = 1 for H < 0.5. In contrast, for H > 0.5 we use an estimator of the de-
correlation time (specifically, the delay 79 av “hich the ACF drops below 0.1) for selecting the embedding
delay 7, which increases with rising H as one wot 'd expect since larger H indicates a longer temporal range
of correlations. The embedding dimension » is chosen via the FNN method. Unlike for fBm, our results
suggest that the optimal value m rises witl an n.creasing length of the time series. Hence, it is dominated by
the effect of a finite sample size, sin. ~ t} 2 pr- per theoretical embedding dimension for a stochastic process
would in fact be infinite. Specifice 1y, du. t . the finite sample size, we still find a vanishing FNN rate at a
finite embedding dimension, whi 1. ‘< probably related to a lack of proper neighbors when high dimensions
are considered.

It has been numerically f,un ' for various deterministic chaotic systems that the RN characteristics
transitivity 7 and global clu. -erir g coefficient ¢ provide relevant information for characterizing the geometry
of the resulting RNs. Hre, we further demonstrate the application of RNs to fGn to unveil how the
transitivity properties of ]Ns arising from stationary long-range correlated stochastic processes depend on
the characteristic Hurst « ~ oner .. From the numerical perspective, we show the dependence of the results
on the embedding dir __.sion . explicitly.

For H > 0.5, Fi;. 13 s1ows that for a given embedding dimension m, both 7 and C do not depend
much on H, which is axpect 2d since the m-dimensional Gaussian PDF of the process does not depend on
H [145, 180]. So .c minor deviation from the constant values can be observed at H close to 1, i.e., close to
the non-station: ry limiv case represented by 1/ f-noise, which might be due to numerical effects [180].

For H < 0. botk T and C rise with decreasing H. The reason for this behavior is that 7 = 1
is recommer '~ but still not “optimal” embedding delay for anti-persistent processes. Specifically, the
closer H app. 22 nes 0, the stronger is the anti-correlation at lag one. This means that with the same
embedding dela, 7 = 1, the smaller H the stronger are the mutual negative correlations between the different
components of the embedding vector. As a consequence, the state vectors do not form a homogeneous m-
dimensional Gaussian PDF with independent components in the reconstructed phase space, but are stretched
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Figure 14: Construction of multiplex recurrence networks for multive. ‘ate time series. Reproduced from [100] with
permission.

and squeezed along certain directions, so that the resu.“ir , geometric structure appears significantly lower-
dimensional than m. More numerical consideratio’ - have been discussed in [180], for instance, systematical
biases when H is close to 0 and due to a finite samy'e ."7e N.

3.8. Multiplex recurrence networks

So far, RN approaches have been discussed in the framework of a single system. In the next three
subsections, we focus on several differer genc alizations to multivariate analysis (cf. Sections 2.4 and
2.5): multiplex recurrence networks, inte. svstem -ecurrence networks (ISRN) and joint recurrence networks
(JRN), the last two which are based o . cross "o urrence plots and joint recurrence plots, respectively.

Let us start with the constructior of » wltivlex recurrence networks, as schematically illustrated in Fig.
14. If in a multilayer network of M ‘- vers each layer has the same set of vertices and the connections
between layers are only between . node a. d its counterpart in the other layers, we call such a network a
“multiplex”. In [100], Eroglu et ul. , ~oposed to construct multiplex recurrence networks from multivariate
time series. In the framework of visibility graph analysis, there is a counterpart of multiplex visibility graphs
[188], which will be reviewed .n S: ction 4.4.1. For now, let us consider an M-dimensional multivariate time

series {7;} N |, with #; = (mg*‘,t c ,xEM]) € RM for any i. Then, the RN of the a-th component of Z(t) is
created and forms the ass .ciated la, er « of the multiplex network. For an M-dimensional multivariate time
series, we can hence crer ‘e } dif' :rent RNs which have the same number of nodes and each node is labeled
by its associated time inde.. © '.’hese networks will form the different layers of a multilayer network. The
layers are connected cach c*her exclusively via those nodes with the same time labels. Furthermore, this
procedure requires t. at the © me points are the same for all component time series. We note that networks
transformed from muly. =+ .ce time series are generally compatible with the definition of multiplex networks,
because each nc te is u iquely assigned to a certain time point of the multivariate time series, i.e., we find
equally time-lat ~led noc es in all layers.

More specifically, we denote the adjacency matrix of the a-th layer as Alel = (AE';]) and AE?] =1if

nodes ¢ and j W : connected in layer «, AE?] = 0 otherwise. Then, the entire multiplex network A can be
represented by t. » vector formed by the adjacency matrices of its layers, A = (AN, AR AM]) which
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can be alternatively expressed in matrix form as

Al 1y L 1y
[2] N
Ao 1'N A : 7 (55)
: 1
1y ... 1y Al

NMxNM

where 1y is again the identity matrix of size NV x N.
Two different measures have been proposed to quantify the similarity betwee. 'ayer o and 8 of a multiplex
network [100, 188]. The first is the interlayer mutual information 17

(@] lﬂ[lh
af _ o] £l6] (k
ISED Z p(k kP log AT (56)

Kle]

where p(k[“],k[m) is the joint probability of the existence of node. with degree kl® in layer o and klf! in
layer 3, and p(kl®l) and p(klfl) are the degree distributions ¢* the RN in layer o and f3, respectively. Since
I°# is computed based on the degree sequences, instead of +he . oi* ul time series, the mutual information
1% considers the topological recurrence structures in phase sp. ~e.

A second measure to quantify the coherence of th: ...z multivariate system is the average edge
overlap [100, 188],

P “E‘f‘J
MZS‘\'L( OZ A["‘)’

where §;; is the Kronecker delta. This measure rep. >sewcs the average number of identical edges over all
layers of the multiplex network [188]. Like ti.> w...' yer mutual information (Eq. 56), w estimates the
similarity and coherence via the averaged existence ¢ overlapping links between nodes i and j in all layers
a and f.

We note that the interlayer similaritv measu es (Egs. 56 and 57) are computed for each pair of layers.
The giant adjacency matrix A of the mu “ivlex ' etwork can be projected onto one weighted network rep-
resentation encompassing the interlay r infor.. ~cion only. In other words, we consider each single layer of
the multiplex as a node and weightr 4 ec zes Fetween nodes a and 3 are determined by the quantity 18,
which yields a weighted projection ~etw. rk ¢ size M x M. The conversion of multilayer systems to weighted
network structures is a computa’ onally very efficient approach, which allows further characterization by
some traditional structural mec sures, i.e., clustering coefficient C,, and average shortest path length L.,
where the subscripts w indicat “hat the measures are computed from weighted networks.

It has been demonstrate . ths ; all measures of I*?, w, C, and L,, capture similarities in the linking
structures of the multiplex rec.. - ence networks [100]. In particular, high values for I*?, w and C,, have been
observed for periodic syst' ms, whiic lower values correspond to more chaotic systems. However, the opposite
holds for £,, because tl » di-.met r of a denser network is in general smaller. The discriminative power of
these measures has been 1. =t ated by both a numerical model of a coupled map lattices an real-world
paleoclimate time se tes [107].

w= (57)

3.9. Inter-system wecu, -~ ¢ networks

In the last d «cade, v o different widely applicable bi- and multivariate extensions of RPs and RQA have
been proposed [.R]: cro s-recurrence plots [97, 98, 189] and joint recurrence plots [99]. In the following, we
discuss some nossibiuies for utilizing these approaches in a complex network framework, following previous
consideration. in 19u-192]. For this purpose, let us consider M (possibly multivariate) time series {:E’Ea]}gvgl
[o] _ —»[aJ\-[a])

with Z; sampled at times {tla],} from dynamical systems X[® with a = 1,..., M.
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WV
/ ) & Y]
I
S, PS,
Figure 15: Schematic representation of cross-recurrence (a) and joint recurre wce (', b. Sween the trajectories Z(¢) and g(¢) of

two systems X and Y. PSx and PSy denote the individual phase spaces ot _ .cems { and Y, respectively, whereas PSxy
indicates the joint phase space of X and Y. Modified from [190].

3.9.1. From cross-recurrence plots to cross-recurrence netv ~vks

One way of extending recurrence analysis to the study o. multiple dynamical systems is looking at
cross-recurrences, i.e., encounters of the trajectories of wo systems X, and Xg sharing the same phase
space, where fga} R~ fgﬁ ) [97, 98] (see Fig. 15(a) for some illus.. ation). It is important to realize that cross-
recurrences are not to be understood in the classical ens . .. Poincaré’s considerations, since they do not
indicate the return of an isolated dynamical system to ome previously assumed state. In contrast, they
imply an arbitrarily delayed close encounter of the v« ~ctc.ies of two distinct systems. The elements of the
cross-recurrence matrix CRI?! are defined as

ORI (eap) = — |2 - ), (58)

where ¢ = 1,...,Nq, j =1,...,Ng, and g is ~ prescribed threshold distance in the joint phase space of
both systems. As in the single-system ca.~ €443 d termines the number of mutual neighbors in phase space,
quantified by the cross-recurrence rate

N, Ng

PR*P(eq = ZZCRW’ (cap), (59)
N N’B =1 j=1

which is a monotonically incr as.1g function of €44 (i.e., the larger the distance threshold in phase space,
the more neighbors are founr 1. N jtably, RR*? corresponds to a cross-edge density p®? (Eq. 21) of a coupled
network representation (se= bew v). Furthermore, R[* and RI®! are symmetric for individual subsystems,

but the cross-recurrence natr x CRI*?! is asymmetric, since we typically have Hx[a] BB ] || # Hfgﬁ I f;a] Il
Even more, it can be now. < aare (f time series of different lengths (N, # Ng) are considered.

Due to the aforem ...ionea . aaracteristics, CRI[*? cannot be directly interpreted as the adjacency matrix
of a network with s milar p. operties as single-system RNs. This is because the indices ¢ and j label two
distinct sets of state vector, belonging to systems X[ (i) and X¥! (j), respectively. In turn, we can
interpret the st .e vectors {fga]} and {fgﬁ ]} as two distinct groups of vertices, and CRI*?l as being an
adjacency matr. < of a ¢1)ss-recurrence network (CRN) providing a binary encoding of the presence of edges
between vertices . “lor_mg to different groups. This is the defining property of a bipartite graph [4].

Bipartitc wc. ks can be found in a wide range of fields [193, 194] and can be understood as a generic way
for describing ~roitrary complex networks [195, 196]. The large variety of applications of bipartite graphs
has triggered gre t interest in models describing their properties in an appropriate way. Particular attention
has been spent on the problem of community detection [197], involving new definitions for the modularity
function [193, 198-200] and the development of proper algorithms for community detection [198, 201-203],
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partially relating to the spectral properties of the networks. However, their specific st acture renders some
traditional definitions of network-theoretic measures non-applicable, calling for genr.a. ~ations or even re-
definitions of quantities such as the clustering coefficient [204, 205]. This is why we do not .. rther consider
here the explicit quantification of the properties of the bipartite CRN, but follow a ¢ .tfei :nt approach detailed
below.

3.9.2. Coupled networks framework for M subsystems

As mentioned above, there is a lack of appropriate measures for charactr izir -, ~xplicit bipartite network
structures as compared with the rich toolbox of general-purpose complex ot vork characteristics [22, 42].
Therefore, instead of explicitly investigating the bipartite structure of +*~ Ch." it is more useful to com-
bine the information contained in the single-system recurrence matric :s R ") and the cross-recurrence
matrices CRI“?l(e,4) to construct an inter-system recurrence matrix | 91]

R[l] (611) CR[IZ] (612) iy (“‘At;‘ M] (51M)
CR (e R (e .. CRI'M(e
IR(E) - e en) & e ] (60)
CR[MI] (E]u1) CR[M2] (efng) . R[M] (6]»[]\/[)

Here, € = (¢08)ap i1s an M x M matrix containing the sinele-s. “em recurrence thresholds e, = €4 and
(cross-recurrence) distance thresholds e,3. The correspou “ng inter-system recurrence network (IRN) [191]
is fully described by its adjacency matrix

A(e) =IR(.) — 1y, (61)

where N = Zi/[:l N, is the number of vertices and ' n ."ie N-dimensional identity matrix. As in the case
of single-system RNs, the IRN is an undirect .« .7 . nweighted simple graph, which additionally obeys
a natural partition of its vertex and edge set (sec Section 2.5). Specifically, for the “natural” partition
of an IRN, the G, correspond to the single-system RNs constructed from the systems X[ whereas the
cross-recurrence structure is encoded in F,g for « # (. Vertices represent state vectors in the phase space
common to all systems X[ and edges i.. licate [ iirs of state vectors from either the same or two different
systems that are mutually close, whe eby t..> iefinition of closeness can vary between different pairs of
systems. To this end, we briefly mer 1on .wo specific choices that may be convenient:

e Since we assume the conside’ :d sysu. ~ s to share the same phase space, it can be reasonable to measure
distances in a way disregars i *he specific membership of vertices to the different systems under study.

This would imply choosing e,3 = < as equal values for all o, = 1,..., M. In such a case, we can
(modulo embedding eff cts, reinterpret the IRN as the RN constructed from the concatenated time
series " (1] (1] =[2] 2] (M] [M]

Witic, = (@1, TN T Ty T e Ty )

In this situation, v ~ re onsi «er the general framework of single-system RN analysis as discussed above
for studying the oeomn.. *vi. properties of the combined system as reflected in a RN. Note, however,
that in this ca e it is hardly possible to explicitly exploit the given natural partitioning of the con-
catenated datz One ¢ rresponding strategy could be utilizing methods for community detection in
networks [107! su.' . consideration of modularity [206]. Notably, such idea has not yet been explored
in this cor sext, a. 1 it is unclear to what extent the inferred possible community structure of an IRN
could exhi it relet ant information for studying any geometric signatures associated with the mutual
interdenendern.... between different dynamical systems. To this end, we leave this problem for future
researc. 11 co.trast, all state vectors are treated in exactly the same way.

e An alterna ‘ve choice of recurrence and distance thresholds is based on considering that the individual
single-system RNs are quantitatively comparable. Since some of the network measures discussed in
Section 2.2 explicitly depend on the number of existing edges in the network, this requirement calls
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IRN JRN
Length arbitrary identical
Sampling arbitrary identical
Physical units identical  arbitrary

Phase space dimension identical arbitrary

Table 3: Comparison of inter-system and joint RNs regarding the principal requirements on .. time series to be analyzed.
Identical means that a specific property must be the same for all involved time series, v ... arbitr.ry implies that this does
not need to be the case.

for networks with the same edge density p, = p for all @« = 1,.. , M. In ovher words, the recurrence
thresholds €44 (@ = 1,..., M) could be chosen such that the (single-t ystem) recurrence rates are
equal (RR! = --- = RR® = RR). Given the natural partitioning ¢ the .RN vertex set, such network

can be viewed and statistically analyzed as a network of y stwor'-~ (see Section 2.5). In this case,
in order to highlight the interconnectivity structure of the ~<"vidu 1 RNs, it is beneficial to choose
the distance thresholds e,5 for a # 3 such that the rc ~1ltins voss-recurrence rates RR*? yield
RR*® < RR® = RRP = RR and possibly also take the san. values RR*® = CRR < RR for all
a # B. A further note is that, for an IRN, p®?(g,5) e als th . (cross-) recurrence rate RR*?(c,p)
(for aw = B, it gives the corresponding single-system re. "rrence rate RR(g,,)).

As already stated above, the meaningful construction. na analysis of IRNs requires time series {:E’Ea]}ﬁvz"l
that share the same phase space and, hence, describe the s. me observables with identical physical units
(Table 3). However, time series under study can in ) "inc ... be sampled at arbitrary times {tEa]}fV:‘ll and
have different lengths N, because the method discards Il information on time and focuses exclusively on
neighborhood relationships in phase space. This ty ¢ ~f g« bmetric information is what can be exploited for
studying coupling structures between different dynai ica. systems as reflected by the spatial arrangement
of state vectors in the joint phase space (see Secou 5.0.4).

3.9.3. Analytical description

In the same spirit as for the single-s ;stem >Ns (Section 3.4), we can consider the graph-theoretical
measures for studying the interconnectio..  betw: en subnetworks within IRNs (Section 2.5) as discrete ap-
proximations of more general geomet ic nrop ties [93]. Let S, C Y be a subset of an m-dimensional
compact smooth manifold Y and pl® (Z) epresent its invariant density for all a = 1,..., M, where Z € S,.
In the following, the S, and pl®) ar> as. e to fulfill the same requirements that are stated for S and p in
Section 3.4. Notably, the S, are -sumed to have a considerable non-empty pairwise intersections. We will
use the abbreviation [ dul®(z) = Jg, T ple)(&), where pi4 is a probability measure on S,. For simplicity,
only a single recurrence threst .. ' ¢ = g4 for all a, 8 will be used in the following. The generalization to
different values of €4 is strz .ghtf rward.

Local measures. The cont nuous = -ross-degree density
p e = [ @ = [ @e - |z - g (62
B.(Z)NSp

measures the probal lity tha a randomly chosen point in Sg is found in the neighborhood B.(Z) of & € S,.
Its discrete versic™ ‘s ti.. _.oss-degree density ﬁfﬁ (e) (Eq. 16).
The continu wus loc.” e-cross-clustering coefficient

s, @) dul () O ~ 17 - 2])

CP(&;¢) B (T 2)?

(63)

gives the probarlity that two randomly chosen points ¢/, 2 € Sg are e-close to each other (|| — 2| < ¢) if
they both lie in the neighborhood of & € S,. The estimator of C*?(&;¢) is approximated by the discrete
local cross-clustering coefficient C*° (¢) (Eq. 17).
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Considering the mutual global geometry of the sets Sy, S5, we furthermore introduc : continuous e-cross-

closeness centrality
S o -1
ease) = ([t 220 (69

quantifying the closeness of & € S, to all points of the set Sz along geodesics tu_~ther with the related
harmonic continuous local e-cross-efficiency

(i) = /dmwv(“yﬁl. (65)

e

Here, geodesics are defined with respect to the union of all involved s 'stems’ ttractors S = Ui/lzl S, and
9(Z, ) is a suitable distance metric on such geodesics (Section 3.4). 1.~ di- rete estimators of these two
local path-based measures for interdependent networks are respect vely " ven by éio‘B (¢) (Eq. 18) and éfﬂ ()
(Eq. 19).

Finally, we define the continuous e-cross-betweenness centras.

b8 (7 / / Al () dplP)(z, U(,g ”3;;) . (66)
Y\Yr <

As in the single network case, o(¥, Z]Z;¢€) denotes the -wnper of times & € S (i.e., from any arbitrary
subnetwork) lies on a geodesic between § € S, and Z € Sg, «."1 o(¥, Z;€) denotes the total number of such
geodesics. Regarding the appropriate parametrization. o v *)” 7I&; ), we refer to our discussion for the single

network case in Section 3.4. The discrete estimator IAJ?F ") is given in Eq. (20).

Global measures. The simplest continuous global pro, er\, describing the geometric overlap between the sets
So and Sp is the continuous e-cross-edge dens. -

//w AP (GO — || - 1) = 07 (6) (67)

that is empirically estimated by the di~crev. ~ro s-edge density p*?(g) (Eq. 21).
The expectation value of the cont’ 1uo 5 local e-cross-clustering coefficient C*?(Z; ¢) is referred to as the
continuous global e-cross-clustering « =’ ciep

CoP (e / dplel(Z) c™P(z;¢), (68)

which is approximated by th- disc ete global cross-clustering coefficient C*#(¢) (Eq. 22). Moreover, designed
for quantifying transitivity in . > cross-recurrence structure, the continuous e-cross-transitivity

L dr 1@ duP (@)dpll(2)0 (e — |17 — 78 — |17 — Z1)8(e — |2~ )
ly dpll(Z)dpl? (5)dulPl(2)0 (e — |7 = gl)O (e — |7 - Z])

gives the probability “hat tw« randomly chosen points ¢/, Z € Sg which are e-close to a randomly chosen point
T € 8, are also e-closc #+* respect to each other. 78 () is approximated by the discrete cross-transitivity
TP(e) (BEq. 23°. As ' the case of the discrete estimators, the two latter quantities are in general not
symmetric, i.e., 7% (g) = - CP¥(¢) and T8 (g) # TP%(¢).

While the two ..~ .er measures depend only on the local overlap structure between S, and Sg together
with the in\ ria. - 'ensities pl®)(Z) and pl?l(Z), path-based measures contain information on the global
geometry of be ' sets. The continuous e-cross-average path length

£0(e) = [[ @ D20 < oo (10

3

TP (e) = (69)
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gives the average length of geodesic paths starting in S, and ending in Sg or vice verse Similarly, we define
the continuous global e-cross-efficiency

£ (c) = ( [t @an @) (g(“’))> g (1)

which is the harmonic mean geodesic distance between S, and Sg. Discrete anpro.."mations of these global
path-based quantifiers are provided by the cross-average path length £ (g) /™. 24) and global cross-
efficiency £P(g) (Eq. 25), respectively. As for their discrete estimator. t): path-based characteristics
LY (g) and £*P(¢) are invariant under an exchange of S, and Sg.

3.9.4. Geometric signatures of coupling

The new class of statistical network measures designed for inves*'_ating ...e topology of networks of net-
works discussed in the previous subsections is readily applicable fo ans yz.1g the interdependency structure
of multiple complex dynamical systems. For the special case of v. o corpled systems X and Y, we have
demonstrated numerically that in an IRN, the asymmetry intrinsic “o tue global measures cross-transitivity
TXY and global cross-clustering coefficient CXY can eventually be ex) loited to reliably detect the direction
of coupling between chaotic systems over a wide range of cou, 'ine strengths, requiring only a relatively
small number of samples Nx y ~ O(102...10%) [191]. For thi, ~urpose, we make again use of the fact that

transitivity-based characteristics quantify subtle geome’ ‘. ... cties which can be easily evaluated both
analytically and numerically. Note, however, that this fina.. @ has been purely heuristic so far and lacks a
precise characterization under which conditions the ¢ ... ~onding considerations do apply.

In order to see how cross-transitivities and global ¢ o s-clustering coefficients capture dynamical signa-
tures of asymmetric vs. symmetric coupling config . atiow . let us assume a diffusive coupling with positive
sign (i.e., an attractive interaction) as in Eq. (A.5). lu "he uncoupled case, cross-triangles arise randomly
according to the sampling from the systems’ r ._~~tive invariant densities. In this case, eventual asymme-
tries between 7XY and 7YX (or, equivalently, C~ "~ and cyx ) originate from the geometry of the respective
sets Sx and Sy and the associated p~ (&) and pY¥ (¥), which should already be reflected in the single-system
RN transitivities and global clustering cc :theic ~ts. In turn, if both systems are represented by the same
set of state variables (a prerequisite for he app cation of IRNs) and obey similar values of 77X and TY
(CX and CY), it is likely that also 7¥Y anc T~ X (CXY and CY¥) take similar values. Note that minor
asymmetries in the interdependent ne ;wor’. characteristics can already occur if both systems are only weakly
non-identical, e.g., when considering . ~<)up] d identical Rossler systems with just a small detuning of their
natural frequencies [191].

Let us suppose now that the e .. a unidirectional coupling X — Y. In this case, the trajectory of the
driven system Y is attracted bv that o1 che driver X due to the considered form of coupling. As a result,
it is likely to find more state, in v that are close to mutually connected pairs of states in X than in the
uncoupled case. This implies he, TYX (éYX ) increases since X is “pulling” the trajectory of Y and, hence,
the number of triangles hs ving tu. '~ baseline in system X increases relatively to those having their baseline
in Y. Consequently, we exp’ ct t~ have TYX > 7XY and CYX > ¢X Y which is confirmed by numerical
studies as shown in Fig. 1. 191"

Moderate unidire wional coupling (below the threshold strength characterizing the onset of synchroniza-
tion) increases the ¢ -iven sy tem’s dimension [117, 207] (we will numerically demonstrate this behavior in
Section 3.10.3), so the* forr er neighbors of pairs of recurrent states in X are not mutually close in Y any-
more. In this ce.e, the number of “cross-triangles” with baseline in Y decreases in comparison with those
having their bas >line in . In fact, a corresponding decrease in 7XY (CXY) and an increase in 7YX (CYX)
can often be obse. =4 ‘. parallel.

Figure 1. .1 = an illustrative example of global cross-clustering coeflicients cxY (Eq. 22) for two
unidirectional, - _oupled Réssler systems (Egs. (A.5)) in the rather complex funnel regime with the same
parameters a, b nd ¢, but a weak detuning of v = 0.02, following the setting of [191]. The obtained
results are consistent with our above heuristic explanation for the emergence of asymmetries between the
interdependent network characteristics in the presence of unidirectional coupling. Specifically, for a wide
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Figure 16: Global cross-clustering coefficients (Eq. 22) CXY (black) @YX /=  and the four largest Lyapunov exponents Al,...4

estimated using the Wolf algorithm [208] for two Rossler oscillator. ‘Fgs. A.5) subject to unidirectional coupling X — Y (a)
and Y — X (b). The shaded regions mark the values of the coupling sti. ~oth for which a correct identification of the coupling
direction is achieved. Error bars represent mean values and s .. ' Jeviations taken from an ensemble of 200 independent
network realizations (with N = 1,500 data points per system). . "oc fied from [191].

range of moderate coupling strengths, the difference bevween the two global cross-clustering coefficients
CXY and CY ¥ allows to correctly identify the du ~t1ou of the imposed coupling. At large coupling strengths
(i.e., close to and beyond the onset of generalized sy..:hronization, which is indicated by the second largest
Lyapunov exponent of the system appros ' ~o zero as shown in Fig. 16), both CXY and C¥X become
statistically indistinguishable, which is ¢ nsister. - with the fact that the behavior of the driven system is
completely locked to the dynamics of the river (cf. Section 3.10.3). In turn, the indistinguishability of
both coupling directions at very low _ouprling .trengths is most likely due to the fact that the geometric
deformations of the driven system’s ‘ttr- ctor are too small to be detected by the given finite values of ¢y,
ey and exy and the chosen netwe k si.. Ve expect that for larger IRNs and smaller distance thresholds,
the lower boundary of the interve ~f coupling strengths for which the two global cross-clustering coefficients
differ statistically significantly {.om e« ™ other will shift towards zero.

We emphasize that the se uc vesults can be obtained using the cross-transitivity replacing the global
cross-clustering coefficient. ? «ore ver, it is notable that the reported distinction can already be obtained at
comparably small network sizes ~f some hundred vertices [191].

Furthermore, as one ¢ . suc :esstul applications of inter-system recurrence network approaches, Gao et al.
characterize different oi. -a’or fle w patterns by reconstructing networks from multi-channel measurements
[209-211]. In this serie~ of we 13, Gao et al. constructed multivariate RNs based on cross recurrence plots.
Further sufficient ex .nples mclude the detection of coupling direction between the Indian and East Asian
monsoon branches b. sed on ,wo representative paleoclimate records from Oman and China [191].

3.10. Joint rect rrence . etworks

3.10.1. Joint rec. ~renc . plots

Besides .. - recurrences, another possible multivariate generalization of RPs is studying joint recur-
rences of diffe. =y . systems in their individual (possibly different) phase spaces. Here, the basic idea is that
the simultaneou. occurrence of recurrences in two or more systems X @] (see Fig. 15(b)) contains information
on possible interrelationships between their respective dynamics, for example, the emergence of generalized

[

synchronization (GS) [99, 116]. Consequently, based on time series {fia]}, the joint recurrence matrix JR
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with elements

M
JRij(er.. .. en) = [] B (ea) (72)
a=1
is defined as the element-wise product of the single-system recurrence matrices I °[® -vith the elements
RS (ea) = O(ea — 12 - 21, (73)
where (g1, ...,epr) is the vector of recurrence thresholds that can be selectec for  ac.. *ime series individually,
typically such as to yield the same global recurrence rates RR, = RR for a.” .=1,..., M.

3.10.2. Network interpretation
Analogously to single-system RN analysis, we take a graph-theore. ~al pr :spective by defining a joint
recurrence network (JRN) by its adjacency matrix

Aler,....em) =JIR(e1, .. em) 1w, (74)

where 1y again denotes the N-dimensional identity matrix. Hence, ,he edges (i, j) of a JRN indicate joint
recurrences occurring simultaneously in all M time series unac. study Alternatively, A(eq,...,e5) may be
viewed as the element-wise product of the single-system recw. “ence networks’ adjacency matrices Al (€a).

As single-system RN and IRN, the JRN describes an nndirect. ' and unweighted simple graph. However,
due to the temporal simultaneity condition of the joint recw. ~ence concept, vertices i are explicitly associated
with points in time tga} = tEB] common to the M cor ~*dered n.me series (cf. Tab. 3). This is conceptually
different from RNs and IRNs where time information is ot .aken into account so that network characteristics
are invariant under permutations of the state vect ~s (i.e the — possibily embedded — observations). More
specifically, it is not possible to relabel the observatic 's . - the underlying time series prior to the computation
of the JRN, whereas the JRN vertices can be shrfed again without altering the resulting network properties.

By construction, the time series {fga]} used for ~onstructing a JRN need to be sampled at identical times
{tga]} and have to have the same length, i.e., Ny = Ny = --- = Nj); = N. However, since recurrences are

compared instead of state vectors, the a- vanta, » of JRN is that the {fga]} neither have to represent the
same physical quantity measured in iden. ~al uni s, nor need they reside in the same phase space (Tab. 3).

From a conceptual perspective, a JF N can . ~ regarded as a RN for the combined system (Xm ®- - -®X[M])
in its higher-dimensional phase spac’ spe med by all state variables. However, recurrences are defined here
in some non-standard way by takirg a. anc s in the subspaces associated with the individual systems X[
separately into account. This i \lies thav the properties of JRNs can be studied in essentially the same
way as those of single-system RI s (b." with possibly more subtle geometric interpretations of the respective
network characteristics). In tr comparing the same properties for JRN and single-system RNs provides
important information about the imilarity of neighborhood relationships in the combined phase space and
projections on the individual s, *2ms’ subspaces. Specifically, we can gain insights about the effective degrees
of freedom of the combir .d svstewn., which may be reduced in comparison with the sum of the degrees of
freedom of the uncouplr ! sv.temr , due to dynamical interdependences between its components. Note that
there is a close analogv to 1. *1t7 slex recurrence networks, with the exception that JRNs do not exhibit any
inter-layer linkages.

f-joint recurrence ne. vork- Equivalently to their interpretation outlined in Section 3.10.2, we can also
consider JRNs & the rrduction of a generalized multiplex RN, where the vertices correspond to time points
t;, which can be ~onnect d by at most M different types of (labelled) edges representing the mutual closeness
of states in the " dif_rent systems. In this viewpoint, the reduction towards the JRN follows from the
requirement ...’ “r a given pair of vertices, in the multiplex RN all M possible labelled edges must be
present. With ~*.aer words, in terms of Boolean logics the entries of the binary recurrence matrices Rl are
connected by a 1 gical AND for defining the elements of JR.

Notably, the presence of a joint recurrence becomes increasingly unlikely as the number of interacting
systems M increases. Even in the case of very strong interdependences, there may be stochastic fluctuations
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in the individual systems (e.g., observational noise) that mask recurrences in individu .l systems and, thus,
subsequently reduce the joint recurrence rate

N-1 N
2
']RR(EI""’EM):mZ Z JRij(€1,...,€]‘ ) (75)
i=1 j=i+1

aka JRN edge density ps.

One possibility to circumvent the problem sketched above is relaxing tie r¢ ;. vement of having simul-
taneous recurrences in all sub-systems (i.e., the logical AND operation co.. o ¢ing the recurrence matrices
of the individual systems in a component-wise way), but considering > e cas. where at least a fraction
f € (0,1] of all systems exhibit recurrences (the standard JRN follc ws for ¢ = 1) [155]. This point of
view allows defining a hierarchy of networks, which we call f-joint rec ‘rrence networks (f-JRN). Starting
from the union of single-system RNs (respectively, the multiplex .uN) providing a network with M dif-
ferent edge types corresponding to recurrences of the individua' sys em. we require that there exist at
least [fM] edges between two specified vertices (i.e., time poirts). [n t} e specific case of M = 2 systems
and f € (0,0.5] (or, more generally, for f € (0,1/M]), we can ~write this requirement with a simple
logical (Boolean) operation connecting the single-system rer-rrence :1atrices in a component-wise way as
JR!(e1,2) = Rl (1) OR R (e2).

For the more general case, in order to mathematically formu ~te the requirement of [ fM] simultaneous
recurrences, it is convenient to start from a practically eq. ~valent re-definition of the joint recurrence matrix,

JR;‘j(el,...,eM)—@(: wb;‘;’(ea)—M—M), (76)

a=1

with the usual Heaviside function ©(-) and § — 0 bemg infinitesimally small (to ensure JR}; = 1 if
M Rl = M), and set

a=11Y;

M
JRL(e1,... cm) =9 <Z Rieq) — fM + 5) , (77)
a=1

to be the f-joint recurrence matriz. We .an use the latter definition to define f-joint recurrence plots as
well as f-JRNs in full analogy to the 17 sice’ case f = 1.

Trivially, the number of edges n an j- " (N decreases monotonically for increasing f if all single-system
recurrence thresholds €, are ke’ ¢ .. ~ed. We note that a similar relaxation of the strict requirement of a
conjecture (AND relation) between the \Boolean) entries of different recurrence matrices has been recently
discussed in the framework ¢ syi ibolic recurrence plots [138]. Moreover, it might be interesting (but has
not yet been explored) to use ~or cepts from fuzzy logic as the basis for somewhat weaker requirements than
in the rather restrictive dr .anition. ~f the original JRN.

The conceptual idea f f-,RN~ has not yet been further developed and studied elsewhere. One possible
field of application could L. mdi .g proper values of f (for example, in dependence on the magnitude of some
observational noise) “,1 which .esults commonly obtained using “normal” JRNs become stable in the case
of real-world time s ries. Tc this end, we only emphasize the possibility of defining f-JRNs and studying
the properties of thes entit.es (e.g., the scaling of network characteristics as a function of f), but leave a
corresponding ir .estigetion as a subject for future research.

3.10.83. Network , ~ome- ies and synchronization

The con. -p. ¢ inint recurrence plots (JRPs) has been found very useful for studying the otherwise hard
to detect eme. » nce of generalized synchronization (GS) between two coupled chaotic systems X and Y
[116]. GS descriv »s the presence of a general functional relationship between the trajectories of both systems,

y(t) = f(£(t)), which can arise at sufficiently large coupling strengths in both uni- and bidirectional coupling
configurations. Most available methods for identifying GS from time series data have been developed for
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driver-response relationships, but a few approaches are also suitable for studying C 5 in the presence of
symmetric couplings [192]. Among the latter, JRPs have recently attracted specific * 1. “=st.

Romano et al. [116] argued that in case of GS, recurrences in the two coupled system. need to occur
simultaneously (or with a given fixed time lag in the special case of lag synchroniz .tio. , y(t) = f(x(t —17))).
Hence, comparing the joint recurrence rate JRR with the recurrence rates of t..~ ir iividual single-system
RPs (taken to be the same for both systems) should show convergence of bc.™ vai. <. The latter fact is
quantified in terms of the joint probability of recurrence (JPR) index

Q(r) — RR
JPR = max gzﬁ (78)
with the lagged joint recurrence rate ratio
1 N
A7) = w5 mR Z Olex — |17 = Tl ©(e - — "wiv = Fjarll) (79)

7,j=1

and RR being the recurrence rate taken equal for both considered sys. ‘ms. Since for GS, we can expect that
Q(7) — 1 for some 7, JPR — 1. However, the latter measur. has s me disadvantages. On the one hand,
testing for the significance of a specific value of JPR usual, requires complex surrogate data approaches
for properly approximating the distribution of the underlvine = hypothesis (no synchronization) adapted
to the specific time series under study [146]. On the otw. » hand, comparing the single-system and joint
recurrence rates may be insufficient since due to the c~mnlexity of fluctuations or the presence of stochastic
components (observational noise), we can hardly eve- ¢ .pture all single-system recurrence in the JRP.
Consequently, a solely RR-based characterizatior does 1ot necessarily lead to the expected “optimum”
value of the synchronization index (JPR = 1) in ca. < . ¢ fully developed GS.

As an alternative, it has been suggested thot look. g at higher-order characteristics (specifically, three-
point instead of two-point relationships) may in., vove che results [192], especially when relying on proba-
bilistic arguments. One possible way is utilizing agai.. the concept of transitivities from RN and JRN. The
exploitation of alternative higher-order cl ..« ‘eristics might be possible, but has not yet been explored.
JRNs can be analyzed by standard staticvical me sures from complex network theory [4, 160], which, how-
ever, need to be reinterpreted in terms of v. » ur lerlying systems’ joint recurrence structure [60, 190, 191].
Indeed, transitivity properties of joint rec rrence networks have been shown to reveal complex synchroniza-
tion scenarios, notably including thL de .ecti n of the onset of GS, in coupled chaotic oscillators such as
Rossler systems [191]. Notably, tb : spec.”~ requirements on the time series data render JRNs a promising
approach for detecting intricate i 1. “connections between qualitatively distinct observables in observational
or experimental real-world data.

As a heuristic indicator fo tn presence of GS, one may use the transitivity ratio [192]

: 7
Qr= "7 (80)
(TX+TY))/2

i.e., the ratio between *“e Jh. T cransitivity and the arithmetic mean of the single-system RN transitivities.
The rationale behinc this dc inition is that for systems exhibiting GS, all degrees of freedom are completely
locked, implying tha. both s pproach the same effective (fractal) dimension and should thus have the same
RN transitivities . hicu wpproximately equal the JRN transitivity. Alternatively, we could also use other
means of 7 an | ’f'Y, s. -h as the geometric or harmonic means, for obtaining an appropriate ratio. However,
numerical exper. nents < aow that using the arithmetic mean provides values of QT that are mostly confined
to the inter>=1 [0, 1| with only minor exceedances in the fully developed GS regime [192]. One reason for
this could be sys ematic biases of the different transitivity estimators in comparison with their analytical

expectation val. 2s, which are to be further explored in future work. Since the arithmetic mean is always

larger than the geometric one, normalizing with respect to the geometric mean vV TXTY would lead to even
larger values of Q7 and, hence, an even stronger violation of the desired normalization of the transitivity
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ratio. However, even when considering the normalization by the arithmetic mean »f single-system RN
transitivities, the thus defined transitivity ratio has two major drawbacks:

On the one hand, if the single-system RN transitivities are essentially different (a ca. that has not
been studied in [192]), the contribution of the lower-dimensional system (higher t ans ‘ivity) dominates the
arithmetic mean in the denominator of Eq. (80) and, hence, the transitivity 1. “io cself irrespective of a
possible well-defined driver-response relationship.

On the other hand, there is no rigorous theoretical justification for QT being a o >od indicator of GS (as
there is no such for JPR either). Notably, the definition of the transitivity r cio - “ased on the idea that the
transitivities are related with the effective dimensions of the individual sysuv. ms 155]. In the uncoupled case,
the degrees of freedom of both systems are independent; hence, the eff~~tive ‘‘mension of the composed
system X ® Y just reads DX®Y = DX 4+ DY (notably, due to the logari, mic transform between RN
transitivity and transitivity dimension, this additivity does not apply - the F N transitivities). In turn, in
case of GS, the degrees of freedom of both systems become mutuall- ‘ocke., weading to DX®Y = DX = DY
(i.e., one system can be viewed as a — possibly nonlinear — prc ecti u  f the other), with DX and DY
eventually differing from their values in the uncoupled case depend...g on * .ae specific coupling configuration
(e.g., uni- versus bidirectional coupling). Taking the estimated . ~nsiuvity dimensions bTx,Y as proxies
for DXY and the pseudo-dimension Ars = log(T”7)/log(3/4) as an wpproximation of the true dimension
DX®Y of the composed system X ® Y, the latter case would tre. <lat . into QT = 1, which is approximately
attained in numerical studies for coupled Rossler systems in fferent dynamical regimes [192]. Note that
the transitivity dimension of the RN obtained for X ® ¥ ...l w Dyxey = log(TX®Y)/log(3/4), which is
in general not identical to the pseudo-dimension ATJ due v the different metrics used for the definition of
recurrences of X ® Y and joint recurrences of X and .~

In order to circumvent both problems, the authors ~f 155] suggested utilizing an alternative indicator,
which is directly based on the concept of effective ¢ . ~ensi ns (degrees of freedom) of the individual systems.
In analogy with the mutual information (sometime: ai. called redundancy [212, 213]) frequently used in
nonlinear time series analysis, we define the tr .. “*mit. dimension redundancies [155]

RbT = ﬁTX + DTY - ATJ, (81)

RDr = .LA\TX + DTY — .DTX@Y, (82)
which should assume zero values in tb . unco..>':d case and exhibit ﬁTx = ﬁTy = DTX@Y ~ ATJ in case

of GS. In order to obtain a normaliz :d r ecasvre for the presence of GS, we further define the dimensional
locking index (DLI)

DLI = =T, (83)
Ay

pii - BPT (84)
DTX@Y

Notably, this index is tan.. = d tco c¢he dimensionality interpretation of RN transitivity. In a strict sense, this
argument only applie- .. using he single-system RN transitivity dimension of the composed system X ® Y
instead of the JRN ransitiv 'ty pseudo-dimension ATJ. However, at this point, the latter may be used as
an approximation. A Jetaile | comparison between the two definitions will be subject to future research.

In order to fv wuer illustrate the behavior of the (J)RN-based characteristics for detecting the emergence
of GS, we reco sider ti 2 example of two unidirectionally coupled identical but slightly detuned Rossler
systems from Sec“ion 2 J.4. In contrast to [192], [155] studied different settings for uni- and bidirectional
configuratio. —7ith single realizations of the same system, we present here results obtained from ensembles
of realizations 7T ne results shown in Fig. 17 demonstrate that the estimated values of 77 and DLT exhibit
a marked increa. » at the onset of GS. Specifically, the DLI index approaches one (with little overshooting)
in the synchronized regime as expected, but takes values of only about 0.2 or lower in the non-synchronous
case (in comparison with values of about 0.7 exhibited by @7, cf. Fig. 2B in [192]).
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Figure 17: Joint transitivity '7'J, single-system RN transitivities TXY 1. 11), corresponding transitivity dimensions bTX’

f)TY (Eq. 50) and derived dimensional locking index DLI (Eq (8?,) \wcom top to bottom) for two unidirectionally coupled
Rossler systems (X — Y, Egs. A.5) with v = 0.02 (a) and v = — " J2 (b). The error bars indicate mean values and standard
deviations estimated from 100 independent network realizav -.. - for « *ch value of the coupling strength pxy . For transitivities
and transitivity dimensions, red (black) lines correspond to ti » v “es for system X (Y'). Modified from [192].

As a second important observation, we find a syste.aatic and significant decrease in the RN transitivity of
the driven system at moderate coupling str~ . s before the onset of GS, which corresponds to an increase of
the associated transitivity dimension. TP s behav or is precisely what was claimed in the context of coupling
analysis in Section 3.9.4 for providing an <. mlap tion of the numerically observed asymmetry between the
transitivity-based coupled network cb .rac*erisu.cs. These results underline that some integrated utilization
of single-system, inter-system and j mt ecur ence networks can eventually provide deep insights into the
coupling regime and strength from biva._ ~te observations.

3.11. Other types of prozimity networ:.

3.11.1. Cycle networks

In one of the first works "n .pplying complex network methods to the analysis of time series, Zhang
el al. [49] suggested to s udy ti. topological features of pseudo-periodic time series. In such case, the
underlying dynamical sy ster possesses pronounced oscillations (examples are the well-known Lorenz and
Rossler systems). Unlike “w P s and their algorithmic variants, we identify the individual cycles p,q
contained in a time s .1es of tl.s system with the vertices of an undirected network. Edges between pairs of
vertices are establisk »d if the ~orresponding segments of the trajectory behave very similarly. For quantifying
the proximity of cyc. < in phase space, different measures have been proposed. In [214], Zhang et al.
introduced a ge’ cralization of the correlation coefficient applicable to cycles of possibly different lengths.
Specifically, this correlal on index is defined as the maximum of the cross correlation between the two signals
when the shorter ~f b h is slid relative to the longer one. That is, if the two cycles being compared are
Cp=A{a1,2. .. 7 Yand Cy = {th,¥%,...,Un} with (without loss of generality) m < n, then we compute

T(CINCq) = max <(flaf27"'afm)7(g’1+i752+ia"'agn+i)> = Tpq; (85)

i=0,...(n—m)
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where (-, ) denotes the standard correlation coefficient of two a-dimensional vectors, r.ad set
Apg = O(p(Cp, Cg) — Tmaz) — Opg- (86)

where pp,q. is a properly chosen threshold value and 6,4 is again the Kronecker .elta necessary in order to
obtain a network without self-loops. As an alternative, the phase space distance |2 |

1=0,...(n—m)

. 1. o
D(Cyp,Cy) =  min EZII%—%HII:IW (87)
j=1

has been suggested, leading to the following definition:
qu = @(Dmaw - D(va Cq)) - 61)‘1' (88)

Of course, there are other possible similarity measures that one ¢ uld .se here as well.

The advantage of cycle networks is that explicit time-delay embewwng is avoided. In addition, the method
is more robust against additive noise, given a small enough noise ~aguitude to allow a clear identification
of the individual cycles from the time series. Moreover, cycle network: are invariant under reordering of the
cycles (this is precisely the same property that was also exploite for sycle-shuffled surrogate methods [215]
but not the pseudo-periodic surrogate method [216]). Howeve:, for chaotic and nonlinear systems in a near-

periodic regime, we typically observe significant orderly ~ _I_..._.. .1 the appearance of individual cycles. For
systems that are linear or noise driven, that orderly variaiv. n will be less pronounced. As a consequence,
the networks constructed with these methods will I ... ~haracteristic and distinct properties: linear and

periodic systems have cycle networks that appear ranc r 1y, while chaotic and nonlinear systems generate
highly structured networks [49, 56]. Therefore, t = vert x and edge properties of the resultant networks
can be used to distinguish between distinct classes ¢ € a, ~amical systems. Moreover, in [214], authors used
meso-scale properties of the networks — and ~ . ;~rticilar the clustering of vertices — to locate unstable
periodic orbits (UPOs) within the system. This . ~oroach is feasible, since a chaotic system will exhibit
a dense hierarchy of unstable periodic orbits, and these orbits act as accumulation points in the Poincaré
section. Hence, the corresponding vertices rorn. ~lusters in the cycle network.

For an implementation of the cycle ~etwork approach, the time series must be divided into distinct
cycles. In [49, 217] the preferred meth ,d fo. e’ ning cycles is splitting the trajectory at peaks (or equally
troughs). In order to quantify the v atus. proximity of different cycles, different measures can be applied
depending on the specific applicatio.. Jn tie one hand, the cycle correlation index 7, (Eq. 85) can be
properly estimated without additi .nal pha. . space reconstruction (embedding), which has advantages when
analyzing noisy and non-stations .y .’ me series, e.g., experimental data [49]. Moreover, this choice effectively
smoothes the effect of an additive independent and identically distributed noise source [214]. On the other
hand, the phase space dista’ ce ., (Eq. 87) is physically more meaningful [217]. For example systems
as well as some real-world ¢. i al electrocardiogram recordings studied in [49, 217], both methods have
been found to perform ree ,onably —ell. However, whether the previously considered approaches also lead to
feasible results for other case . has to be further investigated in future research.

In general, the constru. ' on - ad quantitative analysis of cycle networks requires a sufficiently high sam-
pling rate, i.e., we re-,aire thar noth cycle lengths m and n in Egs. (85) and (87) are reasonably large. The
main reason for this require: 1ent is that even two cycles that are fully identical but sampled in a different
way may have rather 'iffers it cycle correlation indices (and phase space distances) depending on the exact
values of the ob crved quantity. Hence, for a very coarse sampling, it is possible that two cycles that are
actually close ir. phase s ace may not be connected in the cycle network. However, for large sampling rates,
the variance of t..~ m~ .sure decreases, resulting in a more reliable network reconstruction.

Instead . - <. ~uting correlation coefficients to quantify the linear correlation between two cycles, the
mutual inforn.++.on could be used to capture nonlinear effects in a time series, as it may provide more
accurate estimay s of the similarity of nonlinear time series. In this context, in [218] the authors defined a
node in the constructed network as an episode, i.e., a time interval of a given series that may consist of n, > 1
consecutive cycles. This means that such an episode is n. times longer than a cycle. The extended length
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of an episode, compared to a cycle, has the advantage of increasing the accuracy of st itistical estimates of
mutual information. Note that a cycle does not need to have a certain minimal lengt’ s . qualify as a cycle.
However, it is clear that very short cycles convey less information about the time series ti. .n long cycles.
Due to the fact that the notion of a “cycle” is parameter free, one cannot adjust .or this shortcoming. For
this reason we extend the general idea behind the usage of a cycle in the consti. ~tir a of a network [49] in
terms of an episode. Moreover, the corresponding network construction algor: “m 15 ~ parametric method
because an episode is a function of n., the number of consecutive cycles. Thic cive, s a parameter n. that
can be optimized to result in the “best” network for a given time series.

The choice of the threshold 7,4, (alternatively, of D;,,.) influences e ink density of the resulting
network, which could be discussed in a similar framework as for const~cting vecurrence networks. One
solution is to study the dependence of network characteristics on r,,q, explic. y [49].

In terms of possible applications of this approach, Zhang et al. «-nstruc.ed cycle networks for sinus
rhythm electrocardiogram recordings of coronary care unit patier’_ ana ..calthy volunteers. It has been
demonstrated that the degree distributions of the resulting networ <s fc = a. 2cted patients show more promi-
nent variations in comparison to those of healthy volunteers whic.. vary rather smoothly. Other network
measures including clustering coefficients and average path lengtn ~1so snow significant differences between
healthy and coronary care patients. Furthermore, the cycle networ: has been applied for characterizing
electrical signals of acupuncture [219], showing different netwo.. tor slogies when the control parameter is
in different regimes, for instance, either twisting or lifting ana “hrusting conditions.

Most of the vertex and edge properties of cycle netwe "__ 1....c veen explained by UPOs of the underlying
chaotic systems [49]. Since UPOs are crucial to the unde. tanding of chaotic systems, Kobayashi et al.
performed a network analysis of UPOs [220]. By mea . ‘*he Poinaré map, they first numerically extracted
a large number of UPOs, which were considered as ver ic s of the network. Note that most of the existing
algorithms can only detect UPOs of lower orders, v ‘~h hc e been sufficient for characterizing the properties
of the underlying chaotic system [221, 222]. The ea_es “etween two UPOs are established by a transition
process of a typical chaotic orbit. More specifi ' if ( typical chaotic orbit {&;} travels close to UPO,, at
time 7 and later shifts to the neighborhood of Uk at time i 4 1, we consider a connection between these
two UPOs. Due to the chaotic nature of the orbit, the transitions between different UPOs are irregular.
The resulting network presents SW and S tea. 'res, which confirm the results reported earlier in [49].

3.11.2. Correlation networks

Generalizing the idea of cycle ne wor'.s to arbitrary time series, individual state vectors Z; in the m-
dimensional phase space of the embed ' d ve 1ables can be considered as vertices of an undirected complex
network. In contrast to the star .ard Riv approach, let us consider the case of m being very large (i.e.,
the time series has been over-er.bew 'ad). Specifically, if the Pearson correlation coefficient rp, = (T, T4)
between two sequences p and « is larger than a given threshold r*, the corresponding vertices p and g are
considered to be connected |7/, 1 8]:

Apqg = O(r" —1pg) — Opq- (89)

Interpreting 1 — 7,4 as a .~ dmi’ y measure, the condition rp, > 7* corresponds to the definition (Eq. 27) of
a recurrence with e = 7 - r*. 7 ne consideration of correlation coefficients between two phase space vectors
usually requires a st ficientl large embedding dimension m for a proper estimation of r,4. This high value
of m often includes se veral o cillation periods as compared to a cycle network. Hence, information about the
short-term dyna- s mignt get lost. Moreover, since embedding is known to induce spurious correlations
[223], the result of the orrelation method for network construction may suffer from related effects.

The correlatic » netr ork method has been applied to stock price series, unveiling Gaussian distributions
for the degr- ~~mences that are constructed from return and amplitude series [57]. Furthermore, different
two-phase (ga -1i juid) flow patterns have been well characterized by correlation network approaches [168].

Statistical c ncerns regarding the Pearson correlation coefficient arise when smaller values of m are
used, say m = 10, which requires more statistical robust measures. In [224], Hou et al. proposed to
use the inner composition alignment measure (IOTA), which is a permutation based measure that was
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originally introduced to identify couplings from rather short gene-expression data [25], to quantify the
connectivity strength between two embedding vectors. As compared to the standard s ,1.. »etric (undirected)
correlation network, a directed correlation network is obtained, which has been further applieu o characterize
pathological changes in the cardiovascular system from short-term heartbeat tims ser =s [224].

4. Visibility graphs

Another approach for transforming time series into complex network re’ rese ... *ons, which has recently
attracted great interest, is the visibility graph (VG) algorithm. Originally, v. *< concept has been introduced
for the analysis of mutual visibility relationships between points and obst . es in . ro-dimensional landscapes
in the framework of computational geometry, with applications ran; ing fro.1 robot motion planning to
architectural design and topographic descriptions of geographical space 226-29]. Lacasa et al.[51] adopted
the VG approach to the analysis of structures in scalar, univaria’c ¢ime series. Since this seminal work,
different algorithmic variants of the original VG algorithm have b en - rop sed, which we will summarize in
course of this section. In general, visbility algorithms constitute a tamilv ,f geometric and ordering criteria
for scalar real-valued time series, providing a combinatorial repi. =ntation of the underlying dynamical
system [230].

Some mini-review of VGs has already been presented ir. 231, 227 . In particular, the application of this
approach to geophysical time series has been focused on in [6u,, which has attempted to link the complete
variety of different network properties describing the st. ‘cuure ot VGs with specific structural features of
geophysical processes in some more detail. Here, we summai.. = the recent developments of the method and
discuss some practical issues which pose considerable . a... ~3 to VG analysis for experimental time series,
such as missing data, homo- and heteroscedastic unce.‘ .nty of observations, and time-scale uncertainty.
These practical problems for VG analysis have not y -« “1lly ~nswered since the early work of [60]. In addition,
we also discuss some successful applications of VGs ana related methods to testing time-irreversibility of
nonlinear time series.

4.1. Algorithmic variants of visibility algorithms

In VG analysis, individual observatio’ s are c. nsidered as vertices. For instance, given a univariate time
series {z;}N | with x; = z(¢;), the binary « 'iacer :y matrix A has size N x N. Depending on the particular
visibility conditions in defining the eds 2s of the _esulting graph, we can distinguish different versions of VGs.

4.1.1. Natural visibility graphs
First, in the framework of th -tandard visibility graph (VG), the non-zero entries of A correspond to
two time points ¢; and t; which are m. mally connected vertices if the criterion

T; — Tk >£i—l‘j
tr — 1 tj —1;

(90)

is fulfilled for all time pc nts ., w'th t; <t < t; [51]. Therefore, the edges of the network take into account
the temporal information ¢. »lic'¢ly. In Fig. 18(a), we illustrate the algorithm of constructing natural VGs
for an example of a ’.ie surspot time series. More detailed information on recent results obtained by VGs
analysis of the sunsj ot serie; will be provides in Section 6.2.

By default, two c. <o ive observations are always connected in a VG, so that the graph forms a
completely conr .cted cmponent without disjoint subgraphs. However, unlike for other types of time series
networks, there re pote tially relevant boundary effects, for instance, the first time point can only be visible
to points that are .~ +' ¢ future of this observation (Fig. 18(a)), see below for a detailed discussion. In turn,
as an advan. e, '~ VG is not affected by the choice of any algorithmic parameters — in contrast to most
other methods - constructing complex networks from time series data which depend on the choice of some
parameters (e.g., “he threshold e of recurrence networks, see more details in Section 3).
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Figure 18: Schematic illustration of the algorithm for constru .._ ‘~) natural visibility graphs and (b) horizontal VG for an

excerpt of the time series of sunspot numbers. Reproduced fron. 122 ,|.

4.1.2. Horizontal visibility graphs
As a notable modification of the standard '+ ai,.cithm, Luque et al. [59, 234] proposed utilizing a
simplified criterion of horizontal visibility for transfo.. ing a time series into a complex network. Specifically,

they considered two observations made at *"~es t; and t; to be connected in a horizontal visibility graph
(HVG) if and only if

«, <min{x;, z;} (91)

for all ¢, with ¢; <t <t;.

The algorithmic difference bet veen h s and VG is illustrated in Fig. 18(b). Note that the geometric
criterion defining the HVG algor'chi. is more “visibility restrictive” than its analogous for the standard VG.
That is to say, the nodes within a HVG will have “less visibility” than their counterparts within a VG. It
is easily seen that the edge sc, of he HVG associated with a given time series is a subset of the edge set of
the associated VG, which mc n¢ that if the horizontal visibility criterion in Eq. (91) is fulfilled, then also
Eq. (90) holds, but not nr cessarw, vice versa. In addition, VGs are invariant under affine transformations
of the entire time series whr .eas HVGs are not. One notable advantage of HVGs is that they provide an
even higher degree of algo.. nmi simplicity than standard VGs, resulting in the observation that for certain
simple stochastic pro ecsses ana the quasiperiodic transition route to chaos, some basic graph properties can
be calculated analyt cally [5 , 235, 236]. On the other hand, the fact that HVGs typically contain a lower
number of edges incre. ~es t' & demands regarding the time series length relative to those of the standard VG
when using this .pproech in applications, such as tests for time-reversal asymmetry [63] (see Section 4.5).

To further a count t r the differences between natural and horizontal visibility graphs, Zhu et al. [237]
introduded the co. ~er* of difference visibility graphs (DVGs), which are based on the node and edge sets of
the natural - “*h the edges of the HVG being removed, i.e., Epye = Eve\Enve and Vpyg = Vyg =
Vivea. This cov eruction immediately implies that the degree sequence of the DVG is defined as the (strictly
non-negative) di."erence series between the degree sequences of the VG and HVG, respectively. Wang et al.
[238] recently demonstrated that the degree properties of DVGs obtained from EEG data can be employed
to differentiate between different types of epileptic seizures.
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4.1.8. Other variants of (H)VG

Throughout this section, we will mostly focus on the discussion of the standard * & ~nd horizontal VG
algorithms and their applications. However, there are some other generalizations nf these .wo algorithms
that will be briefly summarized in the following. Recent applications of the (H' VG algorithms and their
variants to experimental time series of various origins will be reviewed in Sectiow. % 2

Given the definitions of VG and HVG, the resulting graphs are undirected a.. ' unw. ~hted. One straight-
forward generalization of (H)VGs to directional (H)VGs is to introduce direct~1 edg. - between vertices, i.e.,
from the cause at ¢; to the effect at ¢; > ¢;. As it will be shown in Section 4.5, s " directed graphs provide
information on time-reversal asymmetry of the considered time series.

Since an edge represents the visibility between two time points ¢; ar ¢; th." can be either consecutive
in time or be separated by various other observations, another generali: ation ¢." the original ideas of (H)VGs
is to construct a weighted (H)VG which takes into account the time di. “ance t stween t; and ¢; [239]. More
specifically, the weight w;; is defined as w;; = 1/1/(t; — ;) + (x - ;)¢ < [0,1]. Thereby, these weights
capture time distance information (t; — t;) as well as amplitude diff renes (z; — ;) of two data points
connected by the respective visibility rule. The corresponding approach nas been applied to characterize
heterogeneity of recurrent neural network dynamics [239].

There are several further algorithmic variants of (H)VG *hat add ess specific properties of time series.
For instance, given a binary series, in [240], a simplified V/* ha. he.n developed yielding a binary VG, in
which the visibility condition (Eq. 90) is reduced to xz; + x; - =3 for all t; such that ¢; < t; < t;. The
resulting VG from binary series is always connected a . uuwirected and more easily tractable than the
standard VGs.

Parametric VGs have been proposed in [241, 24 -, .. ~~ducing “viewing angle” «. When this angle
« = 7, the parametric VG and the standard VG are ti.~» ;ame. However, the angle o« = 7/2 does not turn
into HVG because « introduces a direction of link: .. the ‘esulting graph. By means of this algorithm, it is
possible to study the dependence of network structu. 2l 1. zasures on the parameter «.

The concept of limited penetrable VG (LP". +, (1~ 244] can be regarded as a continuous construction
of a HVG based on a properly coarse-grained time ~eries. In the original HVG, two time points ¢; and ¢;
are connected if no other intermediate points xj, are larger than minx;, ;. Now we use a less restrictive
criterion, allowing one of xj to be larger .han . inz;, z(;, as represented by the new parameter of L = 1.
Similarly, we allow two points z larger "han mi .z, x; if L = 2, etc. When increasing L, there are more
edges in the resulting LPHVGs as comwr pared . he standard HVG. The standard VG is recovered from the
LPVG if L — oo. A straightforward xte' sion in terms of the multi-scale limited penetrable HVG algorithm
(LPHVG) has been proposed in [245, 2] ar d successfully applied to the analysis of EEG time series [247]
and electromechanical signals [24¢ . Recen._y, the limited penetrable VG algorithm has been combined with
a parametric VG in [249]. More ,ver, “he key topological characteristics of LP(H)VGs have been studied in
great detail in a series of pape~ [250-252].

An extension of (H)VGs fror a univariate time series to scalar fields has been recently reported in
[253, 254], which is conceptu. "y closer to the original idea of visibility graphs. In addition, one may
reconstruct (H)VGs for a set of o1 2red data (either in descending or increasing order) [255].

It is also possible to - »m} ne t'.e concepts of VGs with transition networks (Section 5), e.g., by using the
visibility graphlet approach , ~op ,sed in [256, 257]. In this case, VGs are constructed for sliding windows, and
each window is regar ied as a network node. The connection between two nodes represents their temporal
succession. The rest 'ting tr: nsition network is regular for periodic dynamics while showing more complex
structural properties 1o ~h- stic systems [257]. The computation of network measures (including the average
path length and aetwor ' diameter) have successfully tracked the different bifurcations from period doubling
and intermitten v to ch os in the logistic map.

In all above ¢~ (H)VGs have been constructed from a given time series. In [258], Tsiotas et al.
expanded tl.~ v '-orithm to analyze node attributes of a given graph. More specifically, let us consider
a graph G(V, . and a node attribute Y that might be any of the node-wise network measures, e.g., local
clustering coeffic. nt or betweenness centrality. The secondary VG analysis for node-wise attributes Y shows
a specific capability in pattern recognition [258].
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Other properties of combinatorics have been used to characterize HVGs successful’y in [259]. Recently,
some analytic results have been obtained for independent and identically distribute . .. »dom noise, which
has an exponential degree distribution [250].

The time complexity of the basic natural VG algorithm is O(N?), which me ans “hat it takes a lot of
time when dealing with long time series. A faster transform algorithm has been , ~op ssed in [260] to reduce
the computation time, showing much more efficient time complexity ~ O(N log V). . ~te that for the HVG
algorithm, it is not possible to further improve the computational efficiency hecaus. it has already reached
the lower bound ~ O(N).

4.2. Visibility graph properties
4.2.1. Degree distributions

A vast body of early works on (H)VGs has mainly concentrated on v e pro erties of the degree distribu-
tion p(k) resulting from different kinds of processes. Specifically, V/xs obtained from periodic signals appear
as a concatenation of a finite number of network motifs (given tht +.e b sic period is an integer multiple
of the sampling rate), i.e., have a regular structure with only - few dic.inct values of the vertex degree.
The opposite extreme case, white noise, yields VGs appearing as .. ~onential random graphs, i.e., random
networks characterized by an exponential degree distributior. For exa nple, exponential degree distribution
have been reported for wind speed records measured in cer. »al A.> .tina [261].

In fractal processes, numerical results suggest that p(k) exu>its a power law [51], p(k) ~ k=Y. Taking
this empirical observation, VG analysis has been suggest. * to characterize fractional Brownian motions and
fB-noise, finding some heuristic relationship between v and .. = process Hurst exponent H as v = 3 — 2H,
and v = 5 —2H for fractional Gaussian noise [61, 62]. *Jep. .- "'ng on the fractal properties of the underlying
process, recently a resampling algorithm for constructing * Gs from segmented time series has been proposed
[262], which estimates power-law exponents reflec.'... Sk properties quite well. This improved algorithm
has been applied to diagnose Autism spectrum disora vs |262]. Since there are many concerns regarding the
statistical justification of the power laws of V.- v.. = an directly analyze the degree sequence (instead of
the distribution) by detrended fluctuation analysis |2%3], which quantifies the multifractal properties better
than standard VGs analysis.

Some exact results of p(k) for HVG assoc wed with generic uncorrelated random series have been
obtained in [59]. More specifically, for a . *-infinj e time series created from a random variable X with the
probability distribution p(z) and x € T, 1]. it ..- s been proven that the degree distribution of the graph has

an exponential form
1/2\"?
k=== . 92
o0 =3(3) (92)

Interestingly, for every probability distrioution p(z) of uncorrelated random series, we find the same expo-
nential form for the HVG’s ¢ agre : distribution. Numerical results for p(z) with a uniform, Gaussian and
power-law form (e.g., p(x) ~ =7 ) show perfect agreements with this theoretical prediction [59]. A general
diagrammatic theory has oeen p. vosed in [264] to compute p(k) for any given dynamical process with
well-defined invariant m‘ asu’ :. T-king into account the time information explicitly as in so-called directed
HVG (as will be explaine.. elor ), the outgoing degree distribution pyu:(k) = (1/2)*. Further solvable ex-
amples include Mark' vian processes with an integrable invariant measure p(z), for instance, the stationary
Ornstein-Uhlenneck b>rocess, and one-dimensional chaotic and quasi-periodic maps of with smooth invariant
measure. In addition, “*he r ean degree (k) of the HVG associated with an uncorrelated random process is

then given by . Z o) i k <2>k—2 » (93)
=3 \3

For an infinite » riodic series of period T, the mean degree is (k) = 4(1 — 55).

Similar to V 's, HVGs have been successfully applied to studying time series from various fields of
sciences. We particularly notice a recent paper [265] which studied the multifractal properties of some solar
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flare index in terms of HVG characteristics. Among others, the properties of HVGs ".ave been studied in
river flows [266], showing exponential degree distributions.

In order to understand the hypothetical SF property of p(k) for VGs from fractal reco. s, one has to
note that typically, maxima of the time series have visibility contact with more oth: - vertices than other
points, i.e., hubs of the network often form at maximum values of the recorded obL. ~rv' ple. Put it differently,
the degree of a vertex in the VG characterizes the maximality property of the . ~rres. nding observation in
comparison with its neighborhood in the time series. Although locally large *ime . vies values have better
visibility than other small values, hub nodes of large degrees of VGs do not iece - “rily correspond to higher
values, especially when there is some sort of periodic trend in the given da. se juence, for instance, in wind
speed records [261, 267]. Therefore, the relationship between maxima tir~ seri. - noints and hubs of VGs is
not completely general, since there can be specific conditions (e.g., a ¢ ncave , =havior over a certain period
of time) which can lead to highly connected vertices that do not coinc e wit! local maxima, for example,
in case of a Conway series [51].

In addition, studying the minima of a given time series provides .o. plementary insights for the un-
derstanding of the particular process, for instance, in case of sunsuot se ies [267]. In standard VGs, the
contributions of local minimum values are largely overlooked by v. ~ degree distribution p(k) because mini-
mum values are basically represented by non-hubs. One simple solutio | is to study the negative counterpart
of the original time series, {—z;}, the VG of which highlights 1..~> or perties of the local minima [267]. For
convenience, we use k; © and P(k~%) to denote the degree sey ence and distribution of VG resulting from

{—x;}. Here, we remark that this simple inversion of the I...0 . ..cs allows us to create an entirely different
complex network. This technique has demonstrated to be . ~eful to understand the long-term behavior of
strong minima of solar activity [267]. We will review .. - results in Section 6.2.

The graph entropy is often computed as S = — _~ p(k)logp(k) and is used as the approximation

to the Shannon entropy S of the corresponding . e se fes {x;} [232, 268]. Furthermore, based on the
degree sequences, the VG aggregation operator has be.n proposed in [269, 270]. This operator includes
temporal information in the weights of the a_ _~~atin, showing computational simplicity comparing to
other traditional aggregation operators.

4.2.2. Distinguishing stochastic and deter .un.. “c dynamics

For the HVG, exponential functional ~rms, p( :) ~ e~**, have been found for many random processes. A
scaling factor of A, = In(3/2) has been ‘ouna ™ “ne case of uncorrelated noise (white noise), which has been
further proposed to separate stochas .ic f om chaotic dynamics in the following senses [234, 264, 271]: (i)
correlated stochastic series are charac. v zed "Jy A > A, slowly tending to an asymptotic value of In(3/2) for
very weak correlations, whereas (ii' chaotic cries are characterized by Achaos < A for decreasing correlations
or increasing chaos dimensional'.y, ~spectively [234]. In [272], Zhang et al. have provided some further
examples supporting argument (i). Me.nwhile, some peculiar results have been found indicating that A.
should not be interpreted as . ge eral critical value separating chaos from noise [271].

Let us focus on applying F)VG analysis to auto-regressive (AR) stochastic processes, which often
describe a general model fr coloi. ! noise as an idealization of time-varying processes in nature, economics,
etc. The AR model spec des .hat the output variable depends linearly on its own previous values and on a
stochastic term (Eq. A.3). ~fore specifically, we perform both VG and HVG analysis for stationary AR(1)
processes, i.e., with | 1] < 1 wuere ¢ is the characteristic parameter of the AR(1) model. It is known that
w1 > 0 corresponds o positi e correlations and the correlation length increases when ¢ increases from 0 to
1. In contrast, anti-co. “elat? o is observed for negative coefficient ;. Similar H(VG) analysis for the AR(2)
model has been eported in [272].

In the case “ ¢1 > ( we find that p(k) approximately follows an exponential distribution. To illustrate
this finding, the ¢. »n! mentary cumulative degree distributions F'(k) for ¢1 = 0.3, 0.9 and —0.5 are shown
in Fig. 19(a «..' ‘M) where clear scaling regimes are present in the semi-logarithmic plots. Furthermore,
when increasn = p1, in the VG, the exponent A shows a monotonically decreasing trend (Fig. 19(c)). In
contrast, the val. = A for the HVG is increased (Fig. 19(d)). The result of Fig. 19(d) confirms the hypothesis
stated in [234] that all A should be larger than A. = In(3/2) as the correlation length is increased in the case
of positively correlated increments.
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Figure 19: (color online) (a, b) Estimates of A for approximately exponential degree dist:.” -~ cions of the AR(1) process. (c, d)
A versus 1. (a, ¢) VG, and (b, d) HVG. Each dot in panels (c) and (d) represents . aver._~ over 50 independent random
realizations of 5000 data points. In (d), A values smaller than In3/2 are highlight d by re ' color. Reprinted from [272] with
permission of the original publisher.

In turn, when ¢; < 0, we observe some peculiar results that sec m . cor tradict the original hypothesis of
[234] that A should be larger than A. (A > )\.) in stochastic prec esses. N cably, the results of Fig. 19(d) do
not support this claim when ¢, is negative in the AR(1) model. Ins. ad, we find a region where the slope of
the exponential degree distribution is smaller than In(3/2) (a. highligl sed in Fig. 19(d)). This suggests that
the critical value of In(3/2) should not be understood as a ~enei.' ".w for separating correlated stochastic
from chaotic processes, which requires further investigation.

Working with correlated stochastic time series, furt.. v results in [273] do not adequately support the
arguments of exponential degree distributions as reported in *4]. More specifically, they have constructed
(H)VGs for fractional time series with three differer. 1 2 1s, a generic 1 = 1/f# noise constructed by
Fourier filtering, a deterministic fBm process of the :erstrass-Mandelbrot function, and a stochastic
fBm process generated with a successive random &« **ion method. Numerical analysis shows that the VG
algorithm may not provide a good method to extract ¢ rre.ation information of a time series and its statistics
is not essentially the same as that of the HVG. s ~« G . 2 distributions of HVGs are shown to have parabolic
exponential forms with the fitting parameter depen g on the Hurst exponent [273].

4.2.3. Degree sequences of horizontal visi ility g. iphs

Due to their specific construction proc dure, .he degree sequences of HVGs carry essential information
on the properties of the system under .tudy. 1. cably, it can be shown that there exists a bijection between
the degree sequence and the associat - a‘ jece .cy matrix of HVGs [274]. Even more, the degree sequence of
a HVG can be interpreted as a syr.bow. dis retization of the underlying time series (i.e., a transformation
from real into integer-valued obs rvations). By studying the scaling of the associated block entropies of
degree subsequences, Lacasa an. Jus. '?30] demonstrated the convergence of these block entropies towards
the Kolmogorov-Sinai entropy .. “*he system, indicating that the degree sequence asymptotically fulfills the
properties of a generating p .rtiti,n of the system under study and, hence, provides an encoding without
information loss.

4.2.4. Local network pr. ~ert es

Local clustering coefficiont C,. 71 the case of VGs, the local clustering coefficient C; and its relationship with
the degree k; have } een nu nerically studied recently in human heartbeat data [275]. Particularly, it has
been observed that ¢ k) ~ k¥~ and v = 1, pointing to a hierarchical organization of the network [3], since
vertices 4 with hie' C; a..l wow k; (which are most abundant) form densely connected subgraphs, indicating
a strong modul: r struc. wre of the VG.

In the case ¢ HVG' associated an uncorrelated random series, C; can be easily deduced by means of
geometrical argumenss. For a given vertex ¢, C; denotes the fraction of nodes connected to i that are
connected be wee 1 cach other. In other words, we have to calculate from a given vertex 4 how many vertices
from those visiL = to 4 have mutual visibility (triangles), normalized with the cardinality of the set of possible
triangles, (’2“), where k is the degree of vertex i. Based on a general rule between the degree k and the local
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clustering coefficient

(94)

one obtains the distribution p(C) as

wo-3(2)" (99

The above theoretical result has been numerically confirmed for uncorrelate . rar iu.. series [59]. In addition,
for HVG of a binary sequence, p(C) has a simplified expression as reportea .~ .240].

Betweenness b;. In many cases local maxima of the underlying time se ies are ~xpected to have large values
of betweenness because high values often correspond to hubs in VGs . hich s parate different parts of the
series without mutual visibility contact and, thus, act as bottlener’.. in tuc network structure, bundling a
large number of shortest paths between vertices at t < ¢; and t >t , rec sec ively. However, in contrast to k;,
b; is additionally affected by the vertex’ position in the underlying vune se ies due to a simple combinatorial
effect: Considering that the majority of shortest paths that cross . vertex ¢ connecting observations before
and after ¢ with each other, there are more possible combinati~ns of suc | points for ¢ being close to the middle
of the time series than for vertices close to the edges of tF= rec.~d (n this respect, in a VG betweenness
centrality of a vertex mixes information on the local maxima.. v of the corresponding observation and its
position within the time series.

Closeness centrality c;. The position of a vertex in t! . “*e series is even more important for the closeness
centrality ¢;. Specifically, ¢; is strongly determined by ti. » r amber of vertices to its left and right, respectively.
In this spirit, it can be argued that in the middle € the ime series, high values ¢; are more likely than at
its ends. As argued above, a similar (but weaker) et.~cv ~ontributes to betweenness and - close to the edges
of the record - also to the degree (consequent™  *he ,ighest degree and betweenness values can be taken
by other vertices than that corresponding to the ~lobal maximum). In contrast, C; is almost unaffected
except for vertices very close to the beginning and ena of the time series, since direct connectivity is mainly
established between vertices that correspe .d v observations that are not very distant in time.

From the above discussion, we note t ‘at bow lary effects play an important role in the computation of
the local centrality measures as that }as bc n -~.umerically reported in [60]. Except for C;, the impact of
boundaries on the estimated vertex » ropr sties 1s particularly strong for short records, which is typical for
many observational time series. In pe. “ic alar degree and other centrality properties of observations close to
both ends of a time series are syst matica."~ underestimated, which may artificially alter the interpretation
of the corresponding results in t ie.. <pecific context. Hence, a careful treatment and interpretation of the
results of VG analysis is necessary in such cases [60].

4.2.5. Global network prope, ‘s

The edge density p of . (H)V is a true network characteristic rather than a parameter of the method,
which is in contrast to ¢ nher ipproaches to complex network based time series analysis (for instance recur-
rence networks in Section © Sy :cifically, a maximum edge density of 1 would be present if the underlying
time series is globall* convex \c.g., of regular parabolic shape), whereas low values indicate a strong frag-
mentation of the VC and, h« nce, irregularity of fluctuations of the underlying observable.

For a holistic chare “teriz .tion of a (H)VG, C and £ have attracted particular interest, since their common
behavior gives r',e to ¢ mathematical evaluation of the SW phenomenon, i.e., the emergence of real-world
networks with a high de ree of clustering C and a short average path length £ [79]. The corresponding char-
acterizations of h™7C¢ _econstructed from fractional Brownian motions (fBm) with different Hurst indices
H € (0,1) I «vo “~on reported in [276]. It was found that the clustering coefficient C decreases when H
increases.

It can be ex, ected that the value of £ is large when there are only few edges in the VG (low edge
density p) and low for a high edge density p. Hence, £ and p capture essentially similar properties of the
underlying time series. For uncorrelated random series, the value of £ of a HVG has a logarithmic scaling
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relationship with the length of time series N, in particular, L(N) = 2In N +2(y — 1" + O(1/N), where ~
is the Euler-Mascheroni constant [59]. In the case of fBm with different Hurst indice, .. & (0, 1), and for a
fixed length of time series of N points, £ increases exponentially with H. In addition, £ 1. reases linearly
with respect to N when H is close to 1 and in a logarithmic form when H is clos . to ) [276].

Besides studies on the SW effect, the assortativity coefficient R of VGs has recc. *ly attracted considerable
interest. Specifically, the presence of assortative behavior (R > 0) implies so-c.''ed n.* attraction, whereas
disassortative behavior (R < 0) relates to hub repulsion. It has been showp that .“e latter is a necessary
condition for the emergence of fractal structures in networks [277]. For rzam -~ for the particular case
of fBm, hub repulsion is not present, and the resulting VGs are non-frac.. ' ! ut show a scaling of £ with
network size N as L(N) ~ log N, which is typical for SW networks. T con. =st, for the Conway series
(a deterministic fractal) one finds hub repulsion and £(N) ~ N~ - hich i. plies the presence of fractal
properties as reported in [51]. In this respect, R or, more specifically, “he sca’ ng of the degree correlation
determines the fractality of a VG [277], which is an interesting - .1 pouocadially relevant property when
studying fractal time series. The interrelationship between the p1per’.es of fractal time series and that of
the resulting (H)VGs needs more careful numerical validations.

A final global H(VG) characteristic that has been studied in . ~veral recent works [278-280] is the so-
called graph index complexity, practically a rescaled version cof the larg 3st eigenvector \,,q. of the network’s
adjacency matrix [281],

1oy A 2 (r/(n+1))
GIC = 4c(1 — ¢) with n—.-2cos(r/(n+1))

(96)

Among others, this measure has been successfully appl. d i cuajunction with VGs to discriminating between
different conditions of heart rate variability,

Of course, beyond the aforementioned characte. s. s vaere are multiple other measures one could also
consider for describing the properties of VGs. This i1.-ludes also measures characterizing the properties of
individual edges as well as the distributions of si. ~ll suugraphs (motifs). For example, four-node subgraphs
show different dominant motifs rankings in the VGs »f human ventricular time series, which distinguishes
ventricular fibrillations from normal sinus .1 -thms of a subject [136, 282]. Furthermore, the profiles of
sequential n-node motifs of (H)VGs appr ar with -haracteristic frequencies which have been computed ana-
lytically for certain deterministic and stoc..>stic ynamics [283].

4.8. Practical considerations

Many recent publications on ‘d)VG  +alysis of time series have particularly made use of data from
model systems, which are charac .e. 7ed by rather ideal conditions for statistical analysis. We note that the
numerical implementation of the (H)VG algorithms is rather straightforward without extensive precautions.
However, when operating wit'« d: 5a obtained from experiments, specific features challenging basically any
kind of time series analysic =re often present, including missing data, heteroscedastic “noise”, or even
uncertainties in the time < omau.. The explicit treatment of the resulting effects on (H)VG properties has
not yet been properly adr cess d in the literature. The associated practical problems that have been discussed
in [60] remain to be furtu. - expl red. In the following, we summarize these issues in the following.

Here, some of the .actica. 1ssues will be discussed using a Gaussian white noise process which serves
as a simple, but sti’ illustr. tive example. It has to be emphasized that for “real” data characterized by
a non-Gaussian prob. hility dstribution function, serial dependences, or even (multi-)fractal behavior, the
resulting effects - butd well be much stronger than in this example. A detailed study of the interdependences
between such fiatures « ¢ the data and the resulting effects of missing data and uncertainties on (H)VG
properties is, hov ~ver seyond the scope of this review. Anyway, the considerations below provide a first
attempt wh' _ - ~~forming (H)VG analysis and do not cover all relevant aspects of the methodological issues
for real time . =r’zs analysis. Furthermore, all discussions should be performed separately for the natural
VG, horizontal G and their variants, while we mainly focus here on the traditional VG algorithm for the
sake of brevity.

69



O©CoO~NOUIAWNER

4.3.1. Missing data

One important problem of many observational time series is the presence of missi .g J~ta. Since existing
methods of time series analysis typically require a uniform spacing in time, this nroblen. is most often
addressed by means of interpolation or sophisticated imputation of the missing obst -vations. In general,
there is a great variety of possible approaches for such gap filling, which shall nov ~e arther discussed here.
Anyway, we emphasize that it is not always a priori clear which method perfori. - the . "<t under the specific
conditions of the data studied. From the view point of (H)VG analysis, it w~mld L. an interesting task to
evaluate which effects that interpolation or imputation methods exert on t'.e re -_"*ing network structures.

Unlike many other approaches of time series analysis, VGs do not exp. ~it y require uniform sampling.
Hence, missing data could be ignored when performing a correspondin~ ~naly.~. However, if it is known
that there must have been an observation at a given time, it could be concep ually problematic to neglect
this information in the analysis. From a broader perspective, it can be rgued. nowever, that this argument
applies to all kinds of time series, since values of the considered obs-..able \with a continuous-time variabil-
ity) taken in between two subsequent observations remain always - nkr .wi. but could have a certain impact
on the results of the analysis.

From the viewpoint of complex network studies, it is also pos. hle to interpret the problem of missing
values as an attack at or a failure of the complex network r~nresente ' by the visibility graph. In complex
network theory, the impact of such attacks on various tymes o. net yorks has been intensively studied in
terms of safety and robustness of infrastructures [3]. In this co. “ext, one has to distinguish random failures
(corresponding to randomly missing values) from inter ‘v awvwacks, which typically affect the network
hubs. Since hubs of a VG correspond to the maxima of the . nderlying time series, this effect of intentional
attacks is particularly relevant for certain types of cc ... 7 data, e.g., in case of measurement failures due
to the limited detection range of a measurement device. “.nce attacks on hubs typically have a more severe
effect on the network architecture than other ve. . =s, ¢ nsoring can strongly alter the properties of the
resulting VGs. However, Donner et al. have shown ‘n |"9] that even a random removal can have notable
consequences for the VG properties on both g! -..' ~nc local scale.

The effects of missing data on the properties ~f VGs have been discussed by two different types of
treatment, which have been presented in [60] and can be considered as opposite extreme cases. On the one
hand, missing data will be simply neglect .d in .ne generation of the VG. On the other hand, since there is
no information about the magnitude of L "= missi- g values, it can be a more honest solution to consider the
VG as being fragmented into pieces ¢ rrespe *7 ng to times before and after the missing observation, i.e.,
decomposing the VG into mutually .ascc imected subgraphs. It should be noted, however, that the latter
approach results in the emergence ot « '~ .tior 1l boundary effects. In this case, some sophisticated gap filling
by means of interpolation or impu ation w... be most likely a better strategy in many practical applications.
In order to quantify the corresps nai. ~ effect, the Kolmogorov-Smirnov (KS) test has been proposed in [60]
to quantify the distance (simila=tv) between the two distributions of a given local vertex property (including
ki, Ci, ¢;, and b;) for both t} : or sinal and perturbed time series. The corresponding results are shown in
Fig. 20 and demonstrate tha. o .oring missing values has a considerable effect mainly on closeness ¢; (Fig.
20(c)), whereas the chang s to the distributions of k;, C;, and b; are in a certain tolerable range.

In real-world applics Jion', missing data often occur not randomly independent of each other, but as
blocks. Some further nume. ~al esults in this regard can be found in [60].

4.8.2. Homo- and h teroscec istic uncertainties

The influence of n. ~<1" “ment uncertainties on the resulting VG properties can be studied in a similar
way as for the ce »e of v ’ssing values. In particular, Donner et al. [60] considered homoscedastic uncertainties
as an additiona additiv : Gaussian white noise component, whereas the heteroscedastic case is studied by
multiplicative nois. ~.n a reasonable, simple analytical distribution. As shown in Fig. 21, it is found that
in both case. vuc ' _~al-to-noise ratio has a considerable effect by systematically shifting the distributions of
vertex propert. > obtained for the original data towards those expected for the noise process. Note that since
in the considerea numerical example both signal and noise originated from mutually independent Gaussian
white noise processes, there is a saturation of the KS statistics for moderate noise at values corresponding
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Figure 20: The Kolmogorov-Smirnov (KS) test statistics Dy g versus the fractior ¢ of randoraly removed single time series
values for the case of a Gaussian white noise time series with N = 100. (a) Degr e k;, (b) 'ocal clustering coefficient C;, (c)
closeness ¢;, and (d) betweenness b;. Missing values are neglected. Black and gra, lines ¢ crespond to mean values and +1
standard deviation levels obtained from 1000 realizations of the removal proces: Moa.... .. from [60].
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Figure 21: As in Fig. 20 for quantifying the effect of additi\ > Geaussian white noise with variance o2 on the VGs for one
uncorrelated Gaussian random noise of N = 100. Blac. .. ~»=. lines correspond to mean values and 1 standard deviation
levels obtained from M = 1000 realizations of the additive = ~ise. Modified from [60].

to the variance of VG properties for inde yendent realizations of the same signal process. Further examples
of heteroscedastic uncertainties can be fou. 1 in ",0].

4.3.3. Uneven and irregular timings

In a full analogy to the case of - .ncer.. in’.es in the observable {x;}Y | with x; = z(¢;), one can study the
impact of uncertain timings ¢; o". "he properties of the resulting VGs. The issue of uncertain timings is a
wide-spread problem particularly in tuc analysis of paleoclimate time series [284]. Since in the construction
of VGs both observable and s .ni, ling time enter in terms of an inequality defined by a linear relationship
(Egs. 90 and 91), it is not wrp wsing that uncertain timing can indeed have a similar effect on the VG
properties as uncertainties in tu. measurement itself. Figure 22 displays the corresponding KS test statistic
results for a realization c. Ge issian white noise originally observed with regular spacing, with the timings
being corrupted. Note .“a" thi- specific form of the time-scale corruption, which allows preserving the
temporal order of obs  vatio.. - has been inspired by the tent map as a paradigmatic nonlinear mapping
often used as an ill strativ example in complex systems sciences [60]. These results demonstrate that
the distribution of lc ~al ver ex properties of a VG are indeed affected by modifications of the time-scale.
However, compar'..g; Fig. 22 with Fig. 21, the changes are considerably smaller than for noisy corruptions
of the measurer ents th mselves. The reason for this is that the modification used here has been restricted
by the normal s« mpline interval, whereas the changes induced by additive and multiplicative noise allowed
for compara*™'~ larger modifications in the data.

Uneven t. nir z8 are paradigmatic for point processes, which are ubiquitous in geoscientific processes,
for instance, sc 'mic magnitude series [285]. A point process is often characterized by a random time
occurrence of the events and these events are typically clustered because they are neither Poissonian nor
regularly distributed over time. To check the effects of irregular timing on the degree distributions p(k),
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Figure 22: As in Fig. 21 for fixed data, but uncertain timing of observations. Uncer 1inty in t .e time domain has been modeled
by considering new times t; = t; + At(]1 — 2n;| — 0.5), where 7; are independent reali. *ion< Jf a random variable with uniform
distribution in [0, 1], and At is the spacing between subsequent observations i+ the original data set. Reproduced from [60].

Telesca et al. [285] constructed two VGs from (1) the seismic . ~ries of the original random occurrence
times, and the series (2) that has been substituted by regular conven ‘onal time unit. Interestingly, almost
identical results have been obtained for p(k), which suggests .~at *.e effects of irregular timing are not
crucial. However, as we demonstrated in Fig. 22, network mea. "res are affected by the level of uncertainties
in the sampling timings.

The trivial connection of neighboring points in time in e (H)VG enhances the signature of structures
due to autocorrelations in the record under study. Al ©. ~~h this might be desirable for (H)VGs, since some
of their respective network properties are explicitly re’at :«d with the presence of serial dependences (e.g.,
the typical scale of the degree distribution of HV <. ct. [59]), there could be situations in which one is
interested in removing the corresponding effects. In ~ucl cases, it is possible to introduce a minimum time
difference for two observations to be connecte * *~ the network for removing the effect of slowly decaying
auto-dependences, which would correspond to the Theiler window in other concepts of nonlinear time series
analysis [286].

We note that other than for VGs or r .atec methods, the uncertain timings or irregular time spacings
can have substantial effects on the const 1ction o ordinal pattern transition networks [287-289], which will
be reviewed in Section 5. Furthermor:, the ~w cent discussion is limited to the case of a Gaussian white
noise process and more generalizatic s tr non-Gaussian assumptions are necessary to be explored, which
are much closer to the situations of 1. ~1 .ime series.

4.4. Multivariate visibility grapk m. *hods

Despite their success, the r2- ~e of applicability of (H)VGs methods has been mainly limited to univariate
time series, although the mos . che lenging problems in the area of nonlinear science concern systems that are
described by multivariate time ~ cies. Synchronization analysis is one of traditional topics when generalizing
(H)VG analysis from a un’ variate v bivariate time series [290, 291]. We notice that there are several different
ways of extending the id as f om - single time series to multivariate time series, for instance, multiplex VGs,
cross-VGs and joint VGs. “or mstance, the cross-visibility algorithm has been proposed to understand
coupling and inform: von transter between two time series [292]. Here, we summarize some of the different
approaches to chara terize b variate time series using (H)VGs.

4.4.1. Multipler visibil *y graphs

Based on the definiti n of HVGs, Lacasa el al. [188] proposed to transform a multidimensional time series
into an appropriate., .efined multiplex visibility graph. New information can be extracted from the original
multivariate e o ‘es, with the aims of describing signals in graph-theoretical terms or to construct novel
feature vectors  feed automatic classifiers in a simple, accurate and computationally efficient way. Multiplex
VG analysis has . een applied to characterize the heterogeneity of recurrent neural network dynamics [239]
and different conditions of resting state human fMRI data [293].
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Consider an M-dimensional real valued time series {Z;} = ({xgl]}, {x?}}, ce {xEM];) with Z; = Z(¢;) €
RM for any value of ¢; € [1, N], measured empirically or extracted from an M-dimens o.. ! either stochastic
or deterministic dynamical system. In full analogy to the notation used for describing mult., lex recurrence
networks in Section 3.8, the superscript index represents here the a-th variabl .  n M-layer multiplex
visibility graph M is then constructed, where layer o corresponds to the HVG a. ~¢i ited to the time series
{xga] HY_, of state variable X o], Note that M is represented by the vector of au, ~enc, matrices of its layers

A={AM AR AMY where Al = {A[a]}” is the adjacency matrix of "., 'r a. Jach a mapping builds
a bridge between multivariate series analyblb and recent developments in t'.e t} 01, of multilayer networks
[86], making it possible to employ the structural descriptors introduced to .’ ady multiplex networks as a
toolbox for the characterization of multivariate signals.

Two measures have been proposed to capture, respectively, the ak indance of single edges across layers
and the presence of inter-layer correlations of node degrees [188], whi™ hel" to characterize information
shared across variables (layers) of the underlying high dimensions. system. Simply speaking, we compute
the two measures defined by Eqs. (56,57), which are based on he adjs :ency matrices of HVGs. More
specifically, the first measure is the average edge overlap w (Eq. 57), whi a computes the expected number
of layers of the multiplex on which an edge is present. Note that w v."es values in [1/M, 1] and in particular

w = 1/M if each edge (i,7) exists in exactly one layer, i.e. 1. "here e ist a layer a such that AE?] =1 and

Ag] =0 VS # «, while w = 1 only if all the M layers are . ntical. As a consequence, the average edge
overlap of a multiplex VG can be used as a proxy of the ~===-"" __herence of the original multivariate time
series, with higher values of w indicating high correlation 1.. the microscopic structure of the signal.

The second measure proposed in [188] allows to ¢ ~~+ifv the presence of interlayer correlation between
the degrees of the same node at two different layers. M. re specifically, given a pair of layers a and 8 of M,
respectively characterized by the degree distributic = n(k ") and p(k[ﬁ]), the interlayer correlation is defined
by the mutual information I*? (Eq. 56) between p. %t " and p(kl?!). The higher I*# the more correlated
are the two layers and therefore the structures ¢ the . ssociated time series. Then, the average of I*? over
every pair of layers of M gives a scalar variable J = Q[O‘B >a 5 which captures the amount of information
flow in the multivariate time series. ’

Note that the interlayer correlation giv ;s a . ~ighted correlation matrix of size M x M and each entry is
represented by I®?. That means that t! > origine M-dimensional time series is transformed to a weighted
graph of M nodes, where each node re’ resen..~ ¢ e layer and the weights of the edges denote the magnitude
of mutual information computed fror . the associated (H)VG degree distributions.

4.4.2. Joint and excess degrees

Some network-theoretic quar .itic to quantify asymmetries in bivariate time series have been introduced

n [233]. Following the notatior< as described for multiplex (H)VG, we restrict here our considerations to
two-dimensional time series whic . results in two layers « and 3. For {m[a]} v, and {x[ﬁ ]}1 1, We again
consider two (H)VGs with aa,. ~ ncy matrices Al*l and APl respectively. Note that the sets of vertices are
the same for both subgra’ ns, witn lifferences exclusively in the set of edges.

Based on the thus o} cair .d (}7)VGs, we proceed as follows:

1. From the two “1)VGr=., we have two sets of neighbors, /\/;[a]’[ﬁ] = {AEJ] Pl=q je {1,. N}/{z}}
for each time ¢ = {1,.. ,N}. The degree sequences are then defined as
k,z[a},[ﬁ] _ #N'i[a],[ﬁ] _ Z AE?]’[B]- (97)

J
2. The jo. t a gy, .2

ki’oint _— (N-i[a] m'/\/i[ﬁ]) ZA[O‘] ﬂ (98)
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gives the number of common neighbors of a vertex corresponding to time 7 in bot} sequences. Notably,
we can define {k/°""} as the degree sequence of a joint (H)VG combining t} : . =ibility criteria for
two distinct time series. Here, the adjacency matrix is defined by the point-wise 1. tiplication of
the individual (H)VGs’ adjacency matrices. This idea is conceptually relat .d t the concept of joint
recurrence plots encoding the simultaneous recurrence of two dynamical . -ste ns in their respective

phase spaces [99]. One simple idea is to compare the cross correlation or ~utua. ‘nformation between
the two degree sequences of {kl[a]} and {k}/ﬁ]} [188, 294].

3. In a similar spirit as the joint degree sequence, we can quantify the ur)er or edges associated with
time ¢, which connect to vertices contained in ./\/'i[a] but not in /\/;-[B I or v.-= versa. More specifically,

J

o = (N A NT) = S A (o A )
J

ks,[ﬂ] — % (M[ﬁ] QW) — ZA% 0 kl ! AE‘;‘]) (100)
J

where N;[a]’[ﬂ] t)={1,...,7T}In {./\/;[a]’[ﬁ] U z} is the ¢ mpleme itary set of J\/i[a]’[m, which measures

g oo 18]

the number of neighbors that belong only to ]\/'i[a] or J\,‘J , respectively. Therefore, we refer

as the conditional degree sequences. By definition,

ool (81 _ plallor  point (101)

Based on the latter definitions (Eq. 101), we ccmput  the following properties:
Ak; = k1] 200 = el 1Al (102)
Aperki = Aki/ (b + kz[m) . (103)

The excess degree Ak; quantifies how muc’s 1. re convex” the fluctuations of Al are in comparison with
Al around a given time i (i.e., how mar 7 more ¢ - less visibility connections the observation of Al at time
1 obeys in comparison with A[ﬁ]). By ~ddn. na'.y considering the relative excess degree A, k; normalized
by the sum of the individual degrees, we obtain a measure that does not exhibit marked sensitivity with
respect to the actual degrees k:l[-a]’[ﬁ }, v. ™ sh o 4y considerably vary over time according to the statistical and
dynamical characteristics of the d .ta.

In Section 6.2, we will sumr ar.. ~ the applications of Ak; and A, k; to characterize the north-south
asymmetry of solar activity [232]. whicu provide many nonlinear properties that have not been studied by
other methods. Notably, thic apy -oach is conceptually related with recently developed (H)VG-based tests
for time series irreversibility, . hi_h compare (among others) degree distributions obtained when considering
edges to past and future ¢ sservav. s separately [63]. We will address these methods in the following.

4.4.8. Visibility graph swn.” writy

As an early alter .auve to .tudying inter-layer similarities in multiplex (H)VGs, Ahmadlou and Adeli
[290] introduced the concep of visibility graph similarity. Here, a combination of ideas from time delay
embedding, recurrenc. =nal sis and visibility graphs is used to quantify the statistical relationship between
two observed sec uences For this purpose, each sequence is first subjected to classical time delay embedding.
Next, a certain tate ve tor from the previously constructed set is chosen as a reference, and a time series
of distances with ~<n-_t to this reference point is constructed. For the resulting time series of distances,
the corresp. ...~ VG is constructed. Finally, by pair-wise comparison between the thus obtained VG
degree sequen o obtained for the two time series of interest in terms of their correlation coefficient, a
VG-based simila ity measure is constructed, which has been used for capturing signatures of generalited
synchronization in paradigmatic model systems [290], but also for constructing time-dependent functional
network representations of human brain actvity from multi-channel EEG measurements [295].
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4.5. Decomposition of visibility graphs
4.5.1. Time-directed visibility graphs and characterizations

So far, visibility graphs have mostly been considered as undirected, since vi~*hility does not have a
predefined temporal arrow. However, (H)VGs be made directed by again assi nin' to the links a time
arrow, which result in the so called directed VGs and HVGs. Accordingly, a lin. ¥ stween ¢ and j (where
time ordering yields i < j) generates an outgoing link for ¢ and an incoming link > j. herefore, the degree
k; of the node i is now split into an in-degree ki, and an out-degree kZ“!, <. " tha. k; = ki" + k¢“*. The
in-degree k!" is defined as the number of links of node i with other past v sdes .. -iated with data in the
series (that is, nodes with j < ). Conversely, the out-degree k9“!, is defi. ? as the number of links with
future nodes. Then we define the in- and out-degree distributions of a ..ectea 7G (HVG) as p(k°“') and
p(k™), respectively. An important property at this point is that the ir zoing a: 1 outgoing degree sequences
are interchangeable under time reversal.

More specifically, given the adjacency matrix A of a (H)VG ctne degree k; = > ;Aij measures the
number of edges incident to a given vertex i. Then, Donges et a [f, 2¢ 3] adapted a somewhat different
yet equivalent notation for in- and out-degree sequences. More <pecifica’ y, they decomposed the quantity
k; for a vertex corresponding to a measurement at time 4 into contr.. 'tions due to other vertices in the past
and future of 1,

k§ =355 i (105)

with k; = k] + k¢, being referred to as the retardea .. “»anced degrees, respectively. Here, k] and k¢
correspond to the respective in- and out-degrees of ti  -directed (H)VGs [64]. While the degrees of an
individual vertex can be significantly biased due tc .. = fin ‘e time series length [60], the resulting frequency
distributions of retarded and advanced degrees are e ua..; affected.

The local clustering coefficient C; = (’“2 B~ i <=, A Ag; is another vertex property of higher order
characterising the neighbourhood structure of verte.. 7 [4]. Here, for studying the connectivity due to past

and future observations separately, [63] defi=~1 the retarded and advanced local clustering coefficients

-1

Cr ::k;) ij<z',k-<z’AijAjkAkiv (106)
Ct =) e A A A, (107)

Hence, both quantities measure tb : proba. * ity that two neighbours in the past (future) of observation i are
mutually visible themselves. Not : v. ~t, the decomposition of C; into retarded and advanced contributions is
not as simple as for the degree and invo. es degree-related weight factors and an additional term combining
contributions from the past 2 «d 1 ture of a given vertex.

Finally, we note that oth. * w :asures characterising complex networks on the local (vertex/edge) as well
as global scale could be ur :d for . milar purposes as those studied in this work. However, since path-based
network characteristics  :.g.. closrness, betweenness, or average path length) cannot be easily decomposed
into retarded and advance. -ont .butions, the approach followed here is mainly restricted to neighbourhood-
based network measr.cs like wzgree, local and global clustering coefficient, or network transitivity. As a
possible solution, in tead ot lecomposing the network properties, the whole edge set of a (H)VG could be
divided into two disju 't siisets that correspond to visibility connections forward and backward in time,
as originally prcsosed by Lacasa et al. [64]. For these directed (forward and backward) (H)VGs, also the
path-based mea ures ca. be computed separately and might provide valuable information.

4.5.2. Tests ... *me series irreversibility

Testing fo1 1 nlinearity of time series has been of great interest. Various approaches have been developed
for identifying s1, natures of different types of nonlinearity as a necessary precondition for the possible emer-
gence of chaos. Since linearity of Gaussian processes directly implies time-reversibility [297-299], nonlinearity
results (among other features) in an asymmetry of certain statistical properties under time-reversal [300].
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Therefore, studying reversibility properties of time series is an important alternative t the direct quantita-
tive assessment of nonlinearity [301]. In contrast to classical higher-order statistics re ju. ing surrogate data
techniques [300], most recently developed approaches for testing irreversibility have been ba. d on symbolic
dynamics [302-304] or statistical mechanics concepts [305-307].

The time series reversibility has the following definition: a time series ¥ = {x ,x5,...,2,} is called
statistically time reversible if the time series ¥* = {x_1,2_9,...,2_,} has *he s. e joint distribution
as 3. Therefore, time reversibility implies stationarity [298]. By this defirition, '‘me series reversibility
reduces to the equivalence between forward and backward statistics and .enc- nonstationary series are
infinitely irreversible and therefore ¥ and ¥* have different statistics tha. in/ cease over time [297]. More
specifically [298], time-irreversibility of a stationary stochastic process ~r ti. ~ series {z;} requires that
for arbitrary n and m, the tuples (z,,Zn+1,- .-, Tntm) a0d (Tptm,? ntm—1, --,2Tn) have the same joint
probability distribution. It is practically unfeasible in most situation due tr the necessity of estimating
high-dimensional probability distribution functions from a limited _iouu. o1 data. Instead of testing this
condition explicitly, for detecting time series irreversibility it can je s .uc 2nt to compare the distributions
of certain statistical characteristics obtained from both vectors fe.g., |308]". In the following, we will review
the corresponding VG-based approaches.

Kullback-Leibler divergence. In many applications, one can ac. “ally - uantify different kinds of time asym-
metries in the underlying dynamics on nonstationary processe. Foliowing previous work [64], the topological
properties of (H)VGs associated to several types of nonst=ti~=~~— ,rocesses have been proposed to quantify
different degrees of irreversibility of several nonstationary .. ~cesses [309]. Furthermore, they take advantage
of the fact that the topological properties of these grr ~h< are e.iectively invariant under time shift for large
classes of nonstationary processes, which allows to in ror.uce the concept of visibility graph stationarity.
This in turn allows to extract meaningful informa’ ~n o1 the time asymmetry of nonstationary processes.
Lacasa et al. [309] defined time series reversibiliy - 1.. *erms of (H)VGs in the following way: a time series
¥ = {x;}¥, is said to be (order p) (H)VG rever-ihle it ~ud only if, for large N, the order p block ingoing and
outgoing degree distribution estimates of the dire *ed (H)VG associated to ¥ are asymptotically identical,
ie.,
p(E™ k) = p(RPE RSV ..k:;"t). (108)

This property yields that the ingoing an. ~utgoir z degree sequences of the original and time reversed series
have the same distribution, namely,

P21 = (IS p(k ) [5] = p(H™) [, (109)

where ¥* = {z,,41-;}}_; represer . the time reversed series. For time series, we assess how close the system
is to reversibility by quantifying the a. “ance between p(k‘) and p(k°“t).

The distance between the .. nd out degree distributions has been calculated by the Kullback-Leibler
divergence (KLD) [64, 309], whir. is used in information theory as a measure to distinguish between two

probability distributions. More . ~ecifically, the KLD between these two distributions is

Dyq(in||out) = zk:p(km) log ;)((:::t))

(110)

This measure Dy;q(2 2||out) 1 a semi-distance which vanishes if and only if the outgoing and ingoing degree
probability distribrtion. ~f . time series are identical, but is positive otherwise. Then the (H)VG reversibility
is redefined if t} 2 follo\ ing expression holds:

lim Dyq(in|lout) = 0. (111)
N—o00

Truly irrevers.™l . process have positive values of Eq. (110) in the limit of large N [64]. The consistency of
this test for HV.'s has been demonstrated numerically for chaotic dissipative systems (HVG-irreversible),
long-range dependent stochastic processes (HVG-reversible) [64] and non-Markovian random walks (HVG-
irreversible) [309].
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Lacasa et al.[64, 309] conjectured that the information stored in the in- and out degree distributions
takes into account the amount of time irreversibility of the associated series. More pr :. ~ly, they suggested
that this can be measured, in a first approximation, as the distance (in a distributional sen. .) between the
in- and out-degree distributions (p(k*) and p(k°“!)). This claim was recently s ipp rted by quantitative
numerical analysis of Dy for a modified Langevin equation and some simple pop 'at on growth model with
tunable long-range dependence [310]. Specifically, it was found that both per. ‘stenc. and anti-persistence
increase the value of the Kullback-Leibler divergence, with the effect of positive cori '~tions being somewhat
stronger than that of negative ones.

Instead of degree based characteristics, higher order measures can be us. ' ac well if necessary, such as the
corresponding distance between the in and out degree-degree distributic~s (p.. ', k') and p(k°ut, k/°ut)).
These are defined as the in and out joint degree distributions of a no « and '*s first neighbors, describing
the probability of an arbitrary node whose neighbor has degree k' to ave de ree k. That is, we compare
the out-degree distribution in the actual (forward) series p(k°“*) w*'! the curresponding probability in the
time-reversed (or backward) time series, which is equal to the pro abi' .y listribution of the ingoing degree
in the actual process.

Therefore, by calculating Eq. (110), Lacasa et al.[64] have s. ~wn that one can correctly distinguish
between reversible and irreversible stationary time series, in-luding aalytical and numerical studies of its
performance for: (i) reversible stochastic processes (uncorrela.~d #.1d Gaussian linearly correlated), (ii)
irreversible stochastic processes, (iii) reversible (conservative, ~nd irreversible (dissipative) chaotic maps,
and (iv) dissipative chaotic maps in the presence of noi- . Z7...c.1cal examples of time irreversibility tests
have been provided in Fig. 23. In particular, they first cons. '~red time series of length 2!° from white noise
of i.i.d. uniformly random uncorrelated variables ~ [~ '1 (Fig. 23(a,b)). In this case, Fig. 23(a) shows
that both distributions are identical up to finite-size ff cts fluctuations. In addition, the irreversibility
measure Dyq(in|lout) vanishes asymptotically as /N, +howing that finite irreversibility values for finite
size are due to statistical fluctuations that vanish as m, “otically. Therefore, Fig. 23(a, b) suggest that the
underlying process is time reversible. In cont ..* hqo h distributions are clearly different for the chaotic
logistic map (Fig. 23(c)), which is further confirn. 1 by the convergence of Dyq(in|lout) to a finite value
with N (Fig. 23(d)). Therefore, the logistic map is time irreversible.
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Figure 23: Time irreversibility *estin, ‘or white noise (a,b) and the chaotic logistic map (c,d). (a,c) Semi-logarithmic plots of
the in- and out-degree distrib- ¢ions of the VG. (b,d) Time irreversibility measure Dy;q(in||out) versus series size N. Modified
from [309] with permission I/ A :rica Physical Society.

Notice that the i jority o1 previous methods to estimate time series irreversibility generally proceed by
first making a (som« what ac hoc) local symbolization of the series, coarse-graining each of the series data
into a symbol (typica. - an .nteger) from an ordered set [302-307]. The method based on directed (H)VGs
here lacks an ad noc symbolization process, which may in principle take into account multiple scales. The
unnecessary req liremen of symbolization is desirable if we want to tackle complex signals and, hence, it
can be applied di. ~tl ¢o any kind of real-valued time series.

We note v..' "MYVG reversibility varies depending on the detailed properties of particular processes
[309, 310], wh.-} calls for careful interpretations. For instance, both analytical calculations and numerical
simulations show that unbiased additive random walks, while nonstationary, are both (H)VG stationary and
(H)VG time reversible. On the other hand, biased memoryless additive random walks are HVG irreversible
with finite irreversibility measures that quantify the degree of time asymmetry, while these are still VG
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reversible, as VGs are invariant under superposition of linear trends in the original data Numerical examples
suggest that HVGs can capture, for both finite and infinite series size, the irrev r>~le nature of non-
Markovian additive random walks, whereas VGs are only able to do so for finite series. Fo. multiplicative
random walks, the processes are HVG reversible if the process is akin to an un' iasc 1 additive process in
logarithmic space, and time irreversible if the process reduces to a biased addi.~e srocess in logarithmic
space. Finally, the VGs capture the time irreversible character of multiplice *ve ro dom walks, yielding
finite values in the unbiased case and asymptotically diverging quantities in +he by ~ad case. Furthermore,
these conclusions are based on the limit of infinitely long time series N - » o nd finite size time series
always yield finite, non-zero values of HVG and VG irreversibility [311], wi.'~h ".eeds a proper test justifying
the statistical significance.

Kolmogorov-Smirnov (KS) test for irreversibility. While the results of the (LD measure for reversible
and irreversible dynamics quantitatively differ in several orders of m-~gn.. '_, a statistical test is required.
Lacasa et al. [64] proposed to address the statistical significance by surr . te techniques as follows: one first
proceeds to shuffle the series under study in order to generate a . .dom zed resampled data set with the
same underlying probability density. This resampled series, whos irrc.crsibility measure is asymptotically
zero, is considered as the null hypothesis of the test. Recently, a con bination of Kullback-Leibler distance
between the ingoing and outgoing degree sequences and the s ~alled inversion number of the permutation
of the original time series has been proposed to characterize ~synchronous patterns of time irreversibility
[312]. Taking a slightly different algorithm, Donges et al @ 2" have extended this idea and proposed to
utilize some standard statistics for testing the homogeneity ~f the distribution of random variables between
two independent samples, which can be formulated fr "oth standard and horizontal VGs and for different
network properties.

More specifically, following the decomposition € vert. « properties into time-directed contributions pro-
posed above (including network degrees and local «'u. ~ring coefficients, Eqgs. (104)-(107)), Donges et al.
[63] utilized the frequency distributions p(k") &= n(k \ (p(C") and p(C*)) of retarded and advanced vertex
properties as representatives for the statistical pi. ~erties of the time series when viewed forward and back-
ward in time. In the case of time-reversibility, they conjecture that both sequences {k!'} and {k¢} (or {C!'}
and {C{}) should be drawn from the same pro. ~bility distribution, because the visibility structure towards
the past and future of each observation as to b statistically equivalent. In turn, for an irreversible (i.e.,
nonlinear) process, we expect to find st~tistac ~1ly significant deviations between the probability distributions
of retarded and advanced characteris’ics. In otner words, rejecting the null hypothesis that {k]'} and {k?}
({Cr'} and {C}) are drawn from the =a e p obability distribution, respectively, implies rejecting the null
hypothesis that the time series un .er inv. * gation is reversible.

Since for sufficiently long timr . » ~ies (representing the typical dynamics of the system under study), the
available samples of individual vertex p. »perties approximate the underlying distributions sufficiently well,
we can (despite existing corr .lat. ms between subsequent values) consider the Kolmogorov-Smirnov (KS)
test for testing this null hy, ~thsis. Specifically, a small p-value of the KS test statistic (e.g., p < 0.05)
implies that the time seri s has “kely been generated by an irreversible stochastic process or dynamical
system. Even more, thers : p-v alues are distribution-free in the limit of N — oo. Neglecting possible effects
of the intrinsic correlatio.. Hetw :en the properties of subsequent vertices on the estimated p-values (which
shall be addressed in ‘u.ure 1o earch), this implies that we do not need to construct surrogate time series
for obtaining critice values of our test statistics as in other irreversibility tests. Note that other (not
network-related) stat. tical - roperties sensitive to the time-ordering of observations could also be exploited
for constructing .uuilar statistical tests for time series irreversibility [63].

The KS test ‘or irrev wsibility has been demonstrated by model time series of AR(1) process (p = 1,1 =
0.5 in Eq. (A.3), ~nd t'.e chaotic Hénon map (Eq. (A.4)) as shown in Fig. 24. For the linear (reversible)
AR(1) procs .., *he empirical distributions of retarded/advanced vertex properties collapse onto each other
[63]. Consequ-p ty, the null hypothesis of reversibility is never rejected by the test based on the degree
(Fig. 24(a)), anc. only rarely rejected by the clustering-based test well below the expected false rejection rate
of 5% (Fig. 24(b)). In contrast, for the irreversible Hénon map, the null hypothesis of reversibility is nearly
always (degree, Fig. 24(c)) or always (local clustering coefficient, Fig. 24(d)) rejected. To further evaluate
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the performance of the tests for varying series size N, the receiver operating characte istics (ROC curves)
have been applied to quantify the false positive rate versus true positive rate wher v -ting irreversibility
[63].
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Figure 24: (color online) Frequency distributions of p-values of the KS st<'"stic ... comparing the distributions of re-
tarded/advanced (a,c) degree k7, k% and (b,d) local clustering coeflicient C7', C¢ of stz .. ~d VGs from an ensemble of M = 1,000

PRI 17 71
realizations of model system time series of length N = 500: (a,b) AR(1) proc == c,d) Iénon map. Vertical red lines indicate

the typical significance level of 0.05 where appropriate (note the different ¢ ~ale in par . (d)). Modified from [63].

Utilizing standard as well as horizontal VGs for discrimi: ~ting be ween the properties of observed data
forward and backward in time has at least two importa. * be. ~¢’s5: (i) Unlike for some classical tests
(e.g., [300]), the reversibility properties are examined without . = necessity of constructing surrogate data.
Hence, the proposed approach saves considerable comput. - wunal costs in comparison with such methods and,
more importantly, avoids the problem of selecting a particui. - type of surrogates. Specifically, utilizing the
KS test statistic or a comparable two-sample test for t. » Lo, ~oneity (equality) of the underlying probability
distribution functions directly supplies a p-value for . associated null hypothesis that the considered
properties of the data forward and backward in t. .. are ‘tatistically indistinguishable. (ii) The proposed
approach is applicable to data with non-uniform san »li.z (common in areas like paleoclimate [60, 296] or
astrophysics) and marked point processes (e.g., =a. "~ ‘ake catalogues [285]). For such data, constructing
surrogates for nonlinearity tests in the most comn. » way using Fourier-based techniques is a challenging
task, which is avoided by (H)VG-based methnds.

We emphasize that this method explr.ts the time-information explicitly used in constructing (H)VGs.
Other existing time series network meth. s (e.g | recurrence networks [52-54]) not exhibiting this feature
cannot be used for the same purpose. ‘urthe.. - re, there are methodological questions such as the impacts
of sampling, observational noise, ar « in’.insi= correlations in vertex characteristics as well as a detailed
comparison to existing methods for tes.” o ti 1e series irreversibility that need to be systematically addressed
in future research. Furthermore, ( {)VG-ba.ed methods are generally faced with problems such as boundary
effects and the ambiguous treat aenv  missing data [60], which call for further investigations, too.

It may be noted that unl*’ ~ neighborhood-based network measures like degree and local clustering
coefficients, path-based meas ires >f (H)VGs are known to be strongly influenced by boundary effects [60],
so that they could possibly los. neir discriminative power if employed in a similar fashion in the context of
irreversibility tests.

Irreversibility tests ' ave seer conducted for various real valued time series. Examples include neuro-
physiological EEG recordin, ~ [f 3], mean temperature anomaly series [313], financial time series [314], oil-
water two-phase flow , |315] meteorological stream flow fluctuations [316], correlated fractal processes [311],
and seismic sequenc: s of a N exican subduction zone [317].

5. Transition aetwor s

A third main group of transformations of time series into complex networks is commonly referred to as
transition ne. wvor.s. Unlike recurrence (and other proximity-based) networks or the numerous algorithmic
variants of vis, ility graphs, these networks are directed by definition and, hence, trace the succession
of dynamical statcs as time proceeds. Specifically, the nodes of a transition network correspond to certain
discrete states or patterns, and directed links are established if one of these nodes is followed by the other with
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non-zero (empirical) probability along the observed trajectory of the system under st dy. Mathematically,
this corresponds to a Markov chain with given transition probabilities between disr.c.  states, which can
be conveniently used for constructing a weighted and directed graph [318]. In this regara, the history of
transition networks is closely tied to the development of the mathematical theor: ot Vlarkov chains, while
explicitly exploiting the topological properties of these complex networks consti. *ct d from the transition
probabilities between states or patterns in dynamical systems has probably o. v sta.“ed in the last about
15 years, initiated by the seminal work by Nicolis et al. [65].

While it is most common to formulate transition networks as directed and - ~ighted graphs, it should
be noted that an adjoint unweighted network representation can be easily . btz ned by omitting the explicit
information on transition probabilities and considering those pairs of ~~des [* e., states or patterns) as
being linked via an unweighted edge which exhibit non-zero mutual t ansitic. probabilities. Alternatively
to considering all non-zero probabilities, one may also choose some thre “hold fc : the transition probabilities
to exclude rare transitions (e.g., due to noise in deterministic dyna~_ zal 5,..cms).

In general, there are various ways to define the nodes of a t ansi’.or.. network upon a given data set.
The simplest situation is when the data themselves take only disc.cte v lues. In this case, each possible
value or, more generally, each possible m-tuple of such values ca.. he uirectly used to define a node. This
results in two parameters that should be selected taking the number K of discrete states, the total length
N of the underlying time series, and the available comput*atic. ~1 r' sources into account. Notably, these
algorithmic parameters — the number m of states contained .. each tuple and their mutual time distance
7 — are conceptually equivalent to the parameters of **_._ lli.y, embedding (i.e., embedding dimension
and delay) in classical nonlinear time series analysis [6, 15,. However, unlike in most applications of time
delay embedding, in the context of transition networl ., ~~aches one is not necessarily interested in having
statistically independent states in the considered tup. .o that 7 = 1 is often a convenient choice even
in case of serially dependent data sequences. It ™“oula be noted that the idea of considering tuples of
discrete data allows a straightforward generalizatic » ¢ the transition network approach to multivariate
series by combining, e.g., simultaneous values ¢ .~ in.'vidual univariate component time series for defining
a certain node.

In the more common case of variables with continuous distributions, obtaining discretized states requires
some initial transformation from continu- as . discrete data, which is commonly referred to as symbolic
encoding. Although this encoding result in a los of information on the detailed state of the system under
study, proper encodings minimize this "oss (..t zero if using so-called generating partitions of the system
under study). After having perforr od t.is discretization, one may proceed as in the case of originally
discrete-valued time series.

In summary, transforming a “.me sei. > into a transition network representation is a (possibly two-
step) process of mapping the ter po. ! information into a Markov chain to obtain a compressed or simplified
representation of the original dvnamics. .n the following, the individual steps for constructing and analyzing
different types of transition r :twc "ks will be described in full detail.

J

5.1. Symbolic encoding

Symbolic encoding t ans’orme a time series into a set of K discrete states or patterns (“symbols”)
{m1,...,mk}. Therefore, . nen analyzing time series of a variable with continuous distribution, the first
step towards constrv _ung a tiansition network representation is applying a suitable discretization of the
considered series.

In general, there 1. »~ we' -developed theory of using symbolic sequences in the context of nonlinear time
series analysis ["s7, 319, 320], which draws upon methodological concepts like entropies and complexity
measures derive | upon hem, commonly originating from the field of statistical mechanics and information
theory. Notably, “her is generally a large freedom of defining different kinds of symbolizations for an
underlying { w.. ~vies. For deterministic discrete-time dynamical systems, there exist so-called generating
partitions, in .t ch case there is a direct correspondence between the observed trajectory and the resulting
symbolic sequenc ~ that is unique up to a set of measure zero [321-323]. While using such generating partitions
would be desirable in many applications, their estimation from real-world data commonly poses a challenging
problem [324-326]. For this purpose, in practice simplified symbolization strategies are commonly employed:
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e Coarse-graining of phase space, sometimes also referred to as static encodinc [138], classifies the
data into K different groups based on intervals defined by a set of pre-de ... threshold values
{&,...,6k—-1}. In this case, symbols m, with ¢ = 1,...,K are assigned accordin, to the group
membership of the respective data value (i.e., m, = ¢), and

1 if x; <&,
&E=Xq if 1<a;<gy for 1<g<K—1, (112)
k if x> &k-1.

e While the coarse-graining approach relies solely on the amplitudes o1 ~ach individual data value,
different types of dynamic encodings can be defined as altern .ives. One simple way consists of
thresholding the difference-filtered time series of order p, where. v the d fference filtering operator is
recursively applied as

Aliti = Ti4+1 — T4 (113)
APx; = APz —APT L (Lo 1), (114)

Most commonly, one uses this specific approach for obtai.’~e som : binary encoding, i.e., & = O(APx;) €
{0,1} with ©(-) being again the Heaviside function. e important variant of this approach is con-
sidering order relationships among subsequent data valunes . subsets of m observations defined based
upon the first-order difference filtered series as de. “ribed above. This approach results in a sym-
bolic encoding into 2™~! different states representing co.. se-grained local dynamical patterns. In the
following, we will call this type of symbolization ard r-pattern based encoding.

e Conceptually related to the aforementioned €.c ding based on the pair-wise inter-comparison between
subsequent values is group-wise ordering of valu. s w. hin sets of m subsequent observations. Neglecting
possible ties, we assign each value x; w. 'u. =" a sequence its local rank order r; € {1,...,m}.
Notably, there will be m! possible permutatic. = of such rank order sequences, which are enumerated
to obtain a symbolic encoding. This strategy allows utilizing statistical techniques like permutation
entropies [70] commonly referred to .s ora.. al time series analysis methods [327]. Accordingly, we will
refer to such permutation-based sy ~boliza ions as ordinal pattern based encoding or simply ordinal
encoding.

While the three general strategies “> syr oolic encoding of time series values described above are quite
common in nonlinear time series a’ alysis, . sy are not exhaustive. Other types of encodings, as well as mixed
strategies [138], are possible as v ew, Jepending on the specific aspects of dynamics one wishes to highlight
when performing the symbolization. In vais regard, there is commonly no “optimal” symbolization strategy
for a given time series [328], } at 1. ther great flexibility according to the dynamical features or time-scales of
interest as well as the availa.’» r omputational resources. In general, symbolic encoding performs a natural
coarse-graining of the dyn .mics o. “he system under study, which preserves essential dynamical information.
Such a strategy naturall ad .ress2s common issues in many real-world time series, such as the presence of
noise or intrinsic multi-sta. tity.

Based upon the r _cordingi, discretized time series, a variety of relevant dynamical properties can be
conveniently estimai »d, incli ding symbolic correlation functions [329], mutual information [330], permuta-
tion entropy [70], or ransf ¢ entropy [331]. In most cases, the choice of the symbolization strategy and
its possible algo .thmic parameters (e.g., number and location of thresholds, length of considered subsets,
etc.) affects the resultin estimates. For example, mutual information estimators obtained from groups with
equal probabilitie. =2re commonly more reliable than such from groups of equal interval size. Since defin-
ing symbols w..” ~~mal probability of occurrence can be challenging in case of other than threshold-based
encodings, thi r oservation poses natural restrictions to the interpretation of quantitative values of many
statistical charad “eristics of symbolic sequences.

Instead of considering statistics based upon the (joint) probability distributions of individual symbols,
it is often useful to combine sequences of symbols into “words” of a given length m, which allow not only
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for looking at the coarse-grained state of the system under study, but rather a success on of several of such
states, thereby conserving some information on its dynamics. Among the quantities ... * can be estimated
from statistics upon such sequences, the source entropy of the underlying system is often a, sroximated by
the limit of the conditional block entropies sy, = Spmy1 — Sm for m — co where

Km
p=1

are the block entropies, i.e., the Shannon entropies of symbolic sequences ot . ngth m, with pz(lm) being the
probabilities of occurrence of all possible subsequences (words) of this .ength (enumerated by the index p)
within the time series [137, 332]. Moreover, the statistical properties »f the s quence distributions can be
used for defining various measures of complexity [333, 334]. Last but no. 'e2< . investigating the properties
of forbidden symbols and words (i.e., values or patterns that are nc, obss -ed during the system’s dynamical
evolution) have recently attracted particular attention [335, 336].

5.2. Markov chains

After having defined suitable symbols or words, which a.. takra from an alphabet A of w discrete
values, the next step towards constructing a transition netwoi. representation upon a given time series is to
explicitly use the temporal order of the accordingly coars~ ===" _ _ Hbservations to represent the dynamics of
the observed system. For this purpose, we consider the tra. sition probabilities wpy = p(§i+1 = mgl& = mp)
between subsequent symbols (words) to define a weig’ '~ and directed transition network with the weight
matrix W = {wp,},p,q € [1,...,w]. Note that bec s ot Ef;:l wpqy = 1 for all p € A by definition
(conservation of probability), W is a column-stoc’ stic 1. atrix.

In the terminology of stochastic processes [65], tL.~> 1 mlting transition networks describe a Markov chain
with the nodes representing some set of states “"=t ei.~ode the time series’ amplitudes or local variations,
and directed and weighted edges indicating the te. ~noral succession of such states or patterns. Specifically,
Markov chains are memoryless stochastic processes, implying that the state of the process at some time
1 depends solely on its previous state at . — . If approximating the coarse-grained dynamics of a time
series as such a Markov process, this imy 1es that she n-step transition probabilities are simply given by the
entries of W™, It should be emphasize?, ho. ~ve , that trajectories of dynamical systems commonly exhibit
serial correlations, so that this simpli yinc approximation is commonly not suitable for fully describing the
longer-term dynamical evolution of ..~ ¢ ster.. Nonetheless, the Markov chain analogy allows reconsidering
terms like absorbing or recurrent states . - stationary densities in terms of transition network properties.
Specifically, absorbing states of a "arkov chain can be identified as transition network nodes with zero
out-degree (respectively, zero out-streng:h), since w,q = d,q. Recurrent states are characterized by their
membership in loops of leng’.a g zater than one, while the stationary density is given as the eigenvector
of W with eigenvalue 1, wl..~h 7, unique in case of non-degenerated Markov chains. This implies a close
connection with the netwc k mea. e of eigenvector centrality.

It should be emphasi .ed *.at the duality between Markov chains and transition networks holds for any
Markov chain irrespective - the existence of an underlying time series.

5.8. Coarse-grainin, based 1 ansition networks

The construction . ~na~ e-graining based transition networks draws upon a proper phase space partition.
For instance, we drst r esh the d-dimensional phase space with boxes of equal size following the traditional
idea of fractal di nension computations [19, 164] or complexity measures [337]. When working with univariate
time series, d = n. -, the length of the considered symbolic sequences). An alternative, mathematically
preferable yu = u.. '~ to construct alternative would be a separation into boxes with equal probability [338].
Then, each bo.  is labeled with the symbol 7, and regarded as a vertex in the network. The connectivity
between two bo..>s (nodes) m, (p) and 7, (g) is then represented by the empirical transition frequency
following the temporal order of observations.
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The transition probability approach is well suited for identifying such “states” (".e., regions in phase
space) that have a special importance for the dynamical evolution of the studied s, +em, for example,
in terms of their betweenness centrality b, or similar measures. Moreover, the resulting 1. tworks do not
only depend on a single parameter, but on the specific definition of the full set ¢ cL sses. Note, however,
that coarse graining might be a valid approach in case of noisy real-world time . ~rir 5, where extraction of
dynamically relevant information hidden by noise can be supported by grouping *he . “a. In contrast to the
other approaches for constructing complex networks from time series, the tenolog, of transition networks
depends on the specific choice of discretization.

For a trajectory that does not leave a finite volume in phase space, "“er: is only a finite number of
discrete “states” m, with a given minimum size in phase space. This *~plie. *he existence of absorbing
and/or recurrent states in the associated Markov chain. Specifically, i case of dissipative dynamics, the
phase space segments corresponding to absorbing and recurrent nodes ~rovide a coarse-grained description
of the system’s attractor(s).

It should be noted that unlike in visibility graphs and relatec me* .oc 3, detailed temporal information
is lost at the network level after the coarse graining since the tran..cion ‘requency matrix W is estimated
over the entire time series. Therefore, the resulting transition . ~twork is a static representation of the
system’s dynamics, which requires the system to be stationary and . rgodic. Violation of the stationarity
assumption could imply the transition matrix W being explic."'v + me-dependent, which however would
make a proper estimation of its coefficients challenging if only « ~ingle time series is available as a realization
of the non-stationary system dynamics. In this context, ™ ..o <o w. [339] proposed constructing a temporal
network from time series by unfolding temporal information “to an additional topological dimension. More
specifically, a transition from node p to ¢ is establisk & -“enever the trajectory flow performs a transition
from p to ¢ at time ¢; which is denoted as (p — ¢;). v adding the additional time axis to the transition
route, the consecutive memory network is constru. = 1 by mtroducing a memory factor. Weng et al. further
proposed memory entropy analysis to characterize “he memory effect in the observed time series. The
identified memory effect can accurately differr ..’~*= L ~tween various types of time series including white
noise, 1/f noise, AR model, periodic and chaotic .. ™me series.

In general, there is a close analogy between coarse-graining based transition networks and Lagrangian
flow networks [340, 341] used for describi'.g su. ‘ctural characteristics of flows. The latter type of network
representations has been originally intrc ‘mced fo studying geophysical flows in the atmosphere and ocean
[342, 343], but can also be applied for nves. ~a’.ng the behavior of dynamical systems in their underlying
phase space. Moreover, for nonlinear mar s or ordinary differential equations, an equivalent transformation
has also been termed Ulam networn. [1,44—"48] in parts of the literature, referring to the estimation of
transition probabilities of traject sries be. een finite boxes being known as Ulam’s method. While the
main difference with respect to “ne —ansition networks used for the purpose of time series analysis is that
Lagrangian flow networks and Ulam nctworks encode transition probabilities between volume elements
that are commonly based or the observation of the trajectories of ensembles of tracer particles that are
passively advected within a v a flow field, in case of stationary and ergodic systems, results obtained
for flow networks can be directly ‘ranslated to transition networks in the asymptotic limit. Specifically,
it has been demonstrate 1 th .t ncde properties like degree, eigenvector centrality, or cutoff closeness have
a close correspondence wi.' spe.ial patterns of finite-time Lyapunov exponents or entropies (highlighting
the positions of invar’ant manuolds of hyperbolic trajectories of the system under study) [340, 343]. Other
dynamically relevan structt -es like elliptic fixed points and periodic orbits can be identified by different
network properties lis  the "ocal clustering coefficient [349].

5.8.1. Ordinal ; attern t ansition networks for univariate time series

As an alternav. = *+ phase space partitioning, one may define the node set of a transition network based
on some difi rc... mbolic representation of the studied time series, for instance, ordinal patterns [41, 350].
This strategy . =, been followed recently in a growing number of studies [41, 66, 351-353]. Among others, a
series of systema ‘c investigations of ordinal methods has been conducted on irregularly sampled time series
[287-289], which shows great potentials for studies of experimental observation data from climate sciences.
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To construct an ordinal pattern transition network (OPTN), the first step is to ¢ nbed the given one-
dimensional time series {z;} by using traditional time delay embedding with a prop ¢ ("“aice of embedding
dimension m and time delay 7. Then, embedded points in phase space are mapped to nodes ‘n the network
space according to the sequence of rank orders, and links are allocated between .oa s based on temporal
succession on the trajectory. In Fig. 25, we show an example of an OPTN using ‘he .lgorithm of [41].

(a)to

100 110 120 130 140 150
time

Figure 25: (a) Illustration of permutation symbols from a time seric of the Rossler attractor (a = 0.165 in Eq. (A.2)). Assume
7 = 9 and m = 6. One embedded state vector Zigs ‘»in4. ®113,%122, T131, £140, T149 } is highlighted by red color, and
its corresponding pattern is defined by the rank ordering -ns4 = {5,1,2,4,6,3}. (b) Resulting OPTN (isolated vertices and
self-loops are excluded in the visualization). Directed edges ai. indicated by arrows. Reproduced from [41].

In [41], McCullough et al. illustratec the cc istruction algorithm in detail for the Rossler system and
found that periodic dynamics translates v. ring s .ructures whereas chaotic time series translate to band or
tube-like structures — thereby indicati- g that .. s algorithm generates networks whose structure is sensitive
to qualitatively different system dy- ami.s. Turthermore, it has been demonstrated that simple network
measures (including the mean out- leg, ~ ar 1 variance of out-degrees) can track changes in the dynamical
behavior in a manner comparab' to the iargest Lyapunov exponent [41]. Therefore, topological charac-
teristics of OPTNs have the po!:ntia. “o provide useful indicators for dynamical discrimination of different
states and the detection of ch- .~ points.

Measures of transitional ¢ ymp’ :xity have been further proposed in [352] to quantify the resulting OPTNs.
Based on the transition matrix 7 v of an OPTN that excludes the possibility of self-loops, McCullough et al
[352] considered the local out-link vransition frequency between the ordinal patterns m, and 7,

0, ifp=gq

= w .
Dpq % ifp #£q.
a.q#p Wpa

Note that the tr ..sition irequency of Eq. (116) is pattern (row-) wise normalized. Then, the Shannon
entropy of each row of . q. (116) gives the local node out-link entropy 55 =-> ¢ Ppa log ppq. By averaging
over the networr. we o' tain the expected value of the transitional complexity, which is called global node

out-link entr-mu
SENE :prsﬁ. (117)
p

(116)

The lower bound S¢N¥ = ( implies that there is no uncertainty in the system, which corresponds to time
series that are strictly monotonic or have a strictly periodic series of ordinal patterns. Further, an infinitely
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long time series of uniform independent and identically distributed noise yields the up’ er bounds for S¢NF

[352].

Embedding dimension m and time delay 7 are two important parameters in the construc. on of OPTNs,
having crucial impacts on the appearance of forbidden order patterns [66, 288, 2°J|. The selection of time
delay 7 must be performed in relation to the sampling rate for continuous system. Sva et al. [354] proposed
using a time delay 7 > 1. In [41], the authors recommended to select these ti ~ pai. meters by traditional
methods used for time series embedding, for instance, the first root of the atoco. ~lation function of the
underlying time series, because it provides a sufficiently good phase space  :cor ~' ~uiction of a deterministic
dynamical system. While there does not yet exist a robust metric for det. i .ing the correct choice of m,
for time series of the Rossler system they found that networks with th~ mos. ~isually intuitive structure
often coincide with maxima of the degree variance in dependence on 1. In « dition, it was demonstrated
that the range 6 < m < 10 was the most useful when using simple n« *work 1 1easures to track changes in
the dynamics [41]. Note that the choice of m also determines the le " of s....plification of the original phase
space by ordinal partitions.

Based on similar considerations, Masoller et al. [355] introduced .1 alte native set of entropic quantifiers.
Specifically, they assigned each node of an OPTN from a univariaw. *ime series a weight w, according to the
probability of occurrence of the corresponding pattern, and studied th Shannon entropy of the distribution
of these node weights,

P = _prbgllp (118)
p=1

which corresponds to the classical permutation entropy, tog-ther with the local per-node entropy and
network-averaged node entropy,

1 w
Sp=— E wpglogw, , o~ SN = o E Sp. (119)
q p=1

In addition, they studied the asymmetry coefficient

o Zp V.:q;ép "U}pq - wQP|
B LY

4p —q#p (wpq + pr) ’

(120)

which takes values between a = 0 (for a cc nple jely symmetric network) and a = 1 (in a fully directed network
where each link between any pair ¢ no. s is completely unidirectional). Masoller et al. [355] demonstrated
that the aforementioned quantit’ - trace well the succession of qualitatively different dynamical states in
bifurcation scenarios of paradig.aatic . ~odel systems like logistic map or tent map, as well as in real-world
data from semiconductor laser .. Heriments.

5.8.2. Order pattern transition, etworks for multivariate time series

Most recent works he /e fc cusea only on univariate time series {x;}, while the generalization to multi-
variate time series has . ™7 .ned iargely untouched. However, many phenomena in the empirical sciences
are of a multivariate »~*ure. ¥,r instance, different assets in stock markets are often observed simultane-
ously and their joint develo, ment is analyzed to better understand tendencies. In climate science, multiple
observations (tempe. ‘ture, 1 ressure, precipitation, human activities, etc., from different locations) are the
basis of reliable v lictic..o of upcoming meteorological conditions.

Zhang et al. |71] pre»osed constructing OPTNs from multivariate (high dimensional) data. Recall that
given a scalar ti. e serir s {z;} which is produced by a deterministic dynamical system, the order structure
depends on the emuedding dimension m and delay 7. Let us start with embedding dimension m = 2.
Neglecting eq, rali y, we have two relations between x; and z;., namely, two symbol sequences representing
order patterns . -:

T (121)
i 0 ifa; >z,
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II ™ o 3 Ty 5 e v s ;J
Az | al+ | al,+ | ml+ |7k, + [ 70— [ 70, — [ 70, — [ 70 -
Ay 7T;,+ W;,-i— ’7'('2,— 775,— W;,-i— 71';74- 7r2,— T, —
Az [ ml+ [ 70— | al,+ | n,— [ 7l + [ n0,— | nl,+ | 7Y, -

Table 4: Order patterns in three-dimensional time series (z¢, yr ~+).

n [351], Small et al. used a ﬁxed lag 7 = 1 for embedding, and we ade st th s 10 a in the following. In
this case, the order pattern 7. = 1 captures an increasing trend, respect.. v, 72 = 0 corresponds to a
decreasing trend of the time series. This definition is equivalent to cor .iuering v.ie signs of the increments
Ax; = x;11 — x; by a first-order difference of the original series.

Generalizing the aforementioned idea to the case of three-dimensi ~al ti ae series (z;,y;, 2;), we first

obtain the increment series (Ax;, Ay;, Az;). Then the order patt rns ~re defined by the combinations of

signs of Az;, Ay; and Az;. In particular, the ordinal patterns II, = “.cy,- -, 7x) (with K = 8) of a three-
dimensional time series are summarized in Tab. 4. More gener. v, the <.ze of the alphabet describing the
order patterns II; for an n-dimensional time series ({x1;},...,{Zn:," is m = 2" since each component has

either increasing or decreasing trend at time <.

We emphasize that multivariate OPTNs consider the i..~remc. ., between two consecutive time points
of each one-dimensional measurement series in the space of mui.. ariate measurements, which captures the
dynamical properties of the multivariate time series in ."< associated “velocity space” (difference space).
Therefore, the time delay 7 in the order pattern definition (r... (121)) has a rather different interpretation
than the time delay that is often used in classical 1. me ...y embedding. The above discussion can be
directly generalized to the case of 7 > 1 and embedding fimension m > 2 for each variable. The resulting
OPTN utilizes discretized approximations of the 1 <.' nu.'clines (i.e., Az = 0, etc.) to obtain a symbolic
partitioning of the systems. In Fig. 26(a), the chaoti. Rossler system is color-coded by the ordinal pattern
partitions and the corresponding transition nev.. ~rx ... Jhown in Fig. 26b.

Figure 26: (a) Rossler a tractor i» phase space color coded by the order patterns defined in Tab. 4 (for a = 0.165 in Eq. (A.2)),
(b) OPTN and self-loop: are exc! .ded. Reproduced from [71].

In order to I ghlight “he importance of non-self transitions between ordinal patterns, one straightforward
modification of t. « OPT N definition would consist of removing any self-loops, which is a typical step in many
applications ~f compiex networks [42]. Spe01ﬁca11y7 we can remove self-loops before computing the weight
matrix W to ke p the normalization Z ¢Wpg = 1. Note that in stochastic processes, self-loops can be
expected not to -ontribute with large probabilities.

Given the empirical observations of different occurrence frequencies of ordinal patterns p(m,) and their
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mutual transition frequencies wyq, two Shannon entropies are defined as

271,
So ==Y p(mp)log, p(my), (122)
p=1
2’IL
Sr=— Y wyglogywp,. (123)
p,q=1

In the terminologies of [352], Sp characterizes the vertex (node) complexity (" ., is defined as the Shannon
entropy of node weights, which is equivalent to the classical permutat’un entropy) and Sy the edge (link)
transitional complexity, both of which have been found useful for char. cterizin synchronization transitions
[71]. Note that Eq. (123) measures the transitional complexity of the ¢ dina’ patterns, but with a slightly
different normalization than that was used in [352, 353].

5.83.8. Ordinal pattern transition networks for synchronization . “nsiti~~ .

As a numerical application, Zhang et al. [71] constructed OP1:." to identify dynamical regimes shifts
and characterize routes to phase synchronization. In partic ‘lar, t} 2y considered three Rossler systems
diffusively coupled via their z-components [119] (see Egs. (A.CM). wiore k = 1,2, 3 are indices for the different
subsystems and p is the coupling strength. For illustrative nurna. s, let us consider non-identical oscillators
by choosing wy = 0.98,ws = 1.02,w3 = 1.06 in Egs. (A.6). The oscillator k& = 2 is bidirectionally coupled to
both k = 1 and k = 3, whereas there is no direct comnling be ween &k = 1 and & = 3. The Eqgs. (A.6) are
numerically integrated by a fourth-order Runge-Kutta met .ou with integration step h = 0.01. We construct
OPTNs from the = components, i.e., (z1,z2,23) and e the definitions of patterns as summarized in
Tab. 4. The results are shown in Fig. 27, which hay > . ~en averaged over 50 random initial conditions when
integrating Eqgs. (A.6).

In the absence of synchrony (u < pie1 = 0.US%), e three oscillators evolve almost independently such
that all ordinal patterns have the same frequencies " 0.125. There are rather small gradual changes only
when p approaches p. 1 (Fig. 27(a)). The e L ~ny value S is sensitive to these gradual changes by showing
a pronounced downward trend, while Sp < cays ab ut constant (Fig. 27(b)). The average rotation frequencies
Q, of all three oscillators are shown in (r._ 27()), which confirms the absence of synchrony in this weak
coupling regime.

Increasing the coupling strength, ‘has : syr :hronization first appears between oscillators k = 1 and k = 2,
but not with k = 3 (¢ € [e1, fre2] = [0.226 0.077]). In this regime, we observe monotonic increases in the
frequencies of the order patterns . o, w7, and s (Fig. 27(a)). In addition, we find slower increases for the
frequencies of patterns of 74 ana 75, w. ~reas those of 73 and 7g systematically decrease. The changes in the
frequencies of order patterns .c -aptured by both entropy values So and Sr, showing gradual downward
trends (Fig. 27(b)) indicati’ ¢ a eduction in dynamical complexity of the coupled system. The average
rotation frequencies €y, shown .- Fig. 27(c) indicate that £ = 1 and k& = 2 are phase locked to the same
rotation frequency, but k¥ = 3 ;till evolves independently.

Finally, in the regin. w.th 7.l oscillators being phase-synchronized (u > pe2 = 0.077), we find that
the frequencies of pat*~~ns u, ro, m4, 75, 77 and s converge to the same value of p(m,) = 1/6, while 73
and g are absent (7 ig. 27, )). In other words, the patterns 73 and 7 are forbidden if all oscillators are
synchronized. The ¢ “tropy 5o shows some parabolic trend (first increasing and then decreasing slowly),
while St stays co _tanu . a value of about 2.585 (Fig. 27(b)). All mean rotation frequencies converge to
the same value ince th. =e oscillators are phase locked (Fig. 27(c)).

Across the t.ansitic 1 from asynchrony to phase synchronization, the transition networks experience
rather rande™ transivions between all possible pairs of patterns to finally approach a state of transitions
between a lin, ‘ter number of ordinal patterns as shown in Fig. 28. Specifically, as already discussed above,
w3 and g are 1. "bidden patterns if all three oscillators are synchronized.
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Figure 27: Phase synchronization transitions of three coup.. ! Rossler systems. (a) Frequency of each ordinal pattern 7;, (b)
entropy values Sp (Eq. (122)) and St (Eq. (123)), (c) mean rotation frequency €2; of each oscillator. Subsystem ki and ko

become synchronized at .1 = 0.036, and k3 joine _..

critical coupling values are highlighted by vertic « dashec lines. Modified from [71].

< ~nchronization only at a stronger coupling strength p. 2 = 0.077. Both

1=0.08

Figure 28: Ordinal transicion networks on the path to phase synchronization. (a) Non-synchronized regime, p = 0.02 < pe 1,

(b) regime in \ hich ..

.. oscillators k = 1 and k = 2 are phase-synchronized, but not with k = 3, p = 0.06 € [pc,1, pte,2], (¢)

regime in which 1 three oscillators are phase locked, p = 0.08 > pc2. The thickness of links indicates the corresponding

transition frequenc. s. In (a) and (b), link arrows are suppressed.
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Figure 29: Cross and joint OPTNs, which are reconstructed from two o .ed ) Ossler systems (Eqgs. (A.5)) in the
non-synchronized regime [356]. (a) Normal cross ordinal pattern trans *ion netw ck (COPTN), (b) alternative version
of the COPTN, and (c) joint ordinal pattern transition network (JOPT1\, Link directions have been omitted in the
visualization. Reproduced from [356].

5.4. Cross and joint ordinal transition networks

The method of [71] has been further generalized to consu. *ct cross and joint ordinal partition transition
networks for two coupled systems [356]. For this purp. «, - ~tart with an example of a single chaotic Rossler
system as represented by three variables (x14,41,;,21,,, [he OPTN is constructed based on the signs of
the increments of each Variable, (AILZ‘, Ayl,i; Ale ', whe. » ALZJLi = T1,i+1 — L1,4, Ayl,i = Y1,i+1 — Yi,i» and
Az1; = 21,41 — 21,4. The definition of corresponding pa.‘erns II; € (1, - ,mx) with K = 8 follows again
the setting in Tab. 4.

For two coupled systems, we have additiona:. ‘ime series from the other system as represented by
{(z2,4,Y2,i,224)}. A cross-ordinal pattern transition network (COPTN) compares the relative rates of
changes between the two systems by the ‘.gns «* (Azq,; — Aza;), (Ay1; — Aya;) and (Azy; — Azs ;). The
resulting pattern definitions of a COPTI are sur marized in Tab. 5. An example of a COPTN constructed
from two coupled Réssler systems in 2 aon-s, < wonized regime [356] is shown in Fig. 29(a).

11 N4 F T2 T3 Ty 5 e Vi s

Ay - Ay | [+ [+ [+ -1-1-1-

Ay ~o - [+ [+ - -]+[+]-1]-

| A7 -Azn |+ | - |+ [ -+ ]—-|+]-

Table 5: Pattern definitior. ~f COPTN. “ 4 ” means a positive value while “ —” stands for a negative value.
Considering the effec s of the different magnitudes of the three variables, in [356] the authors defined
an alternative COPT by .~ laci" g Az ; — Az, by Axy ;/x1,; — Axa; /x4, respectively, Ayy; — Aya; by
Ay1ify1i —Ayai/ya , wnd Ac_; —Azo; by Azy /71, — Aza /22, An example of this alternative COPTN
is shown in Fig. 29(»). Cor paring Figs. 29(a) and 29(b), this alternative COPT reflects better the non-
coherent transitions » ~tweer ordinal patterns since the coupling strength is in the non-synchronized regime
(v =0.02, po; = v and p12 = 0.01 in Egs. (A.5)). We note, however, that normalizing by the local value
of each compon 'nt may result in numerical problems close to the roots of each component time series. To
better account fo. amp’.tude effects in the different variables, other normalizations (like with respect to the
individual ¢ = ~~ments’ variances or ranges) are possible but have not yet been explored systematically.
Similar to “he COPTN, a joint ordinal pattern transition network (JOPT) compares the relative rates of
changes betweel *wo systems by the signs of Az ;-Axs i, Ay ;-Aya; and Az ;- Aza ;. The definitions of the
resulting patterns are summarized in Tab. 6. An example of a JOPTN is shown in Fig. 29(c). In contrast to
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II m |y | W3 | ma | T | W | W7 | Ts
Avy-Azy | + |+ |+ |+ | = | = | = | =
Ay -Ays | + |+ | — | = |+ |+ | — | —
Azy - Azg | + | = |+ | = |+ ]| — | + ]| -

“__»

Table 6: Pattern definitions of a JOPT. “ 4+ ” means a positive value while stends to. ~ negative value.

cross ordinal patterns, we notice that the joint ordinal patterns represent w .eths . v. -~ respective variables of
two systems show the same trend of changes or not, regardless of the magniv. 7 3s of the respective variables.

The ideas of both COPTN and JOPTN have been applied to analy ¢ synchi«nization transitions [356].
Note that COPTN and JOPTN provide two different ways to constr ict netv orks from multivariate time
series, providing complementary information. The ordinal patterns of a OP™ N are defined by considering
the signs of the difference Ax; — AZs between two subsystems. In ¢ .atrast. the ordinal patterns of a JOPTN
are defined by the signs of the product of AZ; - AZs. Notably, he .mp tudes of oscillations of different
variables influence directly the definition of a COPTN. Howevc - amplit-.des become practically irrelevant
for a JOPTN because only the signs of the product are considerc. In addition, it is straightforward to
generalize the ideas of JOPTNs from two to three (or even n, ~oupled jubsystems with an extended number
of pattern definitions. In turn, it remains a challenge tc ~onsv. ~~» COPTNs for three or more coupled
subsystems.

5.5. Other related approaches

For one-dimensional symbolic sequences, one may ¢ *ust uce a directed symbolic transition network [357].
Working with experimental data of inter-beat (RP) inte vals of the human heart from cardiac regulations,
Makowiec et al. proposed to construct transitions . <. -orks from the subsequent increment series ARR; =
RR; — RR;_1 [358-363]. In this series of work, they L. ve demonstrated that transition network approaches
are a powerful tool for quantifying the unique , “operues of the RR-interval time series of patients after
heart transplant surgery.

When constructing OPTNs by a slidi-, ~indow scheme [351], the ordinal pattern of the windowed
sequence corresponds to one node of the aetworr Since amplitude information is neglected, this approach
may be combined with a transition netwo.. wh re the nodes of the network are the binned amplitudes of
the time series [354]. More specifically each tin.c step 4 is associated with a pair of symbols containing both,
amplitude information a; and ordir ‘1 p .cter. 0;. The former is calculated by binning the time series in
the interval [min; y;, max; y;] into . suu. te vals of equal size. a; is then simply the bin number associated
with g;. On the other hand, o; is .~ ordinal pattern of the embedded vector (i, Yitr,- - Yit(m—1)r)- The
symbol pair at step %, & = (a;, 0,), is 1.. ™ one node of the network, and it is connected by a directed link to
the symbol pair (a;y1,0;41) of wuc successive time step. Furthermore, this algorithm has been combined with
recurrence networks and sur ogat : networks, which has proven powerful in detecting weak nonlinearities in
time series [364].

By coarse graining of mar cial time series, one may focus on the particular up-down behavior associated
with volatility in stock i.. 'a- seri s [365, 366]. More specifically, the authors of the former papers symbolize
time series by using "~ pai.~ eter § = arctan Axz/At, which characterizes the local rate of increase or
decrease of the obse vation. Then, these local rates are coarse-grained into four states (R,r,d, D), which
correspond to violen -up me ;a, common-up meta, common down meta, and violent down meta patterns,
respectively. It v .. founu that the topologically relevant nodes of the resulting transition networks play
important roles n both ‘nformation control and transport at the stock market [366].

In a series of rorks 'y Gao et al. [367-369], the authors proposed a linear regression pattern transmission
algorithm whi~h capuures the evolution of linear regression of bivariate time series. This algorithm has been
demonstratec to "se a useful tool to show the correlation mode transmission in crude oil spot price and future
price [370]. Bas. 1 on reduced autoregressive models generated from time series, a directed transition network
reconstruction algorithm has been used in [371], such that the delay information has been successively
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captured by the transition behavior of the resulting network. In combination with propr . surrogate methods,
extending these ideas from a univariate to multivariate time series analysis is possib’: 272].

Another alternative way to approach a symbolization based upon multivariate time seric. has been pro-
posed by Gao et al. [373]. In that paper, the authors studied the behavior of tv o-p ase (gas—fluid) flows
based on experimental observations by four conductance sensors within the twe me 1a. Starting from the
corresponding acquired time series, they used a sliding window approach to est’mate ."me-dependent corre-
lation between all pairs of time series. A symbolic encoding has been achieved hv ra..’--ordering the resulting
six pairwise correlation coefficients. Based on the corresponding symbolizat on ) - ~rdinal patterns of corre-
lation values, the authors constructed an OPTN as described above and < m astrated that corresponding
network properties like weighted local clustering coefficients and closer~-s ce. “ralities were able to trace
qualitative changes in the resulting dynamics in dependence on the ga .’ supe. icial velocity.

Finally, a recent modification of transition network approaches re. =ves th : restriction to sequences or
ordinal patterns of the same degree, but rather utilizes an encodine " aseua .. optimal symbols representing
sequences or patterns of variable length that form a unique alf aabs, 1 v a loss-free compression of the
underlying symbolic sequence [374]. In the original paper, the wuthor employed this idea by making
use of Lempel-Ziv-Welch like compression algorithm [375] toget.. * with coarse-graining based transition
networks constructed upon single threshold (i.e., a binary ercoding). As a statistics of interest, they used
the fraction of unused codewords in these coarse-graining basc.” cor pression networks and demonstrated
the discriminative skills of this measure for different stochasuv.. and chaotic model systems as well as real-
world EEG data involving epileptic seizures. A more rer . _..c. by the same authors combined the same
compression algorithm with the idea of ordinal pattern bw. ~d encoding and showed that considering the
minimal cycle basis of the resulting ordinal compres: .. ~~tworks allows for testing for time irreversibility
of the underlying time series.

6. Real-world applications

In this section, we illustrate the application ot .. = above discussed methods on selected examples from
theory and real-world research questions. We focus on recurrence network approaches, (horizontal) visi-
bility graphs, and transition network apr oache. since those methods have found much wider and deeper
applications in diverse fields.

0.1. Recurrence networks

Although recent work on RNs .nd . vt variate generalizations thereof has been focused on the devel-
opment of the theoretical frame ~rk and its numerical exploration using simple low-dimensional model
systems, there have already bee. seve. ~1 successful applications to characterizing system’s properties from
experimental or observationa! ... e series. For example, the successful application of RN to predict pro-
tein structural classes has b :en » 2ported in [376]. Here we summarize some main applications to various
disciplines and choose one succe <ful application to understanding climate regularities.

Applications in Earth ¢ iens2s. fyme important field of recent applications is paleoclimatology, which has
already been taken as an il “tv .tive example in the seminal paper by Marwan et al. [52]. The correspond-
ing study was later xtendc1 to a systematic investigation of the temporal variability profile of RN-based
complexity measure: for thr e marine sediment records of terrigenous dust flux off Africa during the last
5 million years. Donge. =" al. [141, 142] argued that RNs can be used for characterizing dynamics from
non-uniformly s .mpled r age-uncertain data, since this methodological approach does not make explicit use
of time informa.’on. In jurn, due to the necessity of using time-delay embedding, there is implicit time in-
formation entering .... analysis, which has been recognized but widely neglected in previous works. Notably,
disregarding ~ge ... rtainty and sampling heterogeneity appears a reasonable approximation only in cases
where the dist. oution of instantaneous sampling rates remains acceptably narrow. In fact, more recent
findings point to .. strong dependence of the validity and robustness of the results obtained for paleoclimate
time series on the specific archive and proxy variable [179]. As an alternative, the letter study suggested
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utilizing derivative embedding instead of time delay embedding for phase space reconst  action and discussed
several approaches for numerically estimating the numerical derivatives of the time se ic. values required for
this procedure. Another approach for tackling the problem of potentially non-robust indiviu. al significance
of RN properties for individual time series integrates information from multiple pe coc 'mate time series and
explicitly propagates age uncertainty to RN-measure uncertainties. This multi-. ~cbh’ve approach has been
used to investigate non-linear regime shifts in Asian summer monsoon variabi.*v du. g the Holocene and
its potential impacts on human societies, conflicts and migration [377].

As another methodological step towards better understanding climatic » iech > *sms, Feldhoff et al. have
used two speleothem records for studying interdependencies between the -vo main branches of the Asian
summer monsoon (the Indian and East Asian summer monsoon) by mean< ~fintc. system recurrence network
(IRN) approaches [191, 378]. For this purpose, they selected two data s sts of ¢ 'ygen isotope anomalies from
speleothems obtained from two caves in China and the Oman, respe “tively, which can be considered as
proxies for the annual precipitation and, hence, the overall strer- 1 o1 ...c two monsoon branches over
the last about 10,000 years. The asymmetries of the IRN cross trar .iu -ities and global cross-clustering
coefficients provided clear evidence for a marked influence of the ndia . summer monsoon on the East
Asian branch rather than vice versa, which is in good agreement v. *h existing climatological theories. As a
subsequent extension of this work, Feldhoff et al. emphasized the pos iibility of repeating the same kind of
analysis in a sliding windows framework, thereby gaining infor.. ~tic . on possible temporal changes of the
associated climatic patterns during certain time periods as rece. *ly revealed using correlation-based complex
network analysis applied to a larger set of speleothem rr _. . [ o.a the Asian monsoon domain [379].

In order to characterize dynamical complexity associav. 1 with more recent environmental variability,
Lange and Bose [380, 381] used RQA as well as RN ar .., - for studying global photosynthetic activity from
remote sensing data in conjunction with global precip ‘e .1on patterns. Specifically, they studied 14-years
long time series (1998-2011) of the fraction of ab. . hed , hotosynthetically active radiation with a spatial
resolution of 0.5° around the Earth and a tempora. sa. nling of about ten days, providing time series of
N = 504 data points. Their results revealed v, ‘ntei >sting spatial complexity patterns, which have been
largely, but not exclusively determined by the amp. “ide of the annual cycle of vegetation growth in different
ecosystems.

Finally, RN analysis — in combination witn more traditional RQA characteristics — has been employed
recently for studying temporal variation in the = ynamical complexity of geomagnetic field fluctuations at
time-scales between hours and weeks ssocic“2c with sequences of quite-time magnetic field episodes and
geomagnetic storms [382]. It has bee 1 sb ,wn that especially the RN transitivity allows a unique discrimi-
nation between the corresponding “L. —<.olof .cal” and “pathological” states of the Earth’s magnetosphere.
A follow-up work investigated the corresp. iding changes in RN and RQA characteristics in greater detail
for the same geomagnetic activi’y 1. lex (Dst) together with corresponding changes in solar wind variables
that could particularly affect the stabilivy of the Earth’s magnetic field [383].

Applications in fluid dynam.-s. 1 a series of papers, Gao et al. investigated the emerging complexity of
dynamical patterns in two- phase ~s-liquid or oil-water flows in different configurations using RN techniques.
Bifurcation scenarios fror 1 sl zs to bubbles of a two phase flow of water-air occurring in a circular horizontal
mini-channel have been re. ~ itly .nalyzed by RPs and RN approaches in [384]. Similarly, the RN transitivity
of pressure drop fluct” w.ion ti. ¢ series has been used to distinguish between different dynamical patterns in
two-phase flows [385 = In gen ral, multiple sensors measuring fluctuations of electrical conductance have been
used for obtaining si. nals t'.at are characteristic for the different flow patterns. For gas-liquid two-phase
upward flows in - ercical pipes, different types of complex networks generated from observational data have
been proposed, among hich the degree correlations (assortativity) of RNs was proven to be particularly
useful for disting. ‘shin‘, between qualitatively different flow types [168, 386, 387]. One may also construct
a directed v " _“*ed RN [388-392]. For oil-water two-phase upward flows in a similar configuration, the
global cluster. »e coetficient of RNs reveals a marked increase in dynamical complexity (detectable in terms
of a decreasing ) as the flow pattern changes from slug flow over coarse to very finely dispersed bubble
flow [209, 393]. In case of oil-water two-phase flows in inclined pipes [394], the motif distributions of RNs
(specifically, the frequency distributions of small subgraphs containing exactly four vertices) revealed an
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increasing degree of heterogeneity, where the motif ranking was conserved in all exp rimental conditions,
whereas the absolute motif frequency dramatically changed. The corresponding resv ¢s “ere independently
confirmed using some classical measures of complexity, which indicated increasing complexity in conjunction
with increasing heterogeneity of the RN motif distributions. Finally, for characte wzin ; horizontal oil-water
flows [209, 391], RN and inter-system RN analysis were combined for studying -or tuctance signals from
multiple sensors. Specifically, cross-transitivity was found a useful measure fc trac.. ~ the transitions be-
tween stable stratified and unstable states associated with the formation of A*ople.  Furthermore, Gao et
al. [210, 211, 245, 395] further extended these ideas to construct multivariat : we - “ted recurrences networks
from multi-channel measurements from different oil-water flow patterns.

In a similar context, Charakopoulos et al. [396] combined the k-ne~-2st 1. *ohbor version of RNs and
visibility graphs for studying temperature time series obtained from dif erent L. rts of a turbulent heated jet,
which allowed distinguishing dynamically different regions within the ‘et and attributing them to distinct
physical mechanisms.

Applications in electrochemistry. Zou et al. [162] studied the comp ~ .cy of experimental electrochemical os-
cillations as one control parameter of the experiments (temperauv. =) w. systematically varied. By utilizing
a multitude of complementary RN characteristics, they could demo. “trate a systematic rise in dynamical
complexity as temperature increased, but an absence of a prev. nusly s beculated phase transition [397] sepa-
rating phase-coherent from noncoherent chaotic oscillations. ™e lavver results were independently confirmed
using other classical indicators for phase coherence, as well as «tn. 5 of a corresponding mathematical model
of the specific electrochemical processes.

Applications in medicine. Finally, there have been a oup . “successful applications in a medical context.
Marwan et al. [398] demonstrated that the global clus ‘ ring coefficients of RNs obtained from heartbeat
intervals, diastolic and systolic blood pressure ai.. ~d & reliable identification of pregnant women with
pre-eclampsia, a cardiovascular disease during pregn.ncy with a high risk of fetal and maternal morbidity.
Their results were further improved by Ramfic - e ./ [399, 400] who considered combinations of various
RN-based network characteristics. In a similar spu.’ as for cardiovascular diseases, recent results point to
the capability of RN characteristics for dis~-iminating between the EEG signals of healthy and epileptic
patients or to identify pre-seizure states i . epile, 3y patients [401-404].

Understanding climate regularity tran ition. ™ RN analysis. The results of Donges et al. [141] pointed
to the existence of spatially coherent cha: ges in the long-term variability of environmental conditions over
Africa, which have probably influence. +'.e ev ,lution of human ancestor species. Specifically, RN transitivity
and average path length have bee' . interp.. ed as indicators for “climate regularity” (i.e., the complexity of
fluctuations as captured by the ra.. tivity dimensions) and “abrupt dynamical changes”, respectively. By
identifying three time intervals with con.istent changes of the RN properties obtained from spatially widely
separated records, it has beer pos ible to attribute the corresponding long-term changes in the dynamics to
periods characterized by kno. ™ or speculated mechanisms for large-scale climate shifts such as changes in
the Indian ocean circulatic 1 patte. °s, the intensification of the atmospheric Walker circulation, or changes in
the dominant periodicity of M ortb~rn hemispheric glacial cycles. Moreover, Donges et al.[142] demonstrated
a good robustness of the 1. alts of RN analysis obtained in a sliding windows framework when varying the
corresponding paramr wers (e.g., window size or embedding delay) over a reasonable range.

More specifically the pe¢ eoclimate variability transitions in East Africa have been demonstrated by
analyzing marine sed. ~ent paleoclimate records from ocean drilling program (ODP) sites 659 in the East
Atlantic, 721/72. 1n the Arabian Sea, and 967 in the Eastern Mediterranean Sea. The time series of three
chosen sites are shown 1 . Fig. 30(a). To date, these marine sediments provide the only archive that allows
the study of the Jin-T eistocene African climate on all relevant time scales. However, earlier analyses of
terrigenous . u.. v records using traditional time series analysis techniques to detect important transitions
in the African - mate yielded partly contradictory results with respect to the signature and timing of these
events [405, 400, Difficulties like these are to be expected when applying linear methods to the highly
nonlinear climate system underlying paleoclimate proxy records. To circumvent this problem and explore
the vast remainder of nonlinear phenomena, RNs can be used [141].
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To this end, Donges et al. rely on two established measures of RNs: transitivity / and average path
length £. Furthermore, transitivity 7 has been interpreted as a climate regularity inde . ». ~ce noisy or chaotic
dynamics gives rise to low values, whereas (almost) periodic or laminar behavior induces 1. h values. The
average path length £ shows much sensitivity on abrupt dynamical changes be! wee different dynamical
regimes when extreme values have been observed for £. Both 7 and L togeth. - v’ bvide double-evidence
points at a particularly relevant feature in the data since they are responsive { difte. "t nonlinear aspects
of the time series data and do not necessarily show transitions at the same ernchs.

The results of 7 and L for the considered terrigenous dust record time ¢ :ries e shown in Fig. 30(b, c).
More specifically, T reveals surprisingly similar long-term change in short-v. “m {uctuations before about 1.5
Ma B.P. (in contrast to the Mediterranean ODP site 967), although bot" sites ~re strongly geographically
separated and, hence, characterized by distinct wind systems and du t sour. »s (Fig. 30(b)). This overall
picture indicates that changes in 7 during the Pliocene and early F -~istoce’ e are robust manifestations
of long-term variations in the dynamics of large-scale African dus* _iobi...uion and transport. More im-
portantly, three transition periods can been identified which can be r’ca.'y related to distinct and known
climatic mechanisms (Fig. 30) [141].

Transitivity Average path length Large
Terr Flux (g cm-2 ka-1) (Climate regularity) ( brupt dynamical change) lakes
T 11 L 1T 1
(a) (b) (c) (d)
0.5 1.5 2.5 0.1 0.3 0.50.7 0.45 0.55 0.65 . 456 45 6 7 0
o s s s o s e -
N :
o ~S b R
i I
27 12
> L 1 >
Q {1 @
2 g g g | 3
< (( ] <
5 o o o 1 5
© © © L
3 g = g 2 1 2
[ So ]
31 » 13
| N _§
[ o @] o ]
4t 14
[ S S 9 L
o ~ o ~ o ~ ]
v N lw) N lw) N 1
- < g < Y < ]
~ [e)) ~ [e)) ~N T
8 N g 8 g S el
5 [ — R S E— -1 5
051525325 0.45 0.550.650.75 0.55 0.65 0.75 4 6 8

Figure 30: (a) Terrest. al dust ux records from the three considered ODP sites distributed around Africa covering the
Plio-Pleistocene. (b, c) . ~sults [ RN analysis of the three dust flux records including 90% confidence (shading areas) of a
stationarity test. ' ...paring voth measures transitivity (interpreted as a measure of climate regularity) and average path
length (interpretec as a m. ‘sure of abrupt dynamical change in climate) for all records reveals significant and synchronous
large-scale regime : Wifts in d st flux dynamics (horizontal shadings). (d) Time intervals with geological evidence for large lakes
in East Africa, comp. “in~ _ollected information from different areas in the EARS and additional results from the Afar basin.
Modified fromr =~ !

The first tra. sition period is identified by a pronounced maximum of 7 between 3.5 and 3.0 Ma B.P. at
both ODP sites 659 and 721/722 signaling a period of exceptionally regular dust flux dynamics (Fig.30(b)).
The transition epochs highlighted by average path length £ support these findings (Fig. 30(c)). The time
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interval 3.5 — 3.0 Ma B.P. is characterized by three distinct and highly significant e (rema (two maxima
and one minimum in £) in the ODP site 659 record, indicating shifts between regin 2s f higher and lower
regularity in the variations of environmental conditions [141]. This identified long period dur.. g which global
mean temperatures have been consistently higher than present day, which is thu . co sidered as an analog
for the future climate of the late 21st century if anthropogenic emissions of gr. nh use gases continue to
rise. At the same time, RN analysis reveals an enhanced T of African dust dux . riations in both the
Arabian Sea and Atlantic Ocean. At ODP site 721/722, this observation ic pre minantly caused by a
well-pronounced epoch of relatively weak and approximately constant dv ¢ fli - hetween about 3.36 and
3.17 Ma B.P. A similar — but shorter — feature is found at ODP site 655 = ~t* een about 3.25 and 3.19 Ma
B.P. (Fig. 30(d)) as well as at ODP sites 661 and 662 in the Eastern Fruatc ‘al Atlantic. The presence
of such very similar features with a clearly different timing suggests the p1.sence of either one common
climatological mechanism influencing the Arabian Peninsula much ec-lier tb . Northwest Africa or two
distinct (but eventually interrelated) factors, where the first affec’ -1 ou., ohe Northeast African and/or
Arabian dust flux dynamics.

The second identified transition is represented by an extendeu and ! ighly significant maximum of 7T
between about 2.25 and 1.6 Ma B.P. and of £ between 2.2 and 1.7 = Ta b.P. The latter one roughly coincides
with the observations made at ODP site 659. The timing of this tran ition period in the Early Pleistocene
(2.25 — 1.6 Ma B.P.) well coincides with known large-scal> che oes .n atmospheric circulation associated
with an intensification and spatial shift of the Walker circulai. n.

Moreover, the third transition period is between abc 2.7 w..u 0.7 Ma B.P., when both 7 and £ show
significant maxima for ODP sites 967 and 721/722 but no. for ODP site 659. This interval corresponds
to the Middle Pleistocene transition (MPT) charact ... -7 hv a change from glacial cycles predominantly
related to obliquity variations of Earth’s orbit (approx. 2 cely 41 ka period) to such with an approximately
100 ka periodicity. The timing of this transitio. -nd 1 s underlying mechanisms have been extensively
studied elsewhere. That the MPT is not detected in “he “~cord from ODP site 659 by RN analysis does not
imply that it did not have any climatic impact . *he (rresponding dust-source areas in Northwest Africa.
Instead it shows that our technique is not sensitive “o the local signature of the transition, if present, e.g., if
it manifests itself in some change of trend [141]. Alternatively, the locally available data may be insufficient
in quality and/or resolution to reveal the .ubtic type of events RN analysis is focusing on.

In summary, this analysis identifies ~ree ma n epochs of interest: 3.5 — 3.0, 2.25 — 1.6, and 1.1 — 0.7
Ma B.P., as shown in Fig.30. All three are . ~ cterized by statistically significant extrema of 7 and/or £
in at least two of the analyzed recors s. I'. addition, there are further shorter time periods of considerably
increased or decreased T or L observ. ! n th : different records which coincide with environmental changes
too (lake level high stands, Fig. ,0(d)). T.ased on results from a meta-anaylsis using event coincidence
analysis, tt was furthermore pror osc ' that these detected large-scale changes in climate regularity may have
acted as drivers of human evolrtion in frica during the Plio-Pleistocene [141].

6.2. Visibility graphs

Very similar as RN a' proacu. - (H)VGs have been applied to experimental time series from various
fields, for instance, enerr y di sipation rates in fully developed turbulence [273, 407, 408], financial data [62,
314, 409-411], physiologic.” =ime series [61, 224, 275, 278, 412, 413], seizure detections by EEG signals [414—
416], cardiorespirator, 1nteracuv.on signals [417], and alcoholism identification by EEG signals [418]. In the
geoscientific context [419] st 1died the time series of annual US landfalling hurricane counts. Subsequently,
further studies invest., ~ted .aily streamflow series from the US and China [420], air temperature data from
China [421], wir a1 speed records from central Argentina [261]. In the field of paleoclimatology, VG-based
tests for time-r versal ¢ symmetry were used to detect indications for a North Atlantic ocean circulation
regime shift at ti. or-ct of the Little Ice Age [422]. VGs were also used for studying seismic activity in
Italy [285] ¢ w. '~ Clorinth rift in western central Greece [423]. Nomnlinear features of seismic time series
have been rec .y reviewed in [424]. Both k nearest neighbors network and VG analysis show almost the
same qualitative behavior and allow to reveal the underlying system dynamics in turbulent heated jets
[396]. Furthermore, the VG approach has been used to disclose the fractal properties of the event-by-event
fluctuations of multiparticle production in Nucleus-Nucleus collisions [425].
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Motif structures and subgraphs played important roles in forming VGs, which have peen used to human
ventricular fibrillation (ECG) time series [136, 282], ECG diagnosis of epilepsy [27 ], "nd air traffic flow
data [426]. Simple topological measures such as the diameter, average path length, moa. larity, cluster-
ing coefficient, density and hierarchical organizations of networks have been use. to “haracterize different
dynamic properties between atmospheric and oceanic variables [427]. In additic ~ *.e (H)VGs have been
proposed to predict catastrophes of a non-autonomous network which derived “om « marine system [428§],
which demonstrates that the topological characteristics like average degrees ~f the ~etworks do show pro-
nounced signatures at the onset of catastrophes. Fractal characteristics of (H)'""'s have been reported in
fractional Brownian motions, which has been recently extended to multipai.'~le emission data in high energy
heavy-ion collisions [429], which shows consistent power law degree distrit-1tion. as compared to the results
as obtained by the traditional sandbox algorithm. In [245], a slight modific tion of HVG algorithm has
been proposed to extract the multiscale properties of time series from »il-wat r two phase flow signals. In
the case of intermittent time series, some phenomenology theories '._ve Locu obtained in order to link the
laminar episodes and chaotic bursts with the connectivity of the 1 :sul* .ug HVGs [430, 431].

Next, we illustrate two specific examples showing the application. of (H VG analysis to identify nonlinear
ocean circulation regime shifts by paleoclimate time series of ocean . diment cores and time series of sunspots.

VG analysis of nonlinear ocean circulation regime shifts at tne -mse’ of the Little Ice Age. Schleussner et
al. applied HVG-based tests for time-reversal asymmetry to , aleoclimate records to detect indications for
a North Atlantic ocean circulation regime shift at the orc~* ~“**  Little Ice Age [422].

The transition from the Medieval Climate Anomaly (IV:'A) to the Little Ice Age (LIA) primarily in the
Northern Hemisphere is one of the most important clI° -~*ic shiuis during the pre-industrial last millennium.
Although recent paleoclimatic reconstructions reveal . o .oherent global-scale cooling at the onset of the
LIA, they agree on a generally colder period fromw "he 1v"h to the 19th century (e.g. [432]). Alternatively,
Masson-Delmotte et al. [433] give a period between . 15¢ and 1850. In Europe, the regional expression of the
LIA is associated with a spatially and tempors'':" hete ‘ogeneous cooling, being most pronounced in central
and northern Europe [432, 434].

Besides uncertainties in timing and extent, also the origin of this climate shift is still a subject of
debate. Since the LIA coincides with se.eio. minima in the total solar irridiance (TSI), solar activity
has been proposed as a possible driver already >y Eddy et al.[435]. The impact of TSI changes on the
coupled ocean-atmosphere system in tb= No."h 2 clantic has been investigated in a variety of different model
studies [436-438]. As an alternative } ypot hesis, volcanic eruptions have been suggested as the origin of the
regional cooling [436, 439]. Despite . = s 1ort, afe-time of volcanic aerosol loadings, they have been found to
influence North Atlantic climate vs ;iabiliy, < a multi-decadal time scales [440-443]. Decadally-paced volcanic
eruptions have been reported to t 15 =r coupled sea-ice oceanic feedbacks leading to a sustained slow-down of
the Atlantic Meridional Overturning C.. culation (AMOC) and persistent hemispheric cooling in modelling
studies of the last millenniur |44 ', 445].

Schleussner et al. [422] ~rverent additional evidence for such a non-linear regime shift in the North
Atlantic circulation dynar.ics a. ing the MCA-LIA transition based on an analysis of two fossil diatom
based high-resolution Av sust sea surface temperature series from two ocean sediment cores from the central
subpolar basin (Rapid 2. “OM’ and the Norwegian Sea (CR 948/2011). They find robust signatures of
time-irreversibility in " och rece ds during the MCA-LIA transition using a test based on horizontal visibility
graphs. Comparisor with s mulations with the climate model of intermediate complexity CLIMBER-3«
reveals good agreeme °t bet-/een the sediment cores and model outcome. Paleo reconstructions as well as
model results su- port the hypothesis of a non-linear oceanic regime shift at the onset of the LIA.

Despite a b sin-wid cooling in the whole North Atlantic, the Rapid 21-COM time series exhibits a
warming during e LT .. On the contrary, CR 948/2011 shows an abrupt cooling after 1400, preceding the
Rapid 21-C”" warming by about 50 years (compare Fig. 31 a (b) for CR 948/2011 (Rapid 21-COM)).
A warming s1, n7. in the subpolar North Atlantic in contrast to a cooling in the Nordic Seas is also found
in sub-decadal ¢ “ean sediment records from North Iceland and North East Newfoundland [446]. Andrews
et al.[447] report signatures of a major environmental shift at the MCA-LIA transition in two calcite and
quartz based sediment records from the Denmark Strait.
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Figure 31: Results of sliding window HVG-based tests for time-s -ies .rreversibility to detect nonlinear regime shifts in Atlantic
paleooceanic dynamics during the past millennium. Reconstructe. aSST time series from (a) the Nordic Seas (CR 948/2011)
and (b) the Atlantic subpolar basin (Rapid 21-COM). The . A (u °til 1250) and the LIA period (1400-1850) are shaded in
red and blue, respectively, and the means over the MCA and "Ia _ sriods are depicted by solid lines coloured accordingly. (c,
d) Results of the degree - based HVG time series irrer —~ihility tests (py) for different window sizes. p-values close to unity
(blue) indicate full reversibility, whereas close to zero (re.® pow. towards time-irreversibility. (e, f)) Results of the clustering
- based HVG time-irreversibility tests (p¢). Figure modified .. m [422].

Schleussner et al. perform a sliding + ‘ndow t: st for time series irreversibility as described above for the
Rapid 21-COM as well as CR 948/2017 recor’ v er the pre-industrial last millennium from 1000 to 1800 AD
(Fig. 31 c—f). Results for the degree .nd ’>cal clustering based tests are depicted in the middle and bottom
panel for different window sizes. The . # .dow size is varied between 30 and 60 data points, which comprises
between 240 and 480 years given an aver. e sampling rate of 8 years for both cores. The choice of small
window sizes comes at the cost ¢. a.. ‘ncreased rate of false positives [63], but allows to detect regime shifts
that occur within time scales of a few decades.

The authors detect a clea sig ature of time-irreversibility using the clustering based test with p-values
pe < 0.05 for Rapid 21-COlv. ~r { window sizes below 45 data points between 1450 and 1550 and pe < 0.1
for CR 948/2011 and all v mdow ». -=s around 1400 (see Fig. 31, e,f). The p-values for the degree based test
are somewhat higher (al out 4.2, -ee Fig. 31, ¢, d), which shows that the degree based test alone does not
imply a rejection of the N, at - high significance level. Still, the timing of the signatures of NH rejection
for the degree based ’ ¢st matcues very well with the clustering based test, thus giving additional confidence
in the results.

VG analysis for unspot numbers. Solar activity is characterized by complex dynamics, showing the famous
11 years cycle. ‘ou et « . [267] performed the VGs analysis on both the daily and monthly sunspot series.
The natural VGs “acnc on the effects of the local maxima on the resulting graphs. In the particular case
of sunspot : .. = local minima play important roles in forming the increasing and decreasing phases of
the solar cyci s. In order to disclose the contributions of local minima to the VGs, they proposed two
ways to constru.‘ the network: one is from the original observable measurements and the other is from a
negative-inverse-transformed series.

More specifically, let us discuss the results of VGs for the International Sunspot Number (ISN) [448]
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Figure 32: p(k) of VGs from monthly (a,c) and daily data (b,d). (a,b) .. ‘or {z;}, and (c,d) {—x;}. One would suspect a fit to
the first part of p(k~%) yields that the slope of dashed line in ( . - * 70 and that of (d) is 3.61, but all p-values are 0, rejecting
the hypothetical power laws. Modified from [267].

(see [267] for more consistent results that are based o. the sunspot area series). The VG analysis have been
performed for both monthly and daily sunspot . ~ries, . hich yields, respectively, month-to-month and day-
to-day correlation patterns of the sunspot activities. The degree sequence k; = > j A; ; and its distribution
p(k) reflects the maximal visibility of the com=~sponding observation in comparison with its neighbors in the
time series. In the case of sunspot time s ries, t. = contributions of local minimum values to the network is
of interest — something that has been lary 'v ove looked by the traditional VGs. One simple solution is to
study the negatively inverted counter sart of v. s original time series, namely, —x(¢;), which quantifies the
properties of the local minima. Ther fore, we 1se k_, and p(k_,) to denote the case of —z(t;). This simple
inversion of the time series allows - 5 to "rea e an entirely different complex network.

Figure 32(a,b) show p(k) of t} ~ VGs derived from the ISN series {z;} with heavy-tails corresponding to
hubs of the graph, which clearl, dev. ‘*es from Gaussian properties. In contrast, p(k~%) of the negatively
inverted sunspot series {—a;} .. "ws a completely different distribution, consisting of a bimodal property
(Fig. 32c,d), extra large de rees are at least two orders of magnitude larger than most of the vertices
(Fig. 32(d)). Since well-define.. ‘caling regimes are absent in either p(k) or p(k~%) (nor do they appear in
the cumulative distributi- s, “ee more details of the statistical tests in [267]), the hypothesis of power laws
is rejected.

Based on the degree sequ s k, and k_,, we further investigate the long term variations of local max-
ima/minima of the s mspot zeries. We find that the positions of strong maxima are largely homogeneously
distributed over the ‘me dor iain, while that of the strong minima are much more clustered in the time axis.
These results of t+~ du._ _.ice between maxima and minima could be used for evaluating models for solar
activity because they 1 flect important properties that are not included in other measures reported in the
literature. Furtl ~rmore VGs for sunspot series show rich community structures, each of which mainly con-
sists of the tempora. .uformation of two consecutive solar cycles. The solar cycle of approximately 11-years
yields that 1. ast o .ne temporal points of the decreasing phase of one solar cycle are connected to those
points of the in. easing phase of the next cycle in the resulting VGs [267]. When the sunspot number reaches
a stronger but mure infrequent extreme maximum, we have inter-community connections, since they have
a better visibility contact with more neighbors than other time points — hence, forming hubs in the graph.
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The inter-community connections extend over several consecutive solar cycles encom- assing the temporal
cycle-to-cycle information. In Fig. 33(a), some hubs of large degrees (k; > 15) are b g.."*ohted, which have
been suggested to identify solar cycles [267]. In addition, there are strong positive correlatior. between large
degrees k; and high betweenness b;, which further characterizes the node’s ability to -ansport information
from one place to another along the shortest path (Fig. 33(b)).
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Figure 33: Network representations of the VG constructed 1. ™ the annual sunspot numbers of the entire series. Highlighted
visible nodes are: (A) large degrees (k; > 15), and (B) high betweenness centrality (b; > 0.2). Modified from [267].

Asymmetry of sunspots. Another imperrtan. fea ure of sunspots is the presence of a marked, time-varying
hemispheric asymmetry, which have n t ye been completely resolved [449-451]. The hemispheric asymmetry
of solar activity manifests itself in the ~t7 .isti- al properties of a variety of activity indicators such as sunspot
numbers, areas and spatial distril ation, . numbers of flares and coronal mass ejections, solar radio and
X-ray flux, etc., and has been ¢ onized to vary on multi-decadal time scales (see, e.g.,[449-456], and
references therein). Notably, it 1s commn. nly believed that the observed distinct hemispheric asymmetry is
an intrinsic property associat d w ‘th the underlying solar magnetic field dynamics, which in turn serves as
the driver of solar activity re. ~on 1ble for particle and electromagnetic emissions directly affecting the Earth.
However, even despite the ¢ meuv. ~dological advances, properly quantifying the North—South asymmetry is
a challenging problem by itse' . Specifically, the complex dynamics of the entire solar activity cycles calls for
replacing traditional line.. caticcical approaches by methods originated in the field of nonlinear dynamics
[451, 453]. In [233], “ca et u. proposed (H)VGs analysis to study the asymmetric distributions of the
sunspots over the s lar sur. .ce. They have argued that (H)VGs provide complementary information on
hemispheric asymme. “ies in dynamical properties.

More specific uiy as we discussed in Sec.4.4.2, the excess degree Ak(t) (Eq. (102)) and the relative
excess degree A .k(t) \2q. (103)) have been proposed to characterize the possible asymmetric properties
for (H)VGs that . ~e res snstructed from bivariate time series, which are resulted from two interacting layers
a and 8. T -~ two measures are based on the computations of joint degree k’°i"*(t) (Eq. 98) and the
conditional de e : sequences k[?l]’[ 4] (t) (Eq. 101). We emphasize that the absolute excess degree can be easily
interpreted in t. -ms of inter-hemispheric differences, whereas the relative excess degree partially corrects
for the skewness effect and allows quantitatively assessing the relevance of differences between the degree
sequences of both hemispheres. When analyzing sunspot time series, it has been demonstrated in [233]
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that absolute and relative excess degrees exhibit qualitatively the same long-term vari- oility. Therefore, we
review some results based on Ak(t) only and further results of A,..;k(t) can be founs 1. '233].

First we construct the (H)VGs for monthly hemispheric sunspot area series An(t) ana 1g(t), yielding
the degree sequences kx(t) and kg(t), respectively. The long-term asymmetric di crit tion behavior of the
sunspots has been captured by utilizing a sliding window technique that average. th degree sequence over
some time period. In all following considerations the window size has been chc. ~n as .* = 270 months, with
a mutual overlap of 12 months between subsequent time windows. This sperific .. “ice of the window size
covers about one full period of the solar magnetic field polarity cycle (appro- ima ' 22 years). There are no
marked changes in the long-term variability of the (H)VG-based characte. -tic, for w being between about
180 ans

(@) 2

-0.1 ‘
1880 1900 1920 210 1960 1980 2000

ca.”nuryear

Figure 34: (a) Absolute excess degrees Ak; obtained fro ~ the VGs of AN'S computed over the sliding windows with
a width of w = 270 months and a mutual overlap of 12 months. FError bars display mean values and standard
deviations within a given time window centers 1 at .” e respective point in time. Gray areas mark those time intervals
where the sign of the excess degree changes (b) Ak; rom HVG. Reproduced from [233].

Figure 34 shows the mean features assc ciated with the degree sequences for our sliding windows, together
with the associated window-wise stan v 1 de 1ations. In the VG analysis (Fig. 34(a)), our results reveal two
transitions between periods of pos’.ive anu egative mean absolute excess degrees, which take place at about
1925-1935 (from higher degrees .n .= Northern Hemisphere to those in the Southern one) and 1985-1995
(vice versa). Furthermore, positive (negative) excess degrees imply higher mean degrees in the Northern
(Southern) Hemisphere. The e ot servations have been partially explained by the strong asymmetry of the
probability distributions of s. ~s' ots over the north and south hemispheres, for instance, very high positive
skewness [233]. The corre ;pondu._ analysis by mean of HVGs (Fig. 34(b)) reveals some interesting facts:
first of all, all degree-rel .ted quartities obey considerably lower values and weaker overall variability than
for the VG. This is to be vec ed since the HVG is a subgraph of the VG. However, while the absolute
degree values in the F v tyvpically reduce by a factor of about 24 in comparison with the VG, the absolute
excess degrees are b, more t an one order of magnitude smaller (Fig. 34(b)).

Moreover, for the -"VG-".ased excess degree Ak; we do not find comparably clear indications for transi-
tions between tir .e perinds with clear hemispheric predominance as for the VG (Fig. 34(a)). The only notable
exception is the time pe fiod between about 1925 (corresponding to the formerly identified first transition
in the VG) and 1.70 - nere the excess degree of the HVG is significantly negative (as also observed before
for the VG) o, Seally, the transition in the hemispheric predominance reflected by the VGs’ conditional
degree sequend > coincides with a sharp drop in the corresponding series for the HVG at about 1925, whereas
the end of the 1 riod of significantly negative excess degrees in the HVG at about 1950 accompanies the
termination of the gradual downward trend of the excess degree obtained from the VGs (Fig. 34(b)). Taken
together, we interpret these findings such that the effect of the asymmetry of the hemispheric sunspot area
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values mostly dominates possible variations in dynamical characteristics. However, to t! is end we tentatively
conclude that parts of the observed long-term changes of the VG-based excess degrr 2 « “nnot be explained
by combining the corresponding changes in skewness and HVG-based excess degree (i.e., . stribution and
dynamics, respectively). One possible reason for this could be complex changes i-. th PDF of the sunspot
areas, which go beyond fluctuations in skewness, but yet have a significant el. ~t ,n the resulting VGs’
properties.

In summary, we conclude that temporal changes in the hemispheric predominanc. ~f the graph properties
lag those directly associated with the total hemispheric sunspot areas. Thes . fin ¥ ~os open a new dynamical
perspective on studying the North—South sunspot asymmetry, which need. *o e further explored in future
work.

6.3. Transition networks

Depending on the particular symbolic representations of time .ciies. wuere are various applications of
transition network approaches to real time series. For instance, co- nov _me 't time series of economic growth
and high-end talent development efficiency [428]. Here we frcus on t'e application of ordinal pattern
transition network approach as proposed by McCullough et al. .. 41|, where they applied this analysis
to experimental time series generated by a diode resonato: circuits. They argue that the network size,
mean shortest path length, and network diameter are hi_hly . ~< 1ve to the interior crisis captured in
this particular data set. Meanwhile, the ordinal pattern par. *ion networks have been reconstruct from
Electrocardiogram (ECG) data from patients with a v. wuy o1 neart conditions [66]. Network measures
of mean degrees, entropies of the set of ordinal patterns anu “he number of non-occurring ordinal patterns
have been computed for the resulting transition netwc «»s, .” ~ing statistically significant difference between
healthy patients and several groups of unhealthy patier. < with varying heart conditions.

Ordinal pattern networks for externally driven diol= 1. ~onator circuit. In [41], McCullough et al. con-
structed ordinal pattern transition networks f ~vmei’mental time series from an externally driven diode
resonator circuit. In this experiment, each time > “ies of the circuit output voltage Ur were recorded for
evenly spaced values, which consists of 65536 observations. The amplitude of the driving sinusoidal voltage
Uy serves as a control parameter. When t’ s co. ‘rol parameter Uy is changed systematically in the range of
3V < Uy <5V, the system presents rich hifurcat on scenarios from periodic to chaotic dynamics. Our mo-
tivation of this example is to show tha' struc v i measures of the reconstructed ordinal pattern transition
networks can track different routes t , ch- os. More visualizations of attractors in the corresponding phase
space and their associated ordinal ne. - rks ".ave been well demonstrated in [41]. In addition, we focus on
three main network measures, th. mean . c¢-degree (k,,:), the mean shortest path length £ and network
diameter D (maximum shortest sav. length).

The full bifurcation spectrum of the Jata set is characterized by the largest Lyapunov exponent A; and
network measures (Fig. 35). Che system begins in period-3 oscillations and undergoes a period doubling
bifurcation into period-6 whe. t'e control parameter approaches Uy ~ 3.6. The period doubling cascade to
chaos is observed for the ¢ )ntrol . rameter approximately 0.38 < Uy < 0.405, and further undergoes a step
change at the interior cri s, r flec*ing the filling of the attractor. Each ordinal network is generated for each
time series with 7 = 8 an’ D = 8. The period-3 and period-6 time series are mapped to ring structures.
The network measurs , capture the bifurcation scenarios successfully (Figs.35(b-d)).

More specifically the pe¢ -iodic regime is captured by zero Lyapunov exponent A;. Note that A\; is
computed by the lya,™ fur tion of the TISEAN package [6]. The small range of the control parameter Uy
for which A; ber omes regative around the first period doubling bifurcation is a numeric error due to poor
parameter selec ion for shose particular corresponding time series [41]. The size of the network exhibits
sensitivity to bou. the period doubling bifurcation at Uy = 3.6, the period doubling cascade to chaos for
approximate vy - 79 < Uy < 0.405, and undergoes a step change at the interior crisis, reflecting the filling of
the attractor. ™ cthermore, the mean out-degree (k,,¢) provides robust tracking of dynamical change similar
to A1, and also a, near sensitive to the period doubling bifurcation and the interior crisis. The mean shortest
path length £ and network diameter D both undergo a clearly discernible step change at the interior crisis,
with the latter also exhibiting a peak value at the change point. Both of these results are easily understood
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in terms of the relationship between the networks and phase space as follows: additione” nodes and edges are
created immediately after the crisis, corresponding to the intermittent chaotic trajec 0. ~s that begin to fill
the space between the bands of the pre-crisis attractor in phase space. These new nodes an’ edges become
shortcuts in the network. The spike in diameter corresponds to the small number of v me series which have
only a limited number of trajectories in between the bands of the pre-crisis ati. ~ct' r because they are in
the immediate vicinity of the crisis and we are dealing with finite non-station. v da.~ These trajectories
will form new strands in the network which are only connected to the main structw. ~ where they leave and
rejoin the bands of the pre-crisis attractor, and hence these trajectories will aave  <ignificant impact on the
network diameter. Moreover, these strands or subgraphs will have a far ..-ve. degree and degree variance
than the remainder of the network, hence why the value for mean out d~~vee a. 1 degree variance also dips
at the interior crisis.

In summary, this set of results demonstrates that while (k,,:), mean hortes path length £ and diameter
D all share the deficiency that they do not provide an absolute crit . a to. w.scriminating between periodic
and chaotic dynamics, they have the potential to be useful as an ndir .wc for dynamical discrimination in
a relative sense, and for detecting change points [41].

Ordinal pattern networks for electrocardiograms. In [352], McCullou, 'h et al have introduced to compute
both local and global out-link entropies of ordinal transition nev. ~rks o quantify the complexity of temporal
structure in the networks from time series. The numerical co. narative investigation in the Rossler system
has demonstrated that these complexity measures tracl- *-—-- al changes through period doubling and
periodic windows over a range of the bifurcation parame..~ Furthermore, the analysis has been applied
to time series of electrocardiograms (ECGs). More ~-ificaliy, complexity measures are able to capture
the unique properties, discriminating between short-v mr ECG recordings characterized by normal sinus
rhythm (NSR), ventricular tachycardia (VT) anc wenti.-ular fibrillation (VF). The global node out-link
entropy of each time series is computed for both a . hc.* and a long time embedding lag and the resulting
two-dimensional vector constitutes a measure ¢ multi ~ale complexity description.

More specifically, the dataset comprises 81 k'Gs tnat were measured to observe different cardiac dy-
namics, including 31 records of NSR, 30 records of V'L, and 20 records of VF [352]. Each time series consists
of 10000 points in length and have been ¢ .up. 1 at 500 Hz with 10 bits resolution. Then, the global node
out-link entropy (Eq. (117)) has been 1sed to juantify transitional complexity of the resulting ordinal
pattern network which has been reconstruc. 1 fr r each ECG record.

As we have discussed in Section 5.7 .1, tlie choice of embedding delay 7 has certain effects on the resulting
ordinal pattern networks. For the p. *ic uar .ataset of ECGs, McCullough et al used a simple assumption
that the mean resting heart rate 7, 80 be.* per minute, which is about 375 samples per cycle. Therefore,
the short embedding lag is chor e as 7 = 20 which is approximately a quarter period of the complete
cycle. Furthermore, a long embedding "ag is chosen to be one order of magnitude larger 7 = 200 which
will capture dynamics over s gm. nts of two to six cycles and encoding inter-cycle variability of the ECG
in the resulting ordinal netv. ~vke. The embedding dimension m has been suggested as 5 < m < 10. The
transitional complexity SCVF he. been computed for both a short and a long time embedding lag and the
resulting two-dimensions . figr re constitutes a measure of multiscale complexity.

Figure 36 illustrates t.. wo « 1mensional multiscale plot of SN ¥ and the corresponding box plot, which
shows clear discrimir ...on be. /een the pathological groups. Therefore, ordinal networks present different
level of transitional omplex %y corresponding to different networks.

In addition, the ¢ -dinal network analysis is performed to characterize age-related effects in interbeat
interval dynamic, nom KUGs. In [352], the authors further showed that the standard permutation entropy
is unable to dis riminat between age groups. In contrast, the global node out-link transitional complexity
SCENE generally .. high r for elderly subjects on short time scales and lower on long time scales, and SENE

has significe .. - ~reater variability than that can be observed for young subjects.
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Figure 36: (a) Scatter plot of global node out-link entropy SGNE for 1.. 81 EC & dataset. The z-and y-axes correspond to
SGNE computed with embedding 7 = 20 and 7 = 200, respectively. ) Bo.. _ "ot for the scores from a canonical correlation
analysis of the data. Modified with permission from Ref. [352]. Courtesy " M. Small.

7. Software implementation — pyunicorn

In this chapter, we briefly introduce the Pythop softw. ~e package pyunicorn, which implements methods
from both complex network theory and nonlinear *“1.. » scries analysis, and unites these approaches in a
performant, modular and flexible way [73]. Here. we n.ninty present a brief introduction of pyunicorn and a
discussion of software structure and related con., “itauicaal issues. More details of the illustrative examples
have been presented in [73]. Although in the tutori. of [73], the work flow of using pyunicorn is mainly
illustrated drawing upon examples from cli- .. ~logy, we have to emphasize that the package is applicable to
all fields of study where the analysis of (b’g) time eries data is of interest, e.g. in neuroscience [43, 183, 402],
hydrology [457] or economics and finance | "*1].

pyunicorn is intended to serve as an integiuted container for a host of conceptionally related methods
which have been developed and ap ‘lied by he involved research groups for many years. Its aim is to
establish a shared infrastructure f r sci ~ti’.c data analysis by means of complex networks and nonlinear
time series analysis and it has al . ~dy greatly taken advantage from the backflow contributed by users all
over the world. The code base Las bec. fully open sourced under the BSD 3-Clause license.

First of all, we emphasiz: v 1t pyunicorn covers rather general topics of complex network studies.
The pyunicorn library cons sts r. five subpackages: (1) core, which contains the basic building blocks for
general network analysis ~nd .. ~deling. For instance, it is capable for analyzing and modeling general
complex networks, spati .| nr.works, networks of interacting networks or multiplex networks and node-
weighted networks. (2) “u -net which contains advanced tools for construction and analysis of general
functional networks [4” 93). Tor instance, this module calculates cross-correlation, mutual information,
mutual sorting infor 1ation . nd their respective surrogates for large arrays of scalar time series. (3) climate,
which focus on the onstrus cion and analysis of climate network [46, 47, 458, 459] and coupled climate
network analysis T7]. (=, wmeseries, which provides various tools for the analysis of non-linear dynamical
systems and ur - and aultivariate time series. This subpackage covers all aspects of RNs (Section 3)
and (H)VGs (Se.tion 4" that have been reviewed in this report, except ordinal pattern transition networks.
Furthermore nvunicorn also presents methods for generating surrogate time series [460], which are useful for
both functiorn. "1 r tworks and network-based time series analysis. (5) wtils, which includes MPI parallelization
support and an ~xperimental interactive network navigator.

pyunicorn is conveniently applicable to research domains in science and society as different as neu-
roscience, infrastructure and climatology. Most computationally demanding algorithms are implemented
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in fast compiled languages on sparse data structures, allowing the performant analy .is of large networks
and time series data sets. The software’s modular and object-oriented architecture € ia. 'es the flexible and
parsimonious combination of data structures, methods and algorithms from different fielas. For example,
combining complex network theory and RPs yields RN analysis (Section 3) [73].

Along these lines, pyunicorn has the potential to facilitate future methodoi. ~ic- « developments in the
fields of network theory, nonlinear time series analysis and complex systems ¢ ‘ence ~ v synthesizing exist-
ing elements and by adding new methods and classes that interact with or huil. 'von preexisting ones.
Nonetheless, we urge users of the software to ensure that such developmen’s ar: “heoretically well-founded
as well as motivated by well-posed and relevant research questions to prou ~e aigh-quality research.

Besides pyunicorn, some other software packages are available, for ir~*ance, *he MATLAB toolbox CRP
Toolbox that allows to get the adjacency matrix of a RN (i.e., the re :urrenc » matrix). Furthermore, this
toolbox provides the computation of several network measures as w. 11, for astance, the node degree k
(corresponds to the recurrence rate), the clustering coefficients C ap’ ‘rans...vity 7. Some basic elements of
recurrence network analysis have been published as Mathematica der ns rations [461, 462]. While we are
not aware of further existing comprehensive software packages in v.e sty’: of pyunicorn or CRP Toolbox,
other groups have sometimes published code implementing spec.“~ methods of network-based nonlinear
time series analysis, such as for example visibility graph enalysis ¢ 2veloped by the group of Lacasa et
al. (http://www.maths.qmul.ac.uk/~lacasa/Software.brtmi, Tn - ddition, we recommend some network
visualization toolboxes, including Gephi (http://gephi.org, v Networkx http://networkx.github.io
which can be used to analyze the networks once the adj ... , wuatlix is available.

8. Conclusions and future perspectives

8.1. Conclusions

Time series analysis by means of complex networ. s is an innovative and powerful approach with many
ramifications and applications. In this report, w  have reviewed several major algorithms for transforming
a time series into a network representation, dependin, on the definitions of vertices and edges. The network
approach makes use of different established - ~*hods, such as Markov chains or recurrences, but also of more
abstract concepts, as visibility graphs, wb'ch forn. three main classes of methods, namely, recurrence network
(RN), visibility graphs (VG) and transiti ~ netr ork (TN) that have been discussed in detail throughout
this report.

These methods complement avai’ tble appr raches with alternative measures, e.g., describing geometrical
properties of the system under stu'ly in ‘s r nase space, but also broadening the applicability of time series
analysis to short, complex, and r -ltivariate data. As such, network based time series analysis can be used
to characterize systems dynamics fro.. a single time series, to distinguish different dynamics, to identify
regime shifts and dynamical t .. itions, to test for time series reversibility, or to predict the future system
states.

8.2. Future perspectives

As shown in this revic - app! /ing complex network approaches in the context of time series analysis has
already gained a numr’ __ of v iable insights from both, a theoretical dynamical systems and/or stochastic
processes perspectiv. and in “he context of various types of applications. However, as for any emerging field,
there is a large body ¢ “releve it questions and upcoming developments that may further increase the relevance
of the discussed “.a.neworks. For example, in the particular case of RNs, there are some evident questions,
the most releva t being about the invariance of findings under variation of the threshold value € since this
value determines "he lir < density of the network and all network characteristics become trivial in the limit of
full connect? "+ M17]. Therefore, future work needs to further demonstrate the wide applicability of existing
as well as ne "Iy developed methods for transforming time series into complex networks by considering
additional appli. ations from various disciplines, particularly regarding the methods’ capabilities to provide
deeper insights beyond the already existing knowledge of the respective topics. Depending on the particular
working subject, it will be crucial to use network analysis to extract some features that are not easily
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captured by most of standard methods of linear and nonlinear time series analysis, t} :reby demonstrating
the added value of the network methods.

To this end, we would like to highlight some particularly prospective directions for future . esearch, being
aware of the fact that this selection will be necessarily incomplete and subjective

8.2.1. Ewolving and temporal network analysis for time series

In their basic formulations as discussed in this review, most existing aprroacn. - for transforming and
analyzing time series from a complex network perspective have been desig 1ed - ‘marily to cope with sta-
tionary systems. However, generalizations are desirable that account for ti. fa .t that real-world time series
often exhibit changing dynamical patterns as a hallmark of nonstationari*y.

While many complex network approaches traditionally assume sta’.c netw vk structures, there are nat-
ural extensions of evolving network analysis, i.e., the consideration ol ~omple : networks that change as a
function of time. For proximity networks as well as visibility graphs - . d re...cd concepts, a generalization to
evolving networks appears straightforward if we consider both noc 2 ar . ec 7e sets being time-dependent. In
turn, for transition networks, one may keep the underlying node se. out consider the transition frequencies
between patterns encoded in the weights of the directed edges as \“anging with time.

In this context, the most common way to generate evolring time series networks would be employing
a sliding windows analysis. Here, evolving networks can he u. Yers’ood as successive snapshots of static
networks obtained for individual, mutually overlapping time w.~dows. As a result, we may trace changes in
the resulting network properties over time and use themn _ _.c...co for dynamical changes in the underlying
time series, thereby revealing non-stationarity of the systen. ~r even distinct episodic events such as regime
shifts. However, the sliding windows approach bring .’ 't some natural limitation, that is, the necessity
of making empirical choices for the temporal window 'e» gths and the mutual window overlap, for which
there are no optimal strategies but rather heuris. .~ dep nding on the individual case study. In general,
using extremely small window sizes between two con ec.. “ive snapshot networks allows for a high resolution
of tracked changes in the network properties, *..* ~ou’d obscure slower trends which only become visible
over longer time-scales. Conversely, using larger w.. Jow sizes integrates information over considerably large
time intervals and thus loses both, resolution and information on the effects of individual events within each
window. Therefore, objective strategies fo choc ing an appropriate time-scale for dividing the evolution of a
network into static snapshots are require  which e likely to have positive effects on proper interpretations
of the obtained results [142, 233, 422, '63].

Even with such optimal and objer iive ‘hoices of time windows, a sliding window technique as described
above by definition cannot cover all . *+ ntia'.y relevant aspects associated with the temporal structures in
the underlying time series that shs ald be ¢ ptured by their network representations [464]. For this purpose,
we need to include an additional .in. dimension to take the detailed information on the temporal succession
of network structures (emergerce and;cr disappearance of nodes and links) into account in the context
of quantitative analyses. In “nis pirit, there have been attempts to analyse visibility graphs as temporal
networks [256]. Furthermore, "he e might be cases in transition networks where transitions between patterns
do exist at certain times "ut nov * others, i.e., times with active versus inactive links (so-called blinking
links [465]). In such a s'¢uat on, the time ordering of observations in the underlying time series can have
important effects that can. 't b’ captured by static network representations. In the context of time series
analysis, Weng et al 339! pioposed to transform time series into temporal networks [464] by encoding
temporal informatio \ into a. additional topological dimension of the graph, which captures the “lifetime”
of edges. We note tha. ~ bre Ler modification of the ordinal pattern transition network approach (for instance,
considering shor’ -term *ransition networks) may provide the necessary temporal information for this problem
since the transil on mat; x describes the probability of future evolution directions of the observed trajectory.

8.2.2. Mult: .., = ~nd multiplex network analysis for multiple time scale time series

In this wor -. we have provided a review on existing methods for reconstructing multilayer and multiplex
networks from t. me series, for instance, multiplex recurrence networks, multiplex visibility graphs, inter-
system recurrence networks, and joint recurrence networks. However, most of these methods are only
appropriate for stationary time series as we have discussed in Section 3.6. When monitoring complex physical
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systems over time, one often finds multiple phenomena in the data that work on diffe ent time scales. For
example, observations are collected on a minimal (short) time scale, but also reflect t} 2 " me series’ behavior
over larger time scales, which is rather typical for real-world climate data. Another prominei.. example from
neuroscience is the recording of spiking activity of individual neurons (discrete e ent eries) and local field
potentials (time continuous measurement). Higher-frequency variability of such 'at: can obscure the time
series behavior of the data at larger scales, making it more difficult to identify t1.~ asso. ated trends. If one is
interested in analyzing and modeling these individual phenomena, it is crucial *o rec. ~nize the multiple time
scales in the construction of multilayer and multiplex networks from time seri - One corresponding way
could be applying successive scale-sensitive filters prior to network generatic ~ v ith the choice of a particular
method depending on the specific data set and research question, such ~s en., irical mode decomposition
[404] or some type of wavelet transform [466].

8.2.3. The inverse problem of time series regeneration from networ’ -

Most of the existing works focus on investigating proper transfc rma’.o1. methods for mapping time series
into network representations. To study the inverse question of how .uuch nformation is encoded in a given
network model of a time series [178], some studies have been unac *aken to recover the original time series
from the network, to use the network to reconstruct the phase space opology of the original system, or to
generate new time series from the networks and compare these w’*h t! e original [126, 467-469]. This inverse
problem of getting back from the network adjacency matrix ‘o time series of the underlying dynamical

system remains a big challenge, which certainly has ms ., .. .cations [470]. In general, transformations
of complex networks to time series are not straightforwar. Specifically, without having additional node
labels informing about the temporal succession of ve .. -~ the order of vertices in a complex network can

be arbitrarily exchanged without affecting the network “c pology. In turn, for reconstructing the trajectory
from a network representation, the temporal orde. . € the odes needs to be known.

A few algorithms have been proposed so far to rec »us. "1ct time series from networks. For instance, under
a certain condition for reconstructability, Thie' . ~7 v, oposed an algorithm to reconstruct time series from
their recurrence plots [125, 471]. In this case, the 1. *onstructed attractor shows topological equivalence with
the original attractor [472]. Furthermore, based on recurrence plots with fixed number of recurrences per
state (equivalent to k-nearest neighbor ns .wor. "), the topological properties of the underlying time series
have been reconstructed by multidimensi mal scal 1g [126]. Recently, it has been shown that k-nearest neigh-
bor and e-recurrence networks can be - iewew ¢ «dentical structures under a change of (equivalent) metrics
[130]. Based on this fact, an improved mve sion algorithm has been proposed in [130], which further supports
the use of complex networks as a mea. = of st «dying dynamical systems, while also revealing an equivalence
between e-recurrence and k-neare ,t neigu. or classes of complex networks. In addition, algorithms based
on random walks have been prcpos 7 in the literature. For instance, a random walk algorithm has been
used in [473], which further comvares t..e performance of RNs and adaptive k-nearest neighbor networks.
The performances of these a';orii 1ms have been compared in [474]. Recently, a constrained random walk
algorithm has been proposeu "~ egenerate time series from ordinal transition networks [469].

For all these different ilgoriti. s, there are several important algorithmic parameters that have to be
chosen empirically in orrer t° gusrantee consistent topology between the reconstructed time series and the
original system. The gene. pe’.ormance and applicability of each algorithm has to be evaluated in future
work. One applicatic . of such .egeneration algorithms is to perform surrogate analysis, for example, to test
for the statistical sig 1ificanc  of the results obtained from analyzing the original time series. Therefore, we
also have to take into . ~~our . the proper choice of null hypothesis while proposing algorithms for regenerating
time series from .ietworks.

8.2.4. Combining “ate nining tools with time series network approaches

In the fi w.. =k of time series mining [10], some fundamental tasks include dimension reduction by
introducing p. v or indexing mechanisms, similarity comparison between time series subsequences and seg-
mentation. The “nal goal of mining tools is to discover hidden information or knowledge from either the
original or the transformed time series, for instance, using a proper clustering method to identify patterns.
Note that the interesting pattern to be discovered here relate to rather general categories, including patterns
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that appear frequently versus such that occur rather surprisingly in the datasets [10, 17,. From the perspec-
tive of time axis, time series clustering can be classified into three categories, whole ¢ = series clustering,
subsequence clustering and time point clustering [11]. Several algorithms have been propc. ed to perform
time series clustering based on shapes of raw time series, feature vectors of dime .sio; reduced time series,
and distances between parametric model outputs and raw time series. These conv. ~tir nal mining algorithms
have found various applications to time series of different origins, which, howeve. are . =llenged by practical
issues like high dimensionality, very high feature correlations, and large amor=t o1 . ~ise.

Despite the rapid increase in size and complexity of datasets in the era ¢” big 7 *a. a proper combination
of data mining tools with the complex network approaches for time ser..~ a .alysis has largely remained
untouched so far. Such a joint research effort should combine methodol~~ies a. 1 techniques from different
fields, such as statistics, data mining, machine learning and visualizatic 1. It he * been recently demonstrated
that complex network approaches and data mining tools can indeed be integre .ed to provide novel insights
for the understanding of complex systems [12]. From the viewpoir’ f no.l.uear time series analysis, both
sides of data mining and nonlinear time series analysis can ber efit .0, each other, which will be one
important topic for future research.

8.2.5. Building network models for time series prediction

Time series modeling and forecasting has attracted a gre=t nu ~he of researchers’ attention and provides
the core of nonlinear time series analysis [6, 17]. To this end, - can build a proper model to forecast the
system’s future behavior, given a sequence of observatior .. vuc ur a few time variable characteristics. Most
existing methods originating from nonlinear dynamics are . ~te-space models, which build local models in
“patches” of a reconstructed state space and then use ... ™adels to predict the next point on the system’s
trajectory, which remains an active area of research [1 7 We note that most existing network approaches
to nonlinear time series analysis have been focusin_ n ch. racterizing network features of phase space (and,
hence, diagnosing rather than forecasting the observ. 4 «_mnamics). Examples for using network approaches
for time series modeling and prediction have n - ~~n .=ported in the literature yet to out best knowledge,
but could provide another exciting future research = enue.
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Appendix A. Mathematical models
Here we list the mathematical models used in the examples of this paper:

1. The Lorenz system [475]

O©CoO~NOUIAWNER

i oy — =)
g = 2w |, (A1)
Z zy — Bz

with the parameters r = 28, o = 10 and § = 8/3.

. The Rossler system [476]

T -y —z \
gy | = z+ ay , (A.2)
z b+z2(x—1) )
where a, b, and ¢ are parameters.
. Auto-regressive process p order
P
Ty = Z QjTi— + &4, (A.3)
j=1

where ¢;,j € [1,p], are real-valued coefficients of the .. ndel, and ¢, is white noise. We further assume
that the error terms ; follow a Gaussian distri’ _'*~n witn zero mean and unit variance.

. The Hénon map

‘ 2
=, - 7,4+ B —1,
{fft 1 Yt—1 (A.4)
(R P
with A =1.4 and B = 0.3.
. Two Rossler systems that are diffus’vely ¢ upled via the second y-component:
7 = —.t /)y(l) QY
90 = 14 )2 +ay™ + poi (y® - yW)
;1) — - -z(l)(x(l) —¢)
(A.5)

x«q\ _ _(1 _ I/)y(2) _ Z(2)
=(1- V)$(2) +ay® + M12(y(1) _ y(2))
2 —p + »(2) (x(2) —c),

where v is the frer aen y mismatch and pq2 and pe; are coupling strength. Symmetric coupling is
achieved if p12 = po,

. Three diffusive y coup »d Rossler systems via the x component [119]:

i — WYk — 2k T Z pea (T — k)

| = 7 (A.6)
Y] = wia + 0.165y; ’ '
“ 0.4 + 24 (wy — 8.5)

where k = 1,2,3 and p is the coupling strength.
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