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Abstract

Objectives: This study introduces new methods of non-linear dynamics (NLD) and compares these with traditional methods of heart
rate variability (HRV) and high resolution ECG (HRECG) analysis in order to improve the reliability of high risk stratification. Methods:
Simultaneous 30 min high resolution ECG’s and long-term ECG’s were recorded from 26 cardiac patients after myocardial infarction
(MI). They were divided into two groups depending upon the electrical risk, a low risk group (group 2, n = 10) and a high risk group
(group 3, n = 16). The control group consisted of 35 healthy persons (group 1). From these electrocardiograms we extracted standard
measures in time and frequency domain as well as measures from the new non-linear methods of symbolic dynamics and renormalized
entropy. Results: Applying discriminant function techniques on HRV analysis the parameters of non-linear dynamics led to an acceptable
differentiation between healthy persons and high risk patients of 96%. The time domain and frequency domain parameters were
successful in less than 90%. The combination of parameters from all domains and a stepwise discriminant function separated these groups
completely (100%). Use of this discriminant function classified three patients with apparently low (no) risk into the same cluster as high
risk patients. The combination of the HRECG and HRV analysis showed the same individual clustering but increased the positive value of
separation. Conclusions: The methods of NLD describe complex rhythm fluctuations and separate structures of non-linear behavior in the
heart rate time series more successfully than classical methods of time and frequency domains. This leads to an improved discrimination
between a normal (healthy persons) and an abnormal (high risk patients) type of heart beat generation. Some patients with an unknown
risk exhibit similar patterns to high risk patients and this suggests a hidden high risk. The methods of symbolic dynamics and
renormalized entropy were particularly useful measures for classifying the dynamics of HRV.
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1. Introduction Ventricular late potentials are low level signals in the

terminal portion of the QRS complex of the ECG. They

Malignant ventricular arrhythmia, especially ventricular
tachycardia (VT) and ventricular fibrillations, are in many
cases the cause of sudden cardiac death (SCD) in patients
surviving acute myocardial infarction. Despite various im-
provements in risk stratification after myocardial infarc-
tion, the detection of these high risk patients remains
unsatisfactory.

One suitable method to detect high risk patients is the
analysis of signal-averaged high resolution surface ECG.
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are a sign of pathological changes of the conduction
system and are strongly correlated with the occurrence of
sustained ventricular tachycardia. However, the predictive
accuracy is limited by the high incidence of false positives
in inferior MI [1,9], especially of time domain late poten-
tial analysis in postmyocardial infarction.

Short-term and long-term fluctuations in the heart rate
are partially modulated by the autonomic nervous system
control of heart activity. Recent studies [7,18] have shown
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that a low HRYV is related to an increased risk for severe
ventricular arrhythmia and sudden cardiac death. These
phenomena are associated with a decreased complexity of
beat-to-beat interval dynamics.

Several time-domain measures of HRV have been ap-
plied for clinical and limited research purposes. These
measures take little time to calculate but they provide only
an overall HRV measure. Spectral analysis of the RR time
series [15,23,29], which expresses HRV as a function of
frequency, is a better representation of the different physio-
logical sources of the heart beat generation. However, a
precondition for applying spectral analysis is a strong
periodicity of the numerous superimposed short- and
long-term physiological oscillations. Neither the traditional
techniques of data analysis in time and frequency domain,
nor the most popular statistics in chaos theory, the fractal
dimension, are suitable to characterize the dynamics of the
heart beat generation.

In a preliminary study [34] we found a special pattern of
dynamics in patients with high risk for sudden cardiac
death with methods of non-linear dynamics, whereas pa-
rameters of time and frequency domain were not as accu-
rate. Therefore we conducted this study to investigate the
hypothesis that methods of non-linear dynamics could
improve the accuracy of HRV analysis. We theorize that
with help of statistical approaches and multiparameter
analysis patients with an unknown risk could be better
classified. Finally, the combination of HRV and HRECG
analysis leads to an improved discrimination of different
patient groups.

2. Methods
2.1. Data recording and pre-processing

The sinus node is the central control element of the
autonomic regulation. Its rhythm should be derived from
the onsets of the P-waves. Since the P-wave signal cannot
always be extracted the intervals between the R-peaks are
chosen for further analysis. The error that occurs using the
RR-interval instead of PP-interval detection amounts to
approximately 4 milliseconds [12]. A pattern matching
cross correlation method (as usually applied) extracts the
RR-intervals from a 30 min high resolution ECG with a
resolution of 0.5 milliseconds. This ECG was recorded
under standardized conditions (rest, same time, place) for
all patients and the control group. Simultaneously a second
RR-interval detection was made by a commercial Holter
system with a resolution of 8 milliseconds.

All usable methods of spectral estimations for calculat-
ing HRV power density spectra, such as the periodogram
by means of the Fast Fourier Transformation (FFT), pre-
suppose an equidistant (of equal, temporal intervals) sam-
pled signal function. The RR time series (sequence of
successive RR differences) is not equidistant in terms of
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Fig. 1. 30 min tachograms from a healthy person (a), a patient with high
risk for sudden cardiac death (SCD) (b), a patient with high risk for SCD
with ventricular premature complex (VPC) (c), a patient with high risk
for SCD with atrial fibrillation (d) and from a chaotic system with
Roessler attractor (e).

time, but only in terms of the actual number of RR
difference occurrences. Therefore, an equidistant series of
this kind must be created by interpolation, in order to get a
spectrum with frequency scaling. It is important to reject
arrhythmias and artifacts (and if necessary the interpola-
tion of the intermediate values with a special filter method
that considers the basic variability), that would otherwise
lead to a noticeable widening of the spectrum and thus blur
the frequency bands. NN-intervals are the normal RR-in-
tervals in the tachogram after filtering the RR time series.

2.2. Analysis of heart rate variability

2.2.1. Time domain measures

A tachogram is the graphic display of heart rate as a
function of time. It shows the temporal development (x
axes) either as registered time or interval number and the
interval duration (y axis) of the RR or NN intervals as
either ms values or beats per minute. The classic differ-
ences between healthy persons, patients with restricted or
pathologically increased variability and patients with ar-
rhythmias can often be recognized at this stage (see Fig.
1).From this time domain the following parameters
[6,8,11,24-26,32,34] have been calculated: ‘meanNN’ —
the mean value of the NN-intervals, ‘sdNN’ — standard
deviation of the NN-intervals, ‘<cvNN’ — the coefficient
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of variation of the NN-intervals (quotient of standard
deviation and mean value of the filtered tachogram),
‘sdaNN1’ — the standard deviation of mean values of
successive 1 min NN-intervals, ‘sdaNN5’ — the standard
deviation of mean values of successive 5 min NN-inter-
vals, ‘pNN50’ — the percentage of NN-interval differ-
ences greater than 50 milliseconds, ‘pNN100’, ‘pNN200’
— the percentage of NN-interval differences greater than
100 (200) milliseconds, ‘pNNI110’, ‘pNNI20’, ‘pNNI30’
— the percentage of NN-interval differences lower than 10
(20, 30) milliseconds, ‘rmssd’ — the root mean square of
successive NN-interval differences, ‘Shannon’ — the
Shannon entropy of the histogram (density distribution of
the NN-intervals; see Appendix A), ‘renyi2, renyi4’ — the
Renyi entropy of order 2 (4) of the histogram and
‘renyi025’ — the Renyi entropy of order 0.25 of the
histogram.

2.2.2. Frequency domain measures

In the frequency domain the frequency bands ‘ULF’,
‘VLF’, ‘LF’, ‘HF’ [5-7] were calculated. The parameter
‘ULF’ represents the power in the frequency band from 0
Hz up to 0.0033 Hz, ‘VLF’ the power in the frequency
band from 0.0033 Hz up to 0.04 Hz, ‘LF’ the power in the
frequency band from 0.04 Hz up to 0.15 Hz, ‘HF’ the
power in the frequency band from 0.15 Hz up to 0.4 Hz.
The spectra were estimated by use of the Fast Fourier
Transformation. To avoid the ‘leakage’ effect a Blackman
Harris window function was applied. The following com-
mon ratios have been added: ‘LF/HF’ stands for the
quotient of ‘LF’ and ‘HF’ and ‘LF /P’ for the quotient of
‘LF’ and the total power °‘P’. Further, the measures
‘HF/P’, ‘VLF/P’, ‘ULF/P’, “ULF + VLF + LF)/P’
and ‘(ULF + VLF)/P’ were calculated.

2.2.3. Measures of non-linear dynamics

Although partial processes in autonomic regulation (i.e.
influence of respiration) can be described reliably well by
linear methods [2,4,17,40], in view of the complexity of
the total system of sinus node activity modulation, a more
predominant non-linear characteristic has to be assumed
[13,14,17,20]. The time and frequency methods described
above were not sufficient in this case and in particular in
the description of dynamic changes.

New parameters can be derived from methods of non-
linear dynamics, also called chaos theory, which describe
complex processes and their complicated interrelations.
These methods should be able to record additional infor-
mation about the state and temporal changes in the auto-
nomic tonus. Therefore, we have applied several new
measures of non-linear dynamics in order to distinguish
different types of heart rate dynamics [21,34,35]):

2.2.3.1. Phase-space representation (Poincaré-Maps).
Phase-space plots facilitate the visualization of beat-to-beat
dynamics in the heart rate, independent of RR interval
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Fig. 2. 30 min phase space plots (derived from tachograms in Fig. 1) from
a healthy person (a), a patient with high risk for SCD (b), a patient with
high risk for SCD with VPC (c), the same patient, the successive RR
intervals are connected via trajectories (c’), a patient with high risk for
SCD with atrial fibrillation (d) and from a chaotic system with Roessler
attractor (e).

standard deviation (difference plots). It is also possible,
especially with 3-dimensional representation, to immedi-
ately record complex arrhythmias (see Fig. 2¢) [30,34,36].
Phase space plots from healthy persons (see Fig. 2a) are
quite different from those of patients with heart failure
[39], i.e. high risk patients following myocardial infarction
(see Fig. 2b, 2c, 2d). The phase space scatterplot displays
the attractor of the heart beat dynamics. If the points in the
phase space diagram are connected in temporal order,
these connecting lines are known as the trajectories of the
underlying system (see Fig. 2c, 2e).

The time series created by solving the Roessler differen-
tial equations is similar to the physiological heart rate data
(see Fig. le). It is difficult to distinguish between this time
series and that in Fig. 1a or 1d by means of only statistical
standard measures like mean value or standard deviation.
However, the phase space representation is a convenient
method for a graphical characterization of such a non-lin-
ear system (see Fig. 2e).

2.2.3.2. Symbolic dynamics. Symbolic dynamics, as an
approach to investigate complex systems, facilitates the
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Fig. 3. The basic principle of symbolic dynamics that describes the
extraction of symbols from an ECG time series, the extraction of word
sequences from the symbol series for calculation of measures from the
word distribution.

analysis of dynamic aspects of the HRV. The concept of
symbolic dynamics is based on a coarse-graining of the
dynamics [2,3,21,22]. The time series are transformed into
symbol sequences with symbols from a given alphabet.
Some detailed information is lost in the process but the
coarse dynamic behavior can be analysed [16].

By comparing different kinds of such transformations,
we found that the use of four symbols, as explained in Fig.
3, is appropriate for our purpose. The transformation into
symbols refers to three given levels where u refers to the
mean RR-interval and a is a special parameter which is set
to 0.1. It is important to note that small changes of the
threshold values used here (a, ) do not influence the
results considerably. We verified this with various calcula-
tions (a in the range from 0.05 to 0.1). In these cases the
result of the discrimination between the patient groups did
not change.

There are several quantities that characterize such sym-
bol strings. This study investigates the probability distribu-
tion of length 3 words (words which consist of three
symbols from an alphabet {0,1,2,3}). In this way, one
obtains 64 different types of words (bins). A 30 min ECG
corresponds to about 1800 RR-intervals in the tachogram,
so that there are about 28 words in each bin. Too few
words per bin reduce the accuracy of the word distribution

estimation. From results of several other investigations we
defined on a heuristic basis 20 as the averaged minimal
number of words per bin. For a 24-h analysis the number
of symbols can be increased to 6 (word of length 4).

The Shannon and Renyi entropies calculated from the
distributions of words (‘fwshannon’, ‘fwrenyi025’ — a =
0.25, ‘fwrenyi4’ — a = 4) are suitable measures for the
complexity in the time series. Higher values of these
entropies refer to higher complexity in the corresponding
tachograms and lower values to lower ones. The definition
of both entropies is given in Appendix A. A high percent-
age of words consisting only of the symbols ‘0" and ‘2’
(*wpsum02’) is a good measure for decreased HRV, con-
versely a measure of increased HRV (‘wpsum13’) would
consist of a high percentage of all words which contain the
symbols ‘1’ and ‘3’.

A further measure of symbolic dynamics is the parame-
ter ‘wsdvar’. It measures the variability of the time series
depending on a word sequence. The resulting word se-
quence {w,, w,, w;..} from Fig. 3 is transformed into a
sequence {5,, §,, 5;...} in the following way:

5(w;)

3ifn;s(w;) =3 Asi(w)=\IN
2 ifn;(w;) =2As5(w) =\I\
Lifnis(w;) =1As5(w;) =\1\
= 0 ifn;(w;)=0
—Lifn(w;) =1As;(w;)=\3\
=2 ifn(w;) =2 As5(w;) =\3\
3ifn(w;) =3 As;(w;) =\3\

where n;(w,) represents the number of symbols ‘1" or ‘3’
in the word w; and s,,(w,) is that symbol ‘1’ or ‘3’ that
occurs first in the word w;. The word dynamics parameter
‘wsdvar’ is defined as the standard deviation of this se-
quence si.

Last, we counted the ‘forbidden words’ in the distribu-
tion of words with length 3. We calculate the number of
words which seldom or never occur (in our case: probabil-
ity less than 0.001). A high number of forbidden words
stands for a steady behavior in the time series. If the time
series is rather complex in the Shannonian sense, only a
few forbidden words can be found.

An additional mode of symbolic dynamics for low or
high variability analysis was developed. In this way we
observed 6 successive symbols of a simplified alphabet,
consisting only of symbols ‘0’ or *1’. Here the symbol ‘0’
stands for a difference between two successive beats lower
than a special limit (5, 10, 20, 50, 100 ms) whereas ‘1’
represents those cases where the difference between two
successive beats exceeds this special limit:

i=123,.

NI\, = ¢, | = limit

\O\:lt, = 1,_ | < limit
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Words consisting only of an unique type of symbol (either
all ‘0’ or all ‘1’) were counted. These measures were
called ‘plvars’, “plvarl0’, ‘plvar20’ (word type ‘000000’),
‘phvar20’, ‘phvar50’ and ‘phvar100’ (word type ‘111111°).
As an example ‘plvarl0’ represents the probability of the
word type ‘000000° occurrence with the special limit of 10
ms. In contrast ‘phvar100’ represents the probability of the
word type ‘111111" occurrence with the special limit of
100 ms.

2.2.3.3. Renormalized entropy. The renormalized entropy
is a relative complexity measure, in which one can only
measure the complexity of any state in relation to a
reference state. In general, it makes no sense to compare in
a direct way the Shannon entropies of two different sys-
temns states because their energies can differ considerably.
In order to make these states comparable, the mean energy
(Appendix B, equation 5) must be equalized (renormal-
ized). That is why Klimontovich [19] suggested comparing
the relative degree of order of the two different distribu-
tions (states) in such a way that the reference distribution
is renormalized to a given energy.

Two 30 min tachograms were compared, one of the two
tachograms is set to be the reference state, corresponding
to the most disordered frequency distribution of a healthy
person’s tachogram [28). To calculate the Shannon entropy
from tachograms some pre-processing had to be done (see
Fig. 4). At first all ectopic beats in the tachograms were
removed by the above described filter algorithm. Then, the
tachograms were interpolated and the trend subtracted.
After filtering, interpolating and trend removal the power
spectra were calculated [38]. From these spectral distribu-
tions the power in the interval [0 Hz, 0.4 Hz] was chosen.
The algorithm of renormalization originated from thermo-
dynamics and is described in Appendix B. The measure
extracted from the difference of entropies is named ‘re sar’.

2.3. Analysis of high resolution ECG

A 30 min 4 channel high resolution ECG (Frank leads
and an additional diagonal lead) with a sampling frequency
of 2000 Hz and 16 bit resolution was recorded from all
patients in a condition of rest. The software QRS detection
algorithm was based on the usual applied cross correlation
techniques. The Simson method [31] was used to calculate
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Fig. 4. The method of applied renormalization implies the rejection of
arrhythmias and artifacts, the interpolation of the tachograms into equidis-
tant time series, the calculation of power spectra, the renormalization of
the reference power spectrum and the calculation of the renormalized
entropy.

the sum vector magnitude from the three highly amplified
and filtered (digital high pass filter, Butterworth character-
istics 40 Hz) leads X, Y and Z. In the time domain the
parameters ‘rms40’, ‘rms50° (RMS-voltage of the last
40/50 ms of QRS), ‘QRS-duration’ and ‘las40’ (interval
length beginning at the first point of the final part of QRS
where the voltage has just fallen below 40 uV up to the
end of QRS) were extracted from that vector.

For every single lead the power spectrum (on the basis
of the periodogram and the MES) has been calculated. To
reject the influence of residual noise the variance subtrac-
tion method was applied, which is described in detail in
Voss et al. [33,37]. The starting point of the time window
with 100 ms length had been fixed at that time instant

Table !
Investigated patient groups
Group Type n EF [%] Age Gender
Female Male
1 (healthy) 35 — 40.0+ 15.8 7 28
subgroup age-matched 12 — 58.8+7.5 | 11
2 (M1, without VT) 10 50.4+10.7 61.6+5.2 0 10
3 (M1, with SUSVT) 16 509+ 15.4 59.1+8.4 2 14

EF, ejection fraction; MI, myocardial infarction; VT, ventricular tachycardia; SUSVT, sustained ventricular tachycardia.
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within the final QRS where the signal amplitude had just
fallen below 40 wV. From that point the analysis window
was shifted into the ST-segment. The area under the power
spectrum above 80 Hz ‘sarea80fft’, ‘sarea80mes’, the
number of peaks above 80 Hz ‘snbpeakfft’ and
‘snbpeakmes’ were estimated to differentiate between nor-
mal and pathological spectra.

2.4. Patients (high risk stratification)

In the pilot investigation 61 patients were divided into 3
groups (see Table 1). The control group (group 1) con-
sisted of 35 healthy persons. In this control group there
was one subgroup (12 persons, age of 58.8 + 7.5) for an
age-related match. In the second group there were 10
patients after MI with a low electrical risk (no spontaneous
ventricular tachycardia or fibrillation). Group 3 represents
those 16 cardiac patients after MI who have documented
life-threatening ventricular arrhythmias (i.e., sustained ven-
tricular tachycardia ‘SUSVT’); 10 of them are survivors of
a SCD and therefore receive automatic cardioverters/de-
fibrillators.

Group 2 and 3 consisted of patients who had had a MI
more than 3 months earlier. None of the patients were
medicated (considering the specific half-life) during the
ECG recording. The mean age was similar, as well as the
ejection fraction (EF). Therefore, groups 2 and 3 differed
mainly in the degree of electrical risk.

2.5. Statistics

2.5.1. Counting method for HRV analysis

In a first statistical trial for HRV analysis we calculated
parameter limits from the control group (minimum-maxi-
mum method). Then we compared all parameter sets of the
patient groups with these limits. For every value outside
the limits interval, simply one point was summed. The
total number of points was used to discriminate between
the control group and the high risk group, as well as to
determine the degree of abnormality.

2.5.2. Counting method for HRV and HRECG analysis

Similar to the counting method described above, for
every value outside a limit one point was summed. For the
HRECG analysis in the time domain, the limits suggested
by the Task Force Committee [10] were used. For the
frequency domain we calculated limits as 95% intervals to
reach a maximal discrimination between control group and
high risk group. The total number of points from HRV and
HRECG analysis was used to discriminate between the
control group and the high risk group and to determine the
degree of abnormality.

2.5.3. Discrimination function
Linear discriminant analysis is a statistical method to
separate grouped objects. If a certain set of parameter

values is given for each of the objects, a linear function of
these variables is determined, the discriminant function.
This function is calculated from a learning sample, that
means from a set of objects with known group member-
ship. A new object then can be classified in one of the
categories with the help of its discriminant function value.

The main purpose of the statistical analysis was to find
an optimal linear discrimination function between the pa-
rameters of a high risk group and an age-matched group of
healthy persons derived from HRV analysis. We have
applied this discrimination function to the group 2 parame-
ter sets. In this way, one may classify the group 2 patients
into clusters with almost the same characteristics.

In general, it is possible to use all 46 parameters
calculated in this study for the discrimination analysis.
This method will lead to an overestimation of some of the
properties because of partly redundant parameters which
cause numerical inaccuracies in the results due to the large
number of variables. In practice, it may be rather expen-
sive to calculate all these 46 values for each patient.

Therefore we tried to find a subset which would be able
to discriminate the two groups without any misclassifica-
tions. There are different methods of variable selection.

The first way to reduce the number of parameters is to
remove those that are particularly similar to others. The
statistical method used was the hierarchical cluster analy-
sis. This method identifies homogenous groups or clusters
of objects based on their values. A second approach to
variable selection is the use of stepwise methods in which
parameters are sequentially entered and removed from the
discrimination function based on specified criteria. For
instance, the variable that minimizes the sum of the re-
maining unexplained variance for both of the groups is
added at a certain stage. We executed this method with the
help of the SPSS System.

The SPSS System also offers the possibility to use all
variables simultaneously to discriminate between the
groups. A tolerance test was performed before the discrim-
ination analysis to minimize the influence of linear depen-
dence of the parameter values. However, this tolerance test
depends on the order of the parameters. We executed the
SPSS procedure in the standard parametric order (that
means an input in the order: time domain parameters,
frequency domain parameters and parameters from NLD).

3. Results

This study examines the ability of methods from NLD
to find a unique pattern in HRV time series that cannot be
detected by traditional time and frequency domain parame-
ters due to their non-linear sources. In this way, we
introduced two new methods: symbolic dynamics and
renormalized entropy.
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The results from symbolic dynamics of the distributions
of words of length 3 of a healthy person and of a patient
can be seen in Fig. 5. The word distribution of a healthy
person contains many different types of words, a character-
istic of a normal HRV. The number of different kinds of
words occurring represents high dynamics in the time
series. The word distribution of a cardiac patient contains
mostly eight different types of words. These are the words
which consist only of the symbols ‘0’ and ‘2’ (e.g. the
length 3 word ‘202’) and describe only small differences
in successive RR intervals. This pattern was typical for
patients with decreased HRV. We emphasized two parame-
ters that were suitable measures for the investigation of the
dynamics in the time series. Both parameters indicated a
strongly reduced HRV and a rapidly increased HRV (atrial
fibrillation). The first effective criterion for the distinction
of the patient and the healthy group was the parameter
‘forbidden words’. In patients with high risk there are
often more than 44 forbidden words. The second criterion
was the Renyi entropy of order 0.25. A value of ‘Renyi025’
less than 3.6 best discriminated between the control group
and the group 3 patients. To identify transient (and short)
phases with reduced or increased variability we introduced
the measures ‘plvar5’, ‘plvarlQ’, ‘plvar20’, as well as
‘phvar20’, ‘phvar50’ and ‘phvar100’. These transients of-
ten cannot be detected by time or frequency domain
parameters.

The calculation of renormalized entropy was based on
the frequency components (0.0 to 0.4 Hz) in the power
spectrum. By means of a special interchanging algorithm
[38], the healthy person with the most disordered spectral
distribution (the highest peak in the ‘ VLF’-band) has been
calculated. This distribution was the reference for all fur-
ther investigations. The choice of the reference state is
very important for the classification of HRV time series.
Fig. 6 shows the results of renormalization, if we compare
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Fig. 5. The distributions of length 3 words formed from the alphabet {0,
1, 2, 3} according to the definition of symbols given in Fig. 3 from a
healthy person (a) and from a sick person (b).
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Fig. 6. The power spectrum distributions of the reference tachogram (a),
of the renormalized reference tachogram (b) and of the patient tachogram
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this reference with a cardiac high risk patient. The refer-
ence distribution was in this case renormalized to a drasti-
cally changed distribution. If a healthy person was com-
pared with the reference, then the renormalization caused
only small changes in the spectral distribution. Healthy
persons and groups with lower HRV and pathologically
increased HRV could clearly be differentiated with the aid
of the renormalized entropy.

To assess the reliability of NLD methods, we compared
them with methods from the time and frequency domains.
First, we applied simple counting statistics. The detection
rate of the high risk patient differs considerably in the time
domain, the frequency domain, and non-linear dynamics.
The parameters of the frequency domain and NLD lead to
a highly comparable positive result (69% and 75% respec-
tively). The time domain parameters, however, show a
rather low recognition of high risk patients (43%). The
analysis of HRV produces no false positive result in the
group of healthy persons. Combining the results of HRV
analysis from frequency domain and from NLD increases
the number of detected high risk patients to 88%. At the
same time the number of pathological cases also increases
in group 2 (from 30% to 50%).

The results of HRECG analysis (detected high risk
patients) are in group 1; four of all 22 healthy persons
(18%) show abnormalities either in time or in frequency
domain parameters. In 12 of 16 (75%) patients in the high
risk group (group 3) pathological changes were detected.
This confirms various other studies where false positive
results in healthy persons and in athletes had been re-
ported. In addition, 50% of patients in group 2 have been
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classified pathologically as well, due partly to false posi-
tive classification.

If we combine the results of HRECG and HRV analy-
sis, the detection rate in group 2 decreases remarkably to
20% without changing the number of high risk candidates
classified in group 3 (88%). No further abnormalities in
the healthy group were found.

Then we applied advanced statistics based on discrimi-
nation functions to assess the reliability of HRV analysis
methods from NLD. First the hierarchical cluster analysis
was executed with SPSS. The distance measure we used
was the squared Euclidean measure. All parameters had to
be standardized before the analysis. The following clusters
were created: {‘shannon’, ‘renyi025’, ‘renyi2’, ‘renyid’};
{*cvNN’, ‘sdNN’, ‘sdaNNI’, ‘sdaNN5’, ‘sdaNNI10’,
‘wsdvar’}; {‘fwshannon’, ‘fwrenyi025’};, {‘sum’,
‘wpsuml3’}; {‘pNN100’, ‘HF’, ‘rmssd’}; {‘pNN50’,
‘phvar20’}; {‘pNN200’, ‘phvar50’, ‘phvarl00’};
{pNNL10’, “plvar20’} and { pNNI20’, ‘pNNI30’}.

The remaining 20 other parameters had no matched
common clusters.

We chose one element from each cluster for the dis-
crimination analysis (in italics). Three parameters failed a
tolerance test performed by SPSS (‘pNNISO’, ‘(ULF +
VLF + LF)/P’ and ‘(ULF + VLF)/P’). Further analysis
resulted in the fact that ‘pNNI10’, ‘plvar5’ and ‘meanNN’
could be ejected without loss of the complete separation.
Thus it was possible to decrease the number of parameters
to 23. The created subset was sufficient to discriminate the
35 healthy persons from the 16 high risk patients without
any misclassification.

The 23 elements in this subset are 6 time domain
measures (of 19), 10 frequency domain measures (of 13)
and 7 NLD measures (of 14).

The second approach to variable selection was the use
of stepwise methods, in which parameters were sequen-
tially entered and removed from the discrimination func-
tion based on specified criteria. For example, the variable
that minimizes the sum of the remaining unexplained
variance for both of the groups was added at a certain
stage. Again we executed this method with the help of the
SPSS system. Applying stepwise methods of discrimina-
tion function calculation a subset of 19 parameters was
created which separated healthy persons from high risk
patients. The composition of this subset was as follows: 6
time domain measures (‘sdNN’, ‘sdaNN1’, ‘pNN100’,
‘pNN30’, ‘renyi4’, ‘renyi2’); 7 frequency domain mea-
sures (‘ULF’, ‘VLF’, ‘LF’, ‘LF/HF’, ‘LF/S’, ‘HF/S’,
‘ULF + VLF + LF)/P’) and 6 NLD measures (‘forbidden
words’, ‘fwrenyi025’, ‘phvar20’, ‘phvar50’, ‘wpsum02’,
‘re_sar’).

The SPSS statistical software system explained above
also offered the possibility to use all variables simultane-
ously to discriminate between the groups. A tolerance test
was applied before the discrimination analysis and 14
parameters failed the tolerance test, so that only 32 vari-
ables were used in the analysis.

The results of the discrimination function analysis for
different subsets of parameters are given in Table 2. The
values in the group centroids column differentiate the
mean values of the discrimination function values for both
groups. A smaller value indicates a lesser separation be-

Cgroup 1
Cigroup 2 |
Wgroup 3 |

=e _F -7

discriminant function values

Fig. 7. Results of risk stratification (detection of pathological abnormalities) applying methods of HRV time domain analysis on the basis of discriminant

function.
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Cgroup 1
Bgroup 2

M group 3

discriminant function values

Fig. 8. Results of risk stratification (detection of pathological abnormalities) applying methods of HRV frequency domain analysis on the basis of
discriminant function.

tween the two groups. This shows that the stepwise method of the different patient groups. Between the time domain,
provided the best results with a small number of parame- the frequency domain and non-linear dynamics the detec-
ters. tion rate of the high risk patient differs considerably. Fig.

Separate analysis of all three parameter domains proved 7, Figs. 8 and 9 show, respectively, the results of the time
that none of them could lead to a complete discrimination domain, frequency domain or NLD parameters only. While

12+
n . .
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-6 -5 -4 -3 -2 -1 ¢ I 2 3 4 5 6
discriminant function values

Fig. 9. Results of risk stratification (detection of pathological abnormalities) applying methods of non-linear dynamics on HRV analysis on the basis of
discriminant function.
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Fig. 10. Results of risk stratification (detection of pathological abnormalities) applying all methods of HRV analysis on the basis of stepwise discriminant

function (19 parameters).

the time domain and the frequency domain parameters lead
to a misclassification of more than 10%, the measures of
NLD failed in only 4% of all patients.

It can be shown that the HRV analysis based on step-
wise discrimination analysis and combination of the time
domain, the frequency domain, and NLD optimizes the
discrimination between the control group and the high risk
patients (Fig. 10). With the same discrimination function
the sets of group 2 are classified. Three patients of this

group exhibit a similar pattern to the high risk patients and
one similar to a healthy person. The remaining 6 generate
a separate pattern that cannot be assigned to one of the two
clusters. The discriminant analyses of the HRECG analysis
(see Fig. 11) show more or less the same results as the
counting method. A complete discrimination cannot be
achieved (misclassification 20%). Finally, the combination
of the extracted 19 parameters from the optimized discrim-
inant function of HRV analysis with the parameters of

rl:ilgroup'l‘
]Elgroup 21

discriminant function values

Fig. 11. Results of risk stratification (detection of pathological abnormalities) using different methods (time and frequency domain) of HRECG analysis on

the basis of discriminant function.



A. Voss et al. / Cardiovascular Research 31 (1996) 419433 429

{ngup l“
Cgroup 2
T Mgroup 3|

discriminant function values

Fig. 12. Results of risk stratification (detection of pathological abnormalities) using the methods of HRV and HRECG analysis on the basis of stepwise

discriminant function (24 parameters).

Table 2

Results of different discrimination methods between the control group

and group 3 (a higher value represents a better separation)

Parameters included in
the discrimination
function analysis

Percentage
of misclas-
sifications

Distance of
group centroids

HRECG analysis and repeated stepwise discriminant anal-
yses improve the classification result (Fig. 12). The dis-
criminant function values extend from 5.64 to 6.66, whereas
the group classifications did not change.

Cluster analysis 0.0 4.8179
(23 parameters) 4, Discussion
Stepwise method 0.0 5.6481
(19 parameters) . . . . .
After SPSS tolerance test 0.0 44738 . The HRV analysis prov1fje§, as a non-invasive dlflg.nos-
(32 parameters) tic tool, important prognostic information on the individual
risk following the survival of an acute infarction, which
0.2
0.15 1
01t
0.05 \
AS o et & —+t
-0.05 V
0.1 1
©0.15 1
021
-0.25 1
-0.3
00:00:00 00:06:00 00:12:00 00:18:00 00:24:00
time

Fig.

13. Renormalized entropy of a healthy person over 24 h (with the exception during some phases of instationarity the value lies below zero).
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clearly go well beyond the findings of Holter’s classical
arthythmia analysis. The classical methods of the time
domain HRYV analyses are less accurate in classification of
complex rhythm changes. However, the frequency domain
measures and especially the introduced methods from NLD
are highly accurate for determining the separation of dif-
ferent pathological states.

The method of symbolic dynamics is a useful approach
for classifying the dynamics of HRV. By means of this
method, the inner motions of the time series can be
investigated. Parameters of the time and the frequency
domain often leave these dynamics out of consideration.
The optimized definition and number of symbols have to
be validated on a more representative number of patients.
It is necessary to check which symbol definition best
describes the dynamics inherent in the time series. The
specific symbol definition has to be adapted by applying
symbolic dynamics to patients with atrial fibrillation. In
comparison with all other methods of NLD for HRV
analysis, symbolic dynamics is the method with the closest
connection to physiological phenomena and is relatively
easy to interpret.

The renormalized entropy, as a measure of relative
degree of order, is a further suitable method for the
detection of high risk patients threatened by SCD. A
fundamental precondition is the choice of reference spec-
tral distribution. For this reason, a more general strategy of
reference selection should be found. Applying this method
to 24 h Holter ECG’s, one has to find stationary periods
(i.e. during the night) in the time series. The influence of
instationarities can theoretically lead to contradictory re-
sults. In our first results from the 24 h Holter analysis the
global characteristics of the renormalized entropy in con-
trols and in high risk patients were surprisingly stable
(Figs. 13 and 14). Furthermore, it should be important to

0.7

investigate the influence of errors caused by interpolations
and normalization of the spectra. A model based on a
spectral estimation procedure, such as autoregressive
model, is probably more suitable for HRV analysis be-
cause of the lesser sensitivity to instationarities. An inter-
esting aspect is the development of procedures of renor-
malized entropy with high order autoregressive models,
independent of the influence of instationarities.

By applying discrimination functions with parameter
reduction one achieves the best discrimination between
patient groups with a minimum number of parameters.
Because of the small number of patients the training set
was also used for the final dicriminant function analysis.

A more or less multi-domain parameter selection best
discriminates between normal and abnormal patterns. The
parameters ‘sdNN’, ‘sdaNN1’, ‘pNN30’, ‘phvar20’ de-
scribe a reduced HRV. ‘pNN100’ and ‘phvar50’ are mea-
sures of a high HRV. ‘renyi4’ and ‘renyi2’ describe the
morphology of the histogram. ‘ULF’, ‘VLF’, ‘LF’,
‘LF/HF’, ‘LF/S’, ‘HF/S’, ‘ULF + VLF + LF)/P’ in-
clude periodical processes influenced by the autonomic
regulation. ‘forbidden words’, ‘fwrenyi025°, ‘wpsum02’,
and ‘re sar’ classify the degree of complexity in the heart
rate time series. In this way, each of the parameter sets
represents a special characteristic of the heart beat genera-
tion and probably an underlying physiological process. At
this time we do not know which special process or which
process combination it is, but we do know that it is not
noise and not random. Therefore, more basic research is
necessary to improve our knowledge of these physiological
phenomena.

The primary results of this study show the effectiveness
of NLD methods in the analysis of heart rate variability.
They also show the advantage of combination with other
HRV methods from the time and the frequency domains
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Fig. 14. Renormalized entropy of a cardiac patient from group 3 over 24 h (the value falls below zero only in two short periods of heavy instationarities).
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and HRECG analysis to improve the precision of a high
risk stratification. Finally they show the advantages of
combining all HRV methods (NLD, time domain, fre-
quency domain) with HRECG analysis in improving the
precision of high risk stratification. These first positive
results seem to confirm our hypothesis.

Due to the small number of subjects, these results need
to be confirmed by a larger and especially a prospective
clinical investigation. In addition we have to validate the
results of the statistical discrimination with a separate
training set.

It is interesting to note that one of the patients in group
2, who was classified by discrimination function into
group 3 cluster, has already developed a ventricular tachy-
cardia during the follow-up.
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Appendix A. Renyi and Shannon entropies

The Shannon entropy is the classical measure of infor-
mation theory. It extracts the information contents of a
symbol sequence. The Shannon entropy of order k is
defined on the basis of the probability distribution p of
length & words:

H = — Z

weWX p(w)>0

p(w)log p(w)

where W* denotes the set of all words of length & words.
The concept of Renyi entropy was introduced [27] as a
generalization of Shannon’s Ansatz:

log Y

weEWX p(w)>0

(9) !
H =
k 1

p( w)(q)

where ¢ is a real number and ¢ # 1.

This parameter g determines the manner in which the
probabilities are weighted: if g > 1 those words of length
k with large probabilities dominantly influence the Renyi
entropy. This behavior is strengthened for large g¢-values.
Vice versa, if 0 <g then words with small probabilities
mainly determine the value of H{?. In this application we
have taken both cases into account using g = 0.25 and
qg=4.

Some basic properties of both measures are

(a) H{? decreases with growing g.

(b) H{% converges to H, as g — 1.

(¢) In case of a periodic sequence with prime period m,
m < k one gets H{? =log m.

(d) If the behavior of the sequence is such as white
noise, i.e. completely uncorrelated, then these measures get
their maximum values H{?=H,=k log JA| and |A]
denotes the number of symbols used.

The calculation of H, and H{? for large k leads to
some difficulties due to finite sequence lengths. Here, we
only calculate these information measures for small values
of k (k=1.2,3), since the underlying word distribution
can be reliably estimated.

Appendix B. Renormalized entropy

Provided that two sufficiently long realizations x(z,a,)
(reference) and x(t,a, + Aa) of a dynamic system x'(z) =
f(x(2,a)) are given, with ¢ for time and a for a control
parameter (Aa denotes a small change of the control).
From these time series the corresponding density distribu-
tion estimates f,(x) = f(x,a,) and respectively f(x)=
fix,ay + Aa) are calculated.

We are not able to compare in a direct way the Shannon
entropies of two different systems states because their
energies can differ considerably. In order to make these
states comparable, Klimontovich suggested comparing the
relative degree of order of the two different distributions
(states) in such a way that the reference distribution is
renormalized to a given energy.

From reference state ‘0’ the so called Hamilton func-
tion H(x) of the system is calculated:

Hy(x):= —In fo(x). (1

We now renormalize the distribution f(x) to a given
value of |H(x)| in the following way: by definition the
state ‘0’ corresponds to the effective temperature T ¢ = 1.
The renormalized density f,(x) of f,(x) which corre-
sponds to another effective temperature T, (a, + Aa) is
represented by:

D(T(ag+ Aa)) — Hg( x)
fo( x) =e T (ap+ Aa) , (2)
where @(T,;(a, + Aa)) is the free effective energy and

T(ay + Aa) the effective temperature. Equation (2) can
be rewritten as

Hope(x)

fo( x) =C(T(ao+ 4a)) - €™ T (apr aa) - (3)
This equation involves two unknowns:
C(T4i(ap + Aa)) and T.4(a, + Aa).

_ Since fo(x) is a distribution density, the integral of
fo{x) with respect to x must be 1. That is why one gets
from equation (3)

1
Heoll ©) : (4)
fe_ T.lag+ Aa) dx

C(T4(ag + Aa)) =
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We get the effective temperature 7, (a, + Aa) from the
additional condition that the mean effective energies of the
two states are equal:

[Hege( x,05) 'fo( x)dx= [He(x,a0) - fi( x)dx. (5)

The renormalized entropy is calculated in the following
way

AS=S,-5,, (6)

where §0 is the Shannon entropy of the renormalized
reference state and S, is the Shannon entropy of the other
state (patient).

The test for pathological or normal through the differ-
ence from the entropies of the frequency distribution can
then take place [21,34,36,38].
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