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Phase Synchronization of Chaotic Oscillators
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We present the new effect of phase synchronization of weakly coupled self-sustained chaotic
oscillators. To characterize this phenomenon, we use the analytic signal approach based on the Hilbert
transform and partial Poincaré maps. For coupled Réssler attractors, in the synchronous regime the
phases are locked, while the amplitudes vary chaotically and are practically uncorrelated. Coupling
a chaotic oscillator with a hyperchaotic one, we observe another new type of synchronization, where
the frequencies are entrained, while the phase difference is unbounded. A relation between the phase
synchronization and the properties of the Lyapunov spectrum is studied.

PACS numbers: 05.45.+b

Cooperative behavior of chaotic dynamical systems andunction of time defined as
in particular, synchronization phenomena have received B 50)
much attention recently. Nevertheless, the notion of syn- (1) = s(t) + j5(1) = AQ)e! ", (1)
chronization |_tsel_f Iaqks a unique Interpretation. MOStlY'Where the functiors(z) is the Hilbert transform of(z)
the synchronization is considered as the complete coin- "
cidence of the states of individual systems (subsystems). 5(1) = W*lp_v_] (0 dr )

Such a regime can result from an interaction between sys- =

tems [1] or subsystems [2,3], as well as from the influencgwhere P.V. means that the integral is taken in the sense of
of external noisy [4] or regular [5] fields; in all these situ- the Cauchy principal value). The instantaneous amplitude
ations synchronization is a threshold phenomenon. A(r) and the instantaneous phagér) of the signals(r)

Generally, synchronization can be treated as an apgre thus uniquely defined from (1). From (2), the Hilbert
pearance of some relations between functionals of tWeransform3(r) of s(r) may be considered as the convolu-
processes due to interaction [6]. The choice of the funciion of the functionss(z) and 1/7¢. Hence the Fourier
tionals is to some extent arbitrary and depends on thgansformS( jw) of 3(¢) is the product of the Fourier trans-
problem under consideration. In the classical casgesf forms ofs(r) and1/7¢. For physically relevant frequen-
riodic self-sustained oscillators, described as early as iBiesw > 0, §(jw) = —jS(jw);i.e., ideally3(r) may be
the 17th century by Hugenii [7], synchronization is usu-pptained froms(r) by a filter whose amplitude response is
ally defined as locking of the phases ., n¢1 — mé> = unity, and whose phase response is a constafitlag at
const [8], while the amplitudes can be quite different.a|| frequencies [13,14].
This effect is widely used in engineering for improvement  For chaotic oscillators, we can calculate the phase from
of the linewidth of a high-power generator with the helptaking ass(s) any observable, so there is no unique phase
of a low-power but more stable (having narrower line)of chaotic oscillations. However, in some cases “natural”
one. Some other types of synchronization in systems withpservables provide phases that agree with an intuitive
quasiperiodic and chaotic behavior have been discussed #efinition. For example, for the Réssler attractor [15]
Ref. [9]. taking the observables, = x and s, = y [see below

In this Letter we investigate phase synchronization ofegs. (3)] gives phases shifted by /2 and rotating with

chaoticoscillators. Using the methods of analytic signalthe same averaged velocity, corresponding to the main
and the Poincaré map, we show that the interaction ofeak in the power spectrum.

nonidentical autonomous chaotic oscillators can lead to a To study phase synchronization of coupled chaotic
perfect locking of their phases, whereas their amplitudegscillators, we calculate the phases of the oscillators and
remain chaotic and noncorrelated. A similar effect ofthen check whether the weak locking conditibrg, —
phase locking of chaotic oscillations by a periodic external, ¢,| < const is satisfied. In this Letter, we restrict
force has been described in Refs. [10,11]. We als@yrselves to the case = n = 1.
describe a weaker type of synchronization, when the As the simplest example of phase synchronization, we
frequencies are locked while the phase difference exhibitgonsider two coupled Réssler systems [15]
a random-walk-type motion.

Firstly, we have to determine the amplitude and the X120 = —wioyi2 — 212 + Clxay — x12),
phase of an arbitrary signa(t). A general approach has -
been introduced by Gabor [12] and is based on the analytic iz = @xip + 015y12, (3)
signal concept [13]. The analytic signalr) is a complex 212 = 0.2 + z12(x12 — 10).
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Here we introduce the parametetg, = 1 £ Aw and lations (number of maxima) per unit time in both systems
C, which govern the frequency mismatch [16] and thecoincide. The region of synchronization in the plane of pa-
strength of coupling, respectively [17]. As the couplingrameters “coupling-frequency mismatch,” obtained using
is increased for a fixed mismatchw, we observe a these partial Poincaré maps, is presented in Fig. 2. Note
transition from a regime, where the phases rotate witlhat it seems to have no threshold: If the frequency mis-
different velocities¢p; — ¢, ~ AQ ¢, to a synchronous match is smalAw — 0, synchronization appears already
state, where the phase difference does not grow with timéor vanishing coupling. This is a particular feature of the
|1 — ¢pa] < const AQ = 0. This transition is illus- Ro&ssler system, where the motion is highly coherent (in
trated in Fig. 1(a). We emphasize that in contrast to thehe power spectrum a very sharp peak is observed [18]).
other types of synchronization of chaotic systems [1,2]From the other side, it is possible to synchronize systems
here the instant fields, », y;2, andz;, do not coincide. with frequency mismatch of more than 20% (see Fig. 2).
Moreover, the correlations between the amplitudes of The instantaneous phage defined through the Hilbert
and x, are pretty small [Fig. 1(b)], although the phasestransform (2) provides, of course, additional information
are completely locked and in this respect the motions aren the dynamics of synchronization (see, e.g., the time
highly coherent. evolution ofp; — ¢, for C = 0.027 in Fig. 1). We also
For the Rossler attractor, because of its simple form, thaote that in the case of asymmetric coupling the averaged
phase can be introduced in a more straightforward wawalue of the phase difference can be nonzero. This, e.g.,
based on the Poincaré map construction. One can say tHadppens in the asymmetric coupling of Rdssler systems,
the motion from one crossing with a secant surface until thevhere the variabler; is driven byy, [the first equation
next one corresponds to the phase shift 2Vhen we con- in (3) has a formx; = —w;y; — z; + cy»]. Here in the
sider coupled chaotic systems, we still can construct parsynchronous state the phase difference (both phases are
tial Poincaré maps, e.g., taking successive maxima of thebtained using observables;) fluctuates near the mean
variablesx, ; in the coupled Rossler systems. Partial fre-values /2. With the method of partial Poincaré map this
quencies are then simply defined as an average number pérticular property is not detectable.
crossings of the secant surfaces per unit time. According It is remarkable how the phase synchronization mani-
to this approach, the synchronization in coupled Rosslefests itself in the Lyapunov spectrum (Fig. 3). In the ab-
systems simply means that the average numbers of osci#ence of coupling, each oscillator has one positive, one
negative, and one vanishing Lyapunov exponent. As the
coupling is increased, the positive and negative exponents
70 ; . ; remain, whereas one of the zero exponents becomes nega-
@) tive. This behavior can be explained as follows: Without
coupling, the vanishing exponents correspond to the trans-
lation along the trajectory, i.e., to the shift of the phase of
the oscillator. The coupling produces an “attraction” of the
phases such that the phase differettge— ¢, decreases.
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[Eqg. (3)] versus time for nonsynchrono@€ = 0.01), nearly  differenceAQ is nearly zero; this region of synchronization is
synchronougC = 0.027), and synchronou&C = 0.035) states completely analogous to the phase-locking domain (the Arnold
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cross correlation is less than 0.2. The frequency mismatch isynchronization and the phase difference grows with the finite
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0.10 . . ‘ the interaction of the chaotic and the hyperchaotic Rdssler
008 | T\”\\\N | oscillators [22]:
0.06 /\\ T ™) X = —wy — 2 + C(l/l - .X),
o 004 T e T y = wx + 0.15y,
< Seeestetessscssenttneae
< oozt “““"“"""'“-N"‘\\ ] z=02+ z(x — 10),
0.00 - (7)
\m
-0.02 ~ B P = —u — v,
%% 00 001 0.02 0.03 0.04 u=p+025u+w+ Clx — u),
coupling C .
v =3+ puv,

FIG. 3. The four largest Lyapunov exponents, one of which is .
always zero (lines) and ) (circles) vs couplingC for system w
(3) with Aw = 0.015.

—0.5v + 0.05w.

Clearly, for the interaction of such different systems there
is no hope to observe synchronization in the usual sense

Thus one of the vanishing exponents becomes negativél,2]. However, the phase synchronization occurs in (7),
For large coupling the attraction is so strong that the phase& i demonstrated in Fig. 4. Here we plot the difference
remain locked. between averaged frequenciaf) = (¢| — ¢,) VS
Qualitatively, the dynamics of the phase of an au-(this parameter governs the frequency mismatch), for
tonomous chaotic oscillator can be described with thdlifferent coupling strength€. For this system we have

equation (cf. [10,19]) not found a regime with perfect phase locking: Even
whenAQ = 0, the phase differencgb; — ¢,) exhibits a
b =w + FA). (4) random-type walk and is not constrained [23]. Thisak

phase synchronization can be qualitatively described with
Here  is the mean frequency of the oscillations, andthe_ model equation (6) with sufficiently large effective
the term F(A) accounts for the amplitude dependenceNOiSeFi(A1) — Fa(Az). o
of the frequency; the amplituda is assumed to behave In conclusion, we have demonstrated the possibility of

chaotically. For coupled oscillators a generalization ofPhase synchronization of chaotic self-sustained oscilla-
(4) reads tors. In this regime the phases are synchronized, while

the amplitudes vary chaotically and are practically uncor-

P T Fio(As) + G ’ . 5 rglatgd. We hav_e descr_|bed two .types_of phase synchro-

P12 = w12 12(A12) + £G($21. 612) ®) nization: When interacting chaotic oscillators are highly
Here G is 2 periodic in each argument function coherent, the phases are perfectly locked; otherwise, the

describing coupling. In the simplest case we can aSSu”{éequencies are entrained while the phase difference is un-
that G(¢y,ds) = sin(¢s — ¢1). Thus for the phase ounded. The effect of phase synchronization is also pos-
difference’A¢> — &, — &, we get from (5) sible when the natural frequencies are in a rational relation

(this is relevant for an important physiological problem of

ddA;ﬁ — 0, — wy — 2eSiNAG) + Fi(A) — Fa(Ay). interaction of the cardiac and respiratory systems).
(6)
0-04 T T T T T T
This equation is similar to the equation describing phase
locking of periodic oscillators in the presence of noise 002 -

[20]. Here instead of external noisy force we have

the term depending on the chaotic amplitudes. In the

Rossler attractor the dependence of the frequency on the %} 0.00

amplitude is very small, so the effective noigg(4,) —

F>(Ay) in Eq. (6) is negligible, and the dynamics of the ~0.02

phases is very similar to that in the coupled periodic

oscillators. This explains the complete phase locking, as

well as the absence of the threshold. 089 090 091 082 093 o062
It is noteworthy that the phenomenon of phase synchro- 0

nization is observed even when completely different sySgi 6 4 The mean frequency difference in system (7),

tems, such as the Rossler oscillator and the Mackey-Glassiculated via Hilbert transform ve for several values of the

differential-delay system [21], interact. Here we describecoupling constan€.
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synchronization. This phenomenon is a direct general- _ 10cking|n¢; — md,| < const should be used instead.
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