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Phase Synchronization of Chaotic Oscillators
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We present the new effect of phase synchronization of weakly coupled self-sustained c
oscillators. To characterize this phenomenon, we use the analytic signal approach based on the
transform and partial Poincaré maps. For coupled Rössler attractors, in the synchronous regi
phases are locked, while the amplitudes vary chaotically and are practically uncorrelated. Co
a chaotic oscillator with a hyperchaotic one, we observe another new type of synchronization,
the frequencies are entrained, while the phase difference is unbounded. A relation between the
synchronization and the properties of the Lyapunov spectrum is studied.
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Cooperative behavior of chaotic dynamical systems a
in particular, synchronization phenomena have recei
much attention recently. Nevertheless, the notion of s
chronization itself lacks a unique interpretation. Most
the synchronization is considered as the complete c
cidence of the states of individual systems (subsystem
Such a regime can result from an interaction between
tems [1] or subsystems [2,3], as well as from the influen
of external noisy [4] or regular [5] fields; in all these sit
ations synchronization is a threshold phenomenon.

Generally, synchronization can be treated as an
pearance of some relations between functionals of
processes due to interaction [6]. The choice of the fu
tionals is to some extent arbitrary and depends on
problem under consideration. In the classical case ofpe-
riodic self-sustained oscillators, described as early as
the 17th century by Hugenii [7], synchronization is us
ally defined as locking of the phasesf1,2, nf1 2 mf2 ­
const [8], while the amplitudes can be quite differe
This effect is widely used in engineering for improveme
of the linewidth of a high-power generator with the he
of a low-power but more stable (having narrower lin
one. Some other types of synchronization in systems w
quasiperiodic and chaotic behavior have been discusse
Ref. [9].

In this Letter we investigate phase synchronization
chaoticoscillators. Using the methods of analytic sign
and the Poincaré map, we show that the interaction
nonidentical autonomous chaotic oscillators can lead
perfect locking of their phases, whereas their amplitu
remain chaotic and noncorrelated. A similar effect
phase locking of chaotic oscillations by a periodic exter
force has been described in Refs. [10,11]. We a
describe a weaker type of synchronization, when
frequencies are locked while the phase difference exhi
a random-walk-type motion.

Firstly, we have to determine the amplitude and t
phase of an arbitrary signals(t). A general approach ha
been introduced by Gabor [12] and is based on the ana
signal concept [13]. The analytic signalcstd is a complex
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function of time defined as

cstd ­ sstd 1 js̃std ­ Astdejfstd, (1)

where the functioñsstd is the Hilbert transform ofsstd

s̃std ­ p21P.V.
Z `

2`

sstd
t 2 t

dt (2)

(where P.V. means that the integral is taken in the sens
the Cauchy principal value). The instantaneous amplitu
Astd and the instantaneous phasefstd of the signalsstd
are thus uniquely defined from (1). From (2), the Hilbe
transforms̃std of sstd may be considered as the convolu
tion of the functionssstd and 1ypt. Hence the Fourier
transformS̃s jvd of s̃std is the product of the Fourier trans
forms ofsstd and1ypt. For physically relevant frequen
ciesv . 0, S̃s jvd ­ 2jSs jvd; i.e., ideallys̃std may be
obtained fromsstd by a filter whose amplitude response
unity, and whose phase response is a constantpy2 lag at
all frequencies [13,14].

For chaotic oscillators, we can calculate the phase fr
taking assstd any observable, so there is no unique pha
of chaotic oscillations. However, in some cases “natur
observables provide phases that agree with an intui
definition. For example, for the Rössler attractor [1
taking the observabless1 ­ x and s2 ­ y [see below
Eqs. (3)] gives phases shifted byøpy2 and rotating with
the same averaged velocity, corresponding to the m
peak in the power spectrum.

To study phase synchronization of coupled chao
oscillators, we calculate the phases of the oscillators a
then check whether the weak locking conditionjnf1 2

mf2j , const is satisfied. In this Letter, we restric
ourselves to the casem ­ n ­ 1.

As the simplest example of phase synchronization,
consider two coupled Rössler systems [15]

Ùx1,2 ­ 2v1,2y1,2 2 z1,2 1 Csx2,1 2 x1,2d ,

Ùy1,2 ­ v1,2x1,2 1 0.15y1,2 , (3)

Ùz1,2 ­ 0.2 1 z1,2sx1,2 2 10d .
© 1996 The American Physical Society
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Here we introduce the parametersv1,2 ­ 1 6 Dv and
C, which govern the frequency mismatch [16] and th
strength of coupling, respectively [17]. As the couplin
is increased for a fixed mismatchDv, we observe a
transition from a regime, where the phases rotate w
different velocitiesf1 2 f2 , DV t, to a synchronous
state, where the phase difference does not grow with ti
jf1 2 f2j , const; DV ­ 0. This transition is illus-
trated in Fig. 1(a). We emphasize that in contrast to t
other types of synchronization of chaotic systems [1,
here the instant fieldsx1,2, y1,2, andz1,2 do not coincide.
Moreover, the correlations between the amplitudes ofx1
and x2 are pretty small [Fig. 1(b)], although the phase
are completely locked and in this respect the motions
highly coherent.

For the Rössler attractor, because of its simple form,
phase can be introduced in a more straightforward w
based on the Poincaré map construction. One can say
the motion from one crossing with a secant surface until t
next one corresponds to the phase shift 2p. When we con-
sider coupled chaotic systems, we still can construct p
tial Poincaré maps, e.g., taking successive maxima of
variablesx1,2 in the coupled Rössler systems. Partial fr
quencies are then simply defined as an average numbe
crossings of the secant surfaces per unit time. Accord
to this approach, the synchronization in coupled Röss
systems simply means that the average numbers of os

FIG. 1. Phase difference of two coupled Rössler syste
[Eq. (3)] versus time for nonsynchronoussC ­ 0.01d, nearly
synchronoussC ­ 0.027d, and synchronoussC ­ 0.035d states
(a). In the last case the amplitudesA1,2 remain chaotic (b), their
cross correlation is less than 0.2. The frequency mismatch
Dv ­ 0.015.
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lations (number of maxima) per unit time in both system
coincide. The region of synchronization in the plane of p
rameters “coupling-frequency mismatch,” obtained usi
these partial Poincaré maps, is presented in Fig. 2. N
that it seems to have no threshold: If the frequency m
match is smallDv ! 0, synchronization appears alread
for vanishing coupling. This is a particular feature of th
Rössler system, where the motion is highly coherent
the power spectrum a very sharp peak is observed [1
From the other side, it is possible to synchronize syste
with frequency mismatch of more than 20% (see Fig. 2

The instantaneous phasef, defined through the Hilbert
transform (2) provides, of course, additional informatio
on the dynamics of synchronization (see, e.g., the ti
evolution off1 2 f2 for C ­ 0.027 in Fig. 1). We also
note that in the case of asymmetric coupling the avera
value of the phase difference can be nonzero. This, e
happens in the asymmetric coupling of Rössler syste
where the variablex1 is driven byy2 [the first equation
in (3) has a formÙx1 ­ 2v1y1 2 z1 1 cy2]. Here in the
synchronous state the phase difference (both phases
obtained using observablesx1,2) fluctuates near the mea
valuepy2. With the method of partial Poincaré map th
particular property is not detectable.

It is remarkable how the phase synchronization ma
fests itself in the Lyapunov spectrum (Fig. 3). In the a
sence of coupling, each oscillator has one positive, o
negative, and one vanishing Lyapunov exponent. As
coupling is increased, the positive and negative expone
remain, whereas one of the zero exponents becomes n
tive. This behavior can be explained as follows: Witho
coupling, the vanishing exponents correspond to the tra
lation along the trajectory, i.e., to the shift of the phase
the oscillator. The coupling produces an “attraction” of th
phases such that the phase differencef1 2 f2 decreases.

FIG. 2. The mean frequency differenceDV for the coupled
Rössler systems (3), calculated with the method of par
Poincaré maps, as a function of the couplingC and the
frequency mismatchDv. For C large enough the frequency
differenceDV is nearly zero; this region of synchronization i
completely analogous to the phase-locking domain (the Arn
tongue) for coupled periodic oscillators. For smallC there is no
synchronization and the phase difference grows with the fin
rateDV.
1805
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FIG. 3. The four largest Lyapunov exponents, one of which
always zero (lines) andDV (circles) vs couplingC for system
(3) with Dv ­ 0.015.

Thus one of the vanishing exponents becomes negat
For large coupling the attraction is so strong that the pha
remain locked.

Qualitatively, the dynamics of the phase of an a
tonomous chaotic oscillator can be described with t
equation (cf. [10,19])

Ùf ­ v 1 FsAd . (4)

Here v is the mean frequency of the oscillations, an
the term FsAd accounts for the amplitude dependenc
of the frequency; the amplitudeA is assumed to behave
chaotically. For coupled oscillators a generalization
(4) reads

Ùf1,2 ­ v1,2 1 F1,2sA1,2d 1 ´Gsf2,1, f1,2d . (5)

Here G is 2p periodic in each argument function
describing coupling. In the simplest case we can assu
that Gsf1, f2d ­ sinsf2 2 f1d. Thus for the phase
differenceDf ­ f1 2 f2 we get from (5)

dDf

dt
­ v1 2 v2 2 2´ sinsDfd 1 F1sA1d 2 F2sA2d .

(6)

This equation is similar to the equation describing pha
locking of periodic oscillators in the presence of nois
[20]. Here instead of external noisy force we hav
the term depending on the chaotic amplitudes. In t
Rössler attractor the dependence of the frequency on
amplitude is very small, so the effective noiseF1sA1d 2

F2sA2d in Eq. (6) is negligible, and the dynamics of th
phases is very similar to that in the coupled period
oscillators. This explains the complete phase locking,
well as the absence of the threshold.

It is noteworthy that the phenomenon of phase synch
nization is observed even when completely different sy
tems, such as the Rössler oscillator and the Mackey-Gl
differential-delay system [21], interact. Here we describ
1806
s

ve.
es

-
e

e

f

e

e
e

e
he

c
s

o-
s-
ss
e

the interaction of the chaotic and the hyperchaotic Rös
oscillators [22]:

Ùx ­ 2vy 2 z 1 Csu 2 xd,

Ùy ­ vx 1 0.15y,

Ùz ­ 0.2 1 zsx 2 10d ,

(7)

Ùp ­ 2u 2 y,

Ùu ­ p 1 0.25u 1 w 1 Csx 2 ud,

Ùy ­ 3 1 py,

Ùw ­ 20.5y 1 0.05w .

Clearly, for the interaction of such different systems the
is no hope to observe synchronization in the usual se
[1,2]. However, the phase synchronization occurs in (
as is demonstrated in Fig. 4. Here we plot the differen
between averaged frequenciesDV ­ k Ùf1 2 Ùf2l vs v

(this parameter governs the frequency mismatch),
different coupling strengthsC. For this system we have
not found a regime with perfect phase locking: Ev
whenDV ø 0, the phase differencekf1 2 f2l exhibits a
random-type walk and is not constrained [23]. Thisweak
phase synchronization can be qualitatively described w
the model equation (6) with sufficiently large effectiv
noiseF1sA1d 2 F2sA2d.

In conclusion, we have demonstrated the possibility
phase synchronization of chaotic self-sustained osci
tors. In this regime the phases are synchronized, w
the amplitudes vary chaotically and are practically unc
related. We have described two types of phase sync
nization: When interacting chaotic oscillators are high
coherent, the phases are perfectly locked; otherwise,
frequencies are entrained while the phase difference is
bounded. The effect of phase synchronization is also p
sible when the natural frequencies are in a rational relat
(this is relevant for an important physiological problem
interaction of the cardiac and respiratory systems).

FIG. 4. The mean frequency differenceDV in system (7),
calculated via Hilbert transform vsv for several values of the
coupling constantC.
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We emphasize that the phase synchronization is
served already for extremely weak couplings, and in so
cases can have no threshold, contrary to other types
synchronization. This phenomenon is a direct gener
ization of synchronization of periodic self-sustained o
cillators. As the latter, it may find practical applications
in particular, when a coherent summation of outputs
slightly different generators operating in a chaotic regim
is necessary. For this purpose, it is sufficient to synch
nize phases, while amplitudes can remain uncorrelat
We expect this to be relevant for an important problem
output summation in arrays of semiconductor lasers [2
For a description of such arrays, as well as of a number
other physical and biological phenomena, one often u
a model of globally coupled oscillators (see, e.g., [25
Here mutual phase synchronization of individual chao
states manifests itself as an appearance of a macrosc
mean field [26].

We also mention that the phenomenon of phase s
chronization is a characteristic feature of autonomo
continuous-time systems, and cannot be observed
discrete-time or periodically forced models. In the latt
systems the phases are not free (in the sense of the
istence of the zero Lyapunov exponent corresponding
the phase shift) and therefore cannot be adjusted by sm
coupling.
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