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We consider phase synchronization of chaotic continuous-time oscillator by periodic external force.
Phase-locking regions are defined for unstable periodic cycles embedded in chaos, and
synchronization is described in terms of these regions. A special flow construction is used to derive
a simple discrete-time model of the phenomenon. It allows to describe quantitatively the
intermittency at the transition to phase synchronization. ©1997 American Institute of Physics.
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When a periodic self-sustained oscillator is governed by a
periodic external force, the phenomenon of synchroniza-
tion can be observed, i.e., the phase of the oscillator i
locked to the phase of the driving force. For certain cha-
otic autonomous dissipative systems the phase can be in
troduced as well. Such systems can also be synchronize
by external periodic force. In this case the phase is
locked, while the amplitude remains chaotic. We describe
here the phase synchronization of chaotic oscillators
through the phase-locking properties of the unstable pe-
riodic orbits embedded in a chaotic attractor. For each
such orbit the phase-locked region can be constructed
and when these regions overlap, full phase synchroniza
tion is observed. Transition to this state is shown to occur
via a specific kind of intermittency, arising at the
attractor –repeller collision in phase space.

I. INTRODUCTION

Synchronization is a basic nonlinear phenomenon
physics, discovered at the beginning of the modern age
science by Huygens.1 In the classical sense, synchronizati
means adjustment or entrainment of frequencies of perio
oscillators due to a weak interaction~cf. Refs. 2–4!. This
effect is well studied and finds a lot of practical applicatio
in electrical and mechanical engineering.5

Extensive investigations of chaotic oscillations have
quired generalization of the notion of synchronization to t
case. In this context, different phenomena have been fo
which are usually referred to as ‘‘synchronization.’’ Gene
ally, one speaks on synchronization if some nontrivial or
is encountered in weakly interacting chaotic systems; e.g.
complete~identical! synchronization is observed if the stat
of interacting systems coincide while their dynamics rem
chaotic; the attractor is then embedded into a symmetr
subspace of the phase space.6–8 Another example is the gen
eralized synchronization, where also the dimension of
attractor decreases but the dynamics is restricted to som
necessarily symmetric subspace.9–11

Recently, the effect ofphase synchronizationof chaotic
systems has been described theoretically12,13 and observed
experimentally.14 It appears in autonomous continuous-tim
oscillators, where one can introduce the notions of the a
Chaos 7 (4), 1997 1054-1500/97/7(4)/680/8/$10.00
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plitude and the phase even for chaotic motions. Roug
speaking, the amplitude corresponds to a coordinate o
Poincare´ surface of section, and the phase increases byp
during the motion between the cross-sections.15 The ampli-
tude is chaotic, while the phase is characterized by z
Lyapunov exponent~phase shifts are marginal, like tim
shifts!. The phase synchronization of chaotic system can
defined as the occurrence of a certain relation between
phases of interacting systems~or between the phase of
system and that of an external force!, while the amplitudes
can remain chaotic and are, in general, uncorrelated. T
relation between the phases appears usually as frequenc
trainment. It can be easily observed~also experimentally! if
one defines the mean frequency of chaotic oscillations a
number of maxima of the process per unit time~more rigor-
ously, one can introduce it as a number of iterations of
Poincare´ mapping per unit time!. If this frequency coincides
or nearly coincides with the frequency of the external for
one can speak of frequency locking. Defined in this way,
phase synchronization appears to be a direct analog of p
locking of periodic oscillations. It describes the onset
long-range correlations in chaotic oscillations~suppression
of phase diffusion!, and thus also corresponds to the appe
ance of certain order inside chaos.

Different synchronization transitions can be charact
ized with the help of the Lyapunov exponents. Because th
are the transitionsinside chaos, the largest Lyapunov expo
nent remains positive. The transition to complete synchro
zation happens when a partial~conditional! Lyapunov expo-
nent changes sign. The phase synchronization occurs w
the zero Lyapunov exponent becomes negative. It is imp
tant, that these transitions occur in a chaotic environm
and therefore are not as ‘‘clean’’ as the order-chaos tra
tions. In fact, one has to consider these transitions stat
cally, assuming some characteristic statistical properties
the underlying chaos.

In this paper we exploit the analogy between synchro
zation of periodic and chaotic oscillations to achieve dee
understanding of structural metamorphoses of strange at
tors at the phase synchronization transitions. Our approac
the investigation of phase-locking properties of unstable
riodic orbits embedded in strange attractor.16 For each of this
periodic orbits one can define phase-locking regions~Arnold
680© 1997 American Institute of Physics
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681Pikovsky et al.: Phase synchronization of oscillations
tongues!, thus characterizing the phase-locking of the chao
attractor as a state where all periodic orbits are locked. C
respondingly, the transition to phase synchronization
smeared because generally the Arnold tongues do not c
cide. As a result a specific kind of intermittency~which we
call ‘‘eyelet’’ since the seldom leakages from the lock
state require the very precise hitting of certain small regi
in the phase space! is observed at this transition.

The paper is organized as follows. In Section II we
troduce the phase synchronization on the example of the
ternally driven Ro¨ssler model. Further, in Section III we de
scribe the special flow construction and reduce the prob
to a simple mapping. Study of this mapping as performed
Section IV, allows us to determine the quantitative proper
of the synchronization transition. The Ro¨ssler model is revis-
ited in Section V where we discuss the correspondences
discrepancies with the derived theoretic implications.

II. PHASE SYNCHRONIZATION IN THE RÖSSLER
SYSTEM AND UNSTABLE PERIODIC ORBITS

As an appropriate illustration we take here the Ro¨ssler
system17 and act on it with the external force whose amp
tude and frequency are given byE andn, respectively. The
resulting equations are:

ẋ52z2y1yE cosnt,

ẏ5x1ay2xE sin nt, ~1!

ż5xz2cz1b.

Below the parametersa50.2, c59 andb51 are fixed. At
these values, the dynamics of the autonomous system~1! is
rather simple~Fig. 1! and can be viewed as weakly nonis
chronous rotations around the origin. Therefore, one can
mally define the phase as

f5arctan
y

x
~2!

and calculate the mean observed frequency as

V5^ḟ&. ~3!

FIG. 1. The phase portrait of the Ro¨ssler attractor.
Chaos, Vol. 7,
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The graph of the observed frequency as a function of
external force amplitudeE and the frequencyn allows one to
determine the regime of phase synchronization as the s
with V5n. This regime is clearly seen as a large plateau
Fig. 2.

As the unstable periodic orbits~cycles! build a skeleton
of the chaotic set, we can attempt to represent the ph
synchronization in terms of these cycles. Indeed, perio
external force leads to phase-locking of a cycle, and thi
valid both for stable and unstable cycles~only numerics is
more cumbersome in the latter case because one has to
special methods to locate an unstable solution!. If the fre-
quency of the forcing is close to the frequency of the cyc
the main phase-locking region~the largest Arnold tongue!
appears, where two periodic solutions exist having exa
the period of the external force. To classify these solution
is convenient to look at the Lyapunov exponents. In a dis
pative three-dimensional system like~1! an autonomous un
stable limit cycle has one positive, one negative, and
zero Lyapunov exponent:l1,0,l2 . The periodic orbits in
the main phase-locking region have the Lyapunov expone
l1 , l̄ 1 ,l2 and l1 , l̄ 2 ,l2 where l̄ 2,0, l̄ 1 . One can
attribute the zero Lyapunov exponent of the autonom
cycle to the phase variable, thus two appearing closed or
correspond to a stable and unstable position of the phase
the border of the phase-locking region the orbits with sta
and unstable phase disappear through a saddle-node bif
tion.

We want to characterize synchronization of a stran
attractor, thus we have to study phase-locking of differ
periodic orbits embedded in it. First, we need to find the
orbits in the autonomous case. To this end a discrete re
sentation of the dynamics is useful, e.g. via the Poinc´
map. For the autonomous Ro¨ssler system we use the seca
surface

ẏ50, x,0.

As the mapping is highly contracting in thez-direction, we
get a one-dimensional mappingx→ f (x) shown in Fig. 3a.
This mapping allows us to identify all periodic orbits in th
Rössler system and to classify them according to the num
of points they produce on the Poincare´ map ~the number of

FIG. 2. Phase synchronization of the chaotic Ro¨ssler oscillator.
No. 4, 1997
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682 Pikovsky et al.: Phase synchronization of oscillations
loops!. The latter discrete characteristics we call the orb
length M . It is clear, that to find the effect of a period
force, it is not sufficient to knowM , but we need to know
the real period of the continuous-time orbitT ~the mean fre-
quency of the cycle can be then defined asv52pM /T!.
This period cannot be found from the Poincare´ map, but
requires additional information on the return times betwe
consecutive intersections. We present the return time a
function of coordinatex along the attractor in Fig. 3b. Th
range in which this differences vary, is not large; nevert
less, as a consequence, the mean frequencies of uns
cycles embedded into the attractor are scattered over the
tain ~also relatively narrow! interval. ~cf. Fig 4 where these
frequencies are computed for all the orbits with the len
,15!.

In its turn, this implies that the onset of frequency loc
ings for these orbits should happen at different values of
frequency of external force. It is clear that an adequate
scription of synchronization must effectively take accou
for this unequal frequencies.

III. SPECIAL FLOW MODEL

Fortunately, a construction which allows to simplify th
problems for the flows with varying return times, is alrea
known. This is the ‘‘special flow,’’ or the flow over a
mapping.18 The model is a continuous-time flow in a two
dimensional domain

0<x,1, 0<y,T~x!.

FIG. 3. The Poincare´ map ~a! and the return times~b! for the autonomous
Rössler system.
Chaos, Vol. 7,
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The dynamics is defined in the following way: inside th
domain one has

ẏ51, ẋ50, ~4!

and as the trajectory reaches the boundary point~x,
y5T(x)!, it jumps to the point (f (x), 0! ~see Fig. 5!. It is
easy to see that the mappingx→ f (x) is the Poincare´ map for
the flow, and the return time is given by the functionT(x).
One can take both functions from the simulations for a p
ticular system~in the case of Ro¨ssler attractor these shoul
be the dependencies from Fig. 3a and Fig. 3b, respectiv!
or extract them from the experimental data, thus model
real dynamics. The advantage of the special flow constr
tion is that here the phase~variable y! and the amplitude
~variablex! are separated. If the mapf (x) is chaotic and its

FIG. 4. The mean frequencies for cycles of different lengths in the Ro¨ssler
model.

FIG. 5. The special flow construction.
No. 4, 1997
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683Pikovsky et al.: Phase synchronization of oscillations
statistical properties are described by the invariant mea
m(x), then the average frequency of oscillationsv̄ is defined
simply as

v̄5
2p

^T~x!&
,

where the mean period is calculated with respect tom.
We now generalize the construction by taking into a

count a periodic external force. First, we introduce the n
malized phase according to

f5y
2p

T~x!
.

Next, we assume that the external force having frequencn
and amplitude« influences only the phase, and not the a
plitude x. This approximation is justified at least for sma
forcing, because the chaotic attractor of the mapp
x→ f (x) is relatively robust with respect to small perturb
tions, while a marginal position of the phase is sensitive
external influence. Thus, for the phase we write instead of~4!
the equation

ḟ5
2p

T~x!
1F~nt,f!, ~5!

where the functionF is 2p-periodic in both arguments. Th
flow is now defined on the domain 0<x,1, 0<f,2p with
the jump from the point~x,2p! to the point~f (x),0!.

Let us introduce the phase of the external force acco
ing to

c5nt.

Then we can rewrite the evolution off as a two-dimensiona
flow on a torus

ċ5n, ~6!

ḟ5
2p

T~x!
1F~c,f!. ~7!

A natural line of section for this flow is the linef50, and
the corresponding Poincare´ map can be written as

cn115cn1nT~xn!1F~cn ,xn!. ~8!

Here the nonlinear functionF is a 2p-periodic function of
the first argument. It is determined by the solution of t
nonlinear continuous-time equations~6,7! and therefore can
not be generally obtained analytically.@Having the solution
f5f(t,xn ,cn), c5c(t,xn ,cn) and settingf52p we get
the time tn(xn ,cn) between two intersections. Substitutio
of this time in the expression forc gives the mapping
cn115cn11(xn ,cn).# We can only say that in the case
vanishing forcingF50 the trajectories on the torus a
straight lines, so the functionF vanishes as well. ThusF
describes the effect of forcing on the trajectories of the s
cial flow.

We now combine the mapping~8! with the Poincare´
map for the amplitude to get finally a discrete-time syst
that describes the phase synchronization
Chaos, Vol. 7,
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xn115 f ~xn!, ~9!

cn115cn1nT~xn!1F~cn ,xn!. ~10!

It is worth noting that this is not a stroboscopic map as o
could expect for a periodically driven system, but a Poinc´
map. Correspondingly, the transformation~10! gives the val-
ues of the phase of the external force at the moments w
the phase of oscillations is equal to zero. We can define
rotation number for the map~10! as

r5 lim
n→`

cn2c0

n
, ~11!

the frequency of oscillations is then

V5 lim
t→`

f8~ t !2f8~0!

t
5

2p

r
n ~12!

~heref8 is the phasef lifted onto the whole real line!.
Mathematically, the system~9,10! is a skew product: the

mapping~9! is not affected by~10!. This essentially simpli-
fies the analysis, which we perform in the next section.

IV. MAPPING APPROACH TO PHASE
SYNCHRONIZATION

As a concrete example we consider here the follow
two-dimensional mapping

xn115 f ~xn!5122uxnu, ~13a!

cn115cn1n~T01dxn!1« cos~2pcn!. ~13b!

Here « is the amplitude of the forcing. We assume that t
amplitude obeys the tent map, and the phase is governe
the simple chaotically forced circle map. The dependence
the periodT on the amplitudex is assumed to be linear. T
demonstrate that this map indeed mimics the properties
real system, we present in Figs. 6 and 7 calculations of
mean rotation number according to~11!, which can be com-
pared with the frequency for the Ro¨ssler system~Fig. 2!. The
parameterd regulates the level of nonisochrony of the osc
lations, so that the small values ofd correspond to a phase
coherent attractor.

FIG. 6. The synchronization region in system~13! for d50.2.
No. 4, 1997
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684 Pikovsky et al.: Phase synchronization of oscillations
We turn now to the representation of a chaotic attrac
through unstable periodic orbits embedded in it. Recall t
we distinguish between the integer period of the orbit
cording to the mapping~13a! and the continuous-time perio
of the flow. The tent map~13a! has periodic orbits of all
lengths, and these orbits can be easily found explicitly. If
choose one such orbit, the map~13b! becomes a simple pe
riodically driven circle map, and the classic theory of pha
locking ~Arnold’s tongues! can be applied.19–21For each pe-
riodic orbit in ~13a! we can construct the main phase-lock
region with the rotation numberr52p. Some of these re
gions are shown in Fig. 8. The tongues stick into differe
points on the«50 line, because different periodic orbits o
the chaotic oscillator have different mean continuous-ti
periods. In our approach these periods are determined by
average values of the functionT(x) on the orbits. For the

FIG. 7. Dependence of the rotation numberr on the external parametern for
the model~13! with d50.2 and different forcing amplitudes«50.2, 0.15,
0.1, 0.05. The arrows show the attractor–repeller collision points for«50.2.
Note that the frequency plateau appears to be much larger than the reg
full phase synchronization.

FIG. 8. Phase-locking regions for the fixed points of the tent map~solid
lines! and for the periodic orbits with periods 2,3,4,5~dashed lines! for
d50.1. The region of full phase synchronization, where all the pha
locking regions overlap, is delineated with grey.
Chaos, Vol. 7,
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fixed points of the tent map~13a! x1521, x251/3 the bor-
ders of the phase-locked regions can be easily calcul
analytically: n5(2p6«)/(T01dx1,2). For each period-N
orbit x(1), . . . ,x(N) of the tent map~13a! the dynamics of
the phase variablec inside the phase-locked region
simple: there exist a corresponding stablecs(1), . . . ,cs(N)
and an unstablecu(1), . . . ,cu(N) orbit. At the border of
synchronization these orbits disappear via the saddle-n
bifurcation and a state with the rotation numberr Þ 2p
appears.

In our case the two fixed points of the tent map play
crucial role, because on these orbits the average valu
T(x) reaches the maximum and the minimum, correspond
to the maximal and minimal average continuous-time per
of the cycle of the chaotic oscillator.~This is due to the
monotonic functionT(x) chosen, otherwise the minimum
and/or the maximum can be reached by a cycle of high
riod or even by an aperiodic orbit of the map~13a!.! There-
fore, the phase-locked regions for all cycles of high perio
lie between these ‘‘primary’’ locked regions. A region whe
all the phase-locked regions overlap is the gray one in Fig
In this region all periodic orbits embedded in the map~13a!
are locked, with corresponding stable and unstable orbit
~13! shown in Fig. 9a. These orbits can be considered
skeletons of the attractor and the repeller, respectively,
they are well-separated. All trajectories on the attractor w
der in a vicinity of the skeleton, therefore the value of t
phase remains bounded, and the rotation number is exa
zero. We call this domain the region of full phase synch
nization.

As the parameters of the system are changed in su
way that the boundary of the region of full phase synchro
zation is approached from inside, the attractor and the re
ler come closer to each other. At the transition point
attractor–repeller collision the saddle-node bifurcation
one of the unstable periodic orbits occurs. The situation
beyond the transition is shown in Fig. 9b. Although mo
cycles remain phase-locked, those few, which have
phase-locking, allow phase slips to occur~at a slip the phase
changes by62p!. We now develop a statistical theory o
these slips~cf. Refs. 22,23!.

Consider, for definiteness, the transition at which t
phase-locking for the fixed pointx2 is lost. It happens for
nc5(2p1«)/(T01d•x2). Let us first suppose that th
value of the variablex in the mapping~13a! is taken exactly
at this fixed point, i.e.x5x2 for all times. Then the dynamics
of the phase is described by the simple circle map just o
side of phase-locking, with characteristic time intervals b
tween phase slips growing as an inverse square root of
distance to the bifurcation point, in the same way as at
type-I intermittency:24

tsl'C1~n2nc!
21/2. ~14!

For a chaotic trajectory such a phase slip can also occu
the trajectory of the tent map~13a! stays for a long time~at
least tsl! in a close vicinity of the fixed pointx2 :
ux2x2u,C2 . Suppose that a trajectory of the tent m
comes close to the fixed point at time 0:x(0)'x2 . Because

of

-
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685Pikovsky et al.: Phase synchronization of oscillations
FIG. 9. The stable~filled circles! and unstable~open circles! periodic orbits with periods 1, . . . ,8 forming the skeletons of the attractor and repelle
respectively.~a!: inside the full synchronization region«50.2,d50.2,n51.01, the attractor and the repeller are distinct.~b!: just after the attractor–repelle
collision, at which the stable and unstable fixed points corresponding tox251/3 disappear (n51.0225). A trajectory of the circle map~13b! with fixed x5x2

is depicted by pluses.
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the fixed point of the map~13a! is unstable with the
Lyapunov exponentl(x2) ~for the tent map considered
l5 log 2!, for the evolution ofx we can write

ux~ t !2x2u;ux~0!2x2uexp@l~x2!t#.

Thus, the condition for the phase slip to occur can be rew
ten as

ux~0!2x2uexp@l~x2!tsl#,C2

which gives the estimate for the slip region in the tent m

ux~0!2x2u,C2 exp@2l~x2!C1~n2nc!
21/2#. ~15!

This region is exponentially small, like an ‘‘eyelet,’’ and th
phase slips are correspondingly extremely rare. Using
uniform invariant probability density for the tent map we c
estimate the probability to visit any interval as proportion
to its length. Thus, the probability for a phase slip to occu
proportional to the r.h.s. of~15!, and the rotation number i
inverse proportional to this probability. As a result, we o
tain the following expression for the rotation number at t
attractor–repeller collision transition:22,23

loguru;2un2ncu21/2. ~16!

We check this relation in Fig. 10. It is valid for both trans
tions where fixed pointsx1 and x2 leave the phase-locke
region. From the consideration above it is clear that the t
statistics of phase slips corresponds to the statistics of P
carérecurrence times for a chaotic system~statistics of the
returns to the eyelet~15!!, and this is known to have th
exponential tail.25

The exponentially slow eyelet intermittency is the reas
why the phase-locked region for the chaotically driven cir
map~Fig. 7! appears to be larger than the region of full pha
synchronization, and why the nearly perfect phase sync
nization can be observed also for small amplitudes«, for
which there is no full phase synchronization at all. On
Chaos, Vol. 7,
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when sufficiently large number of periodic orbits undergo
a saddle-node bifurcation and the probability of phase s
becomes large, one observes a deviation of the mean
served frequency from the frequency of the external for
This also explains the asymmetry of the frequency charac
istics Fig. 7: as one can see from Fig. 8, the fixed pointx1 is
more isolated in the ‘‘skeleton,’’ compared to the fixed poi
x2 ; therefore the probability of phase slips increases m
rapidly at the boundary where the fixed pointx2 undergoes
the saddle-node bifurcation.

We have considered the simplest possible case when
borders of the region of full phase synchronization are giv
by the phase-locking regions of the fixed points. This is co

FIG. 10. The rotation numberv at the border of the attractor–repeller tran
sition in the region of eyelet intermittency. The parameters are:d50.2,
«50.2. Squares: the fixed point atx2 loses stability; circles: the fixed point
at x1 loses stability.
No. 4, 1997
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686 Pikovsky et al.: Phase synchronization of oscillations
nected to specific properties of the mapf (x) and the function
T(x): in the considered above case the maximum and m
mum of the averaged period are reached on fixed points of .
The case when these extrema are reached on periodic o
of f (x) can be considered in a similar way. More compl
situations can occur if an extremum is reached on a cha
everywhere dense trajectory. Then the attractor and the
peller can collide in a dense set of points; similar situat
happens in a quasiperiodically forced circle map.26,27 This
latter case needs special investigation.

V. THE RÖSSLER SYSTEM REVISITED
Now we can compare the data from the forced Ro¨ssler

system with the conclusions of the preceding section. T
similarity between the synchronization plateaus in Fig. 2 a
Fig. 6 is not to be overlooked. The Poincare´ map induced by
the the phase-synchronized attractor on the hyperplaneẏ50,
x,0 is plotted in Fig. 11a. We present only the coordin
xn ~the coordinatezn is not important because the attractor
nearly two-dimensional owing to the strong compress
along thez-direction!. As the second coordinate we use t
phase of the external force at the momentstn of intersections
with this plane:cn5ntn mod 2p. This graph is thus analo
gous to Fig. 9. Outside the transition boundaries, the ph
slips are possible and the attractor fills the whole reg
0,cn,2p ~Fig. 11b,c!. These slips contribute to the devia
tion of the observed frequencyV from that of the externa
force n. Near the transition pointnc(E) these deviations are
rather rare~Fig. 12!, and we observe the scaling of the fr
quency~Fig. 12!:

loguV2nu;2un2ncu21/2 ~17!

FIG. 11. The Poincare´ section in the coordinatesxn ,cn . ~a!: inside the
phase-locked region~E50.05,n51.018!. The stable~with respect to phase!
phase-locked cycle of length 2 is shown with diamonds.~b!: near the tran-
sition border~E50.05, n51.0196!. ~c!: outside the phase-locked regio
~E50.05,n51.02!.
Chaos, Vol. 7,
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in full accordance with the theoretical prediction~16!.
There are, however, peculiarities of the Ro¨ssler system

that do not fit the picture predicted by the consideration
the special flow model. The location of the locked regio
for the particular periodic orbits embedded in the attrac
~Fig. 13!, reveals the discrepancy with the phase synchro
zation region calculated for the full system. The phase s
chronization can be observed already below the intersec
of the outermost tongues, i.e. in the domain where onl
part of periodic orbits is synchronized. However, at the la
est computationally times we were unable to detect the c
tribution of phase slips which should be gained in viciniti
of unlocked cycles. Thus, it appears that some cycles do
contribute to the phase rotation. To find a reason for t
behavior, we have looked at the positions of this cycles
the phase space. It appears that these cycles lie outside o
attractor. E.g., in Fig. 11a it is demonstrated that such a cy
~the cycle of length 2! lies in a completely white area with

FIG. 12. Statistics of phase slips at the border of full phase locking for
Rössler attractor.~a!: A histogram of time intervals between phase slips f
n51.0195,E50.05 ~b!: Frequency difference vs external force frequen
near the transition pointncr51.0185,E50.05.

FIG. 13. The phase-locking regions for some cycles in the Ro¨ssler model
and the region of phase synchronization for the attractor~grey area; this
region is extracted from the Fig. 2!. The black square marks the paramete
used in Fig. 11a; here the cycle of length 2 and one of the cycles of le
3 are locked by the external force.
No. 4, 1997
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687Pikovsky et al.: Phase synchronization of oscillations
seemingly no black points around. So although these cy
belong to the attractor, their vicinity is visited extremely ra
and possible phase slips are simply not detectable. W
some cycles under influence of forcing ‘‘leave’’ the bulk
the attractor and become ‘‘nonobservable,’’ remains an o
question.

VI. DISCUSSION

The transition described can be put in a general fram
work of bifurcation of strange attractors. At the attracto
repeller collision described the unstable direction is not
fected, but in the transversal stable direction the attra
undergoes a ‘‘saddle-node’’ bifurcation. Similar to other b
furcations of strange attractors~e.g., the symmetry-breakin
bifurcation discussed in Refs. 28, 29 can be described
‘‘pitchfork’’ one ! this transition is not abrupt but smeare
The best way to see this is to follow different unstable pe
odic orbits embedded in a strange attractor: Each of th
orbits undergoes the standard saddle-node bifurcation, b
different values of parameters. Remarkably, at both tra
tions a specific intermittency~modulational one at the
symmetry-breaking bifurcation, eyelet intermittency at t
attractor–repeller collision! is observed. In terms of phas
synchronization the existence of separated attractor and
peller corresponds to full phase-locking, and beyond the
lision phase slips are possible~albeit they can be exponen
tially rare!.

It is worth noting that the transition to phase synchro
zation is also a transition from a nonhyperbolic to a hyp
bolic chaos. Indeed, as the unstable periodic orbits ins
chaotic attractor become locked, the cycles with differ
numbers of stable and unstable directions appear. On
other hand, in the hyperbolic attractor all unstable orb
have the same number of unstable directions. Thus, for
attractor to be hyperbolic, it must contain only stable w
respect to phase periodic orbits. When this property is
fulfilled, as in Fig. 11b,c, the attracting set is nonhyperbo

As a problem for future investigation we would like t
mention a characterization ofmutual phase synchronization
in two interacting chaotic systems in terms of periodic orb
As both systems possess an infinite number of cycles,
problem of their mutual phase-locking appears.
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