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Phase synchronization effects in a lattice of nonidentical Rssler oscillators
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We study phase synchronization in a chain of weakly coupled chaotic oscillators. In the synchronous state,
the phases of oscillators are locked, while the amplitudes remain chaotic. We demonstrate that the coexistence
of several clusters of mutually synchronized elements and global synchronization of all oscillators is possible.
Two mechanisms of the transition to global synchronization are shown. The dynamics of spatiotemporal
defects is discussed for the cases of phase-coherent and furss¢Rascillators|S1063-651X97)01803-7

PACS numbe(s): 05.45+b

[. INTRODUCTION the phase subspaces formed by the coordinates of each inter-
acting oscillato{32,33.
Collective dynamics in large ensembles of periodic self- Recently, the phenomenon ghase synchronizatioof
excited oscillators has been intensively studied in the pagihaotic systems has been fouf@H—37. This effect is a
two decadeg1]. Such models have been used for the de_dlrect extension of the classical definition of synchronization

scription of Josephson-junction arra, mulimode lasers of periodic oscillators, where only the phase locking is im-

and laser arrayE3 4], relativistic magnetrongs], and other portant, while no restriction on the amplitudes is imposed. It

; ; : has been shown that, at least for some paradigmatic models,
contextq 6—8]. Arrays of oscillators also appear in studies of the notion of phase can be introduced for chaotic self-

biological rhythms of the heaf9], nervous syster9,10,,  gystained oscillators as well. Hence a phase synchronization
intestineg 11], pancrea$12], and other biological problems of a chaotic system can be defined as the appearance of en-
[13-14. Coupled oscillator models are also widely used asrainment between the phases of interacting systems, while
general models in studies of complex dynamics in a nonequithe amplitudes remain chaotic and, in general, noncorrelated.
librium medium[17-19. This effect has been demonstrated[84] for two coupled
One of the most interesting and practically important phenonidentical systems, and Bsler oscillators in particular,

nomena in large ensembles is mutual synchronization of odOr an ensemble of globally coupled chaotic oscillaf8$],
cillators [20—24. With the spread of studies of chaos, the and for the case of external synchronization by periodic or

notion of mutual synchronization has been extended to thQOisy forcing[36]. Phase synchronization was also observed

case of chaotic oscillations. In this context, there are differ-In a physical experiment with the electronic model of two

h h llv referred N hroni coupled Rasler oscillator$37]. Similar to the synchroniza-
ent phenomena that are usually referred to as "synchronizg;o, 'of periodic oscillators, phase synchronization of chaotic

tion.” First, due to the interaction of at least two identical systems appears for very weak or even vanishing coupling if
chaotic systems their states can coincide, while the dynamicme detuning between interacting oscillators is small.

in time remains chaoti¢25,26. In this case one can speak In this paper we study cooperative behavior in a chain of
about “full synchronization” of chaotic oscillations. This diffusively coupled nonidentical Rsler oscillators. We are
effect can be easily generalized to the case of slightly noninterested in whether the phenomena usually encountered in
identical system$26,27] or interacting subsystenj28]. In  the networks of periodic oscillators can be observed for cha-

another approach synchronization in chaotic systems hd&ic systems as well. The main effect is the existence of a
gime of global synchronization, i.e., all elements of the

been defined as the overlap of power spectra of respecti\f(% . hronized. or th it f | clust f
signals[29,3(], thus drawing the analogy to the coincidence ©NaIN aré synchronized, or the existence of several clusters o

of frequencies of synchronized periodic systems. It has bee%ynchronlzed oscillator$3s,39. We also investigate the

shown that due to an interaction, the widths of the peaks O\?vrc())riirtles of the collective behavior inherent in chaotic net-

the power spegtra become practically equal and the pegks A work very similar to our study was done 19,40,

become closer in frequency. The appearance of synchronizgzhere one- and two-dimensional latticesidéntical Rossler

tion was quantified by means of cross-correlation functiong,gcillators have been considered. Observdd @, the effect

[29] or cross spectrg31]. Another approach is based on the of the appearance of a macroscopic mean field for very small

calculation of the attractor dimension of the whole systengouplings can be interpreted in our terms as the appearance

and its comparison with the partial dimensions calculated irbf a phase-synchronous state. In the casenaiidentical
oscillators the transition is, however, nontrivial, as we will

show below.

*Permanent address: Radiophysical Department, Nizhni The paper is organized as follows. In Sec. Il we decsribe
Novgorod University, Nizhni Novgorod, Russia. the model under study, briefly introduce the notion of a
"Electronic address: http://www.agnld.uni-potsdam.de phase for the chaotic Reler oscillator, and discuss criteria
*Permanent address: Mechanical Engineering Research Institutef synchronization in an oscillator network. In Sec. Il we

Russian Academy of Sciences, Moscow, Russia. discuss mutual synchronization of two $&ter oscillators.
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‘In Secs. IV and V we present the results of the numerical 20
study of synchronization in the one-dimensional lattices
(chaing of coupled Rssler oscillators with linear and ran-
dom distribution of natural frequencies. Section VI is de-
voted to synchronization of identical Bsler oscillators with

the so-called funnel attractor. The results are summarized in
Sec. VIl.

- Il \ L
2% 0
Il. BASIC MODEL X
A. Lattice of Rossler oscillators FIG. 1. () Phase coherent arftl) funnel Ressler attractors with

Our basic model is the chain of coupled nonidenticalParametersa=0.15 anda=0.25.
Rossler oscillators[41] with a nearest-neighbor diffusive

coupling. It can be written as a set of ordinary differential B. Phase of the Resler oscillator
equations There is no unambiguous and general definition of a
. phase for chaotic systems. Roughly speaking, we want to
Xj=~wjyj— 7, define a phase as a variable that corresponds to the zero
Lyapunov exponent of the continuous-time chaotic dynami-
yjzwJ-XJ-—|—ayj+8(yj+1—2yj+yj_1)’ ) cal system, while other variables can be referred to as am-

plitudes. This can be achieved via partial Poincaraps or

via an analytic signal approach based on the Hilbert trans-
form [42,43. A detailed discussion and comparison of these
approaches to the phase definition are presented elsewhere

Here the indeX =1, ... N is the position of an oscillator in [36]
the lattice ande is the coupling coefficient. The parameter : ; : —

a determines the topology of the attractor; its significance is hFor (;he R(cjssler system(|2) po?sﬁle deflnltlonshpfht_hed
discussed below. The parameter corresponds to the natu- phase depend on the topology of the attractor, which is de-

SR : ; . termined by the value of the parameter For a=0.15 the
ral frequency of the individual oscillator. This can be easily . . :
: 4 X phase coherent attractor is observed with rather simple topo-
seen if the Resler equations

logical propertied44,45. If we project the attractor on the
plane ,y), this projection resembles the smeared limit

X=—wy=2z cycle where the phase point always rotates around the origin
) [Fig. 1(@]. Hence, the phase here can be introduced in a
y=wXx+ay, (2)  simple way(see alsd35,40), namely, as

z=0.4+2z(x—8.5) ¢=arctary/x). (6)

are rewritten in the form The amplitude correspondingly can be defined as

y—ay+ oly=—wz, A=\ +y2. (7)
71 8.52= 0.4+ 2(y - ay)/ o. 3) As the phase of a chaotic system is well defined, one can

straightforwardly calculate the phase difference between
neighboring oscillatorsp; — ¢;. . If the phase difference
does not grow with time but remains bounded, we have a 1:1
phase locking.(Generally, an n to m locking
[Ing;(t) —me;,1(t)|< cons] can be observed, but this
case is not considered in this studf weaker condition of
synchronization is the coincidence of the averaged partial

whered is the frequency mismatch between neighboring Sysfrequenues defined as

tems. Another variant considered below is a random distri-

To study synchronization in the lattice of nonidentical os-
cillators, we introduce a linear distribution of natural fre-
quencieso; ,

wj=w+8(j—1), (4)

bution of natural frequencies in the range Q,:<¢,>: lim M (8)
[wy,w1+(N—1)]. We also assume free boundary condi- ! S T
tions

For practical(experimentdl applications it is important that
Yo()=ya(t), yn+1()=yn(b). () the mean frequency of chaotic oscillatiofsbserved fre-

. ) ] quency (); can be calculated as
Because the Rssler system typically shows windows of pe-

riodic behavior as the parameter is changed, we choose M
w; and § in such a way that large periodic windows are Q= lim 2m— (9
avoided. Too T
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mismatché for different values of coupling. In full analogy to the
FIG. 2. Regions of nonsynchronoul) and synchronousl) classical case of two coupled periodic oscillators, the transition to
motion and of oscillations quenchiridl). The diagram is approxi- (from) synchronization occurs smoothly or practically by a jump for
mate; the windows of periodic behavior in regions | and Il are notweak and strong coupling, respectively.

shown. i ]
present, although for a large domain of parameters in re-

P . . _gimes | and Il the amplitudes of the oscillations are chaotic.
where M7 is the number of rotations of the phase point™ Neyt we study the behavior of the beat frequefity as
around the origin during tim&. This method can be directly the frequency mismatch changéSg. 3. We see that for
applied to observed time series, when one, e.g., takes fQeak coupling(small &) the beat frequency), smoothly
M the number of maxima of;(t). For the R@sler attractor, depends or. This means that the state where the frequen-
the estimate$8) and (9) practically coincidd 36]. cies of interacting oscillators differ by a rather small value is

The topology of the Rssler attractor changes if the pa- possible. For sufficiently strong coupling the transition from
rametera exceeds the value 0.21. The phase in this cas¢he synchronous to the asynchronous state appears to be
(which is called the funnel attractois not well defined: rather sharp: a virtual jump in the dependerfeg on & is
there are large and small loops on they( plane[see Fig. observed. This means that the frequencies of interacting os-
1(b)], and it is not evident which phase gain should be at.c_ill_ators cannot be close: they either _c_oincide or differ by a
tributed to these loops. Thus we cannot calculate the phadiite value. These two types of transitions(tw from) syn-
and the frequency in a simple way. Nevertheless, as we dighronization are similar to those well known for periodic
cuss below in Sec. VI, some synchronization effects in thedScillators[49]. We will see below that this difference results
lattice with funnel attractors can be observed in this case @& two distinct types of behavior in a lattice of Baler sys-

well. In Secs. llI-V we consider the phase-coherensster ~ t€ms. _ _
attractor @=0.15) only. Hence we can conclude that the dynamics of the phase in

the chaotic Resler oscillator is similar to that in well-studied

classical periodic systems, e.g., the van der Pol oscillator. In
Ill. MUTUAL SYNCHRONIZATION particular, we expect the synchronization effects known for
OF TWO ROSSLER OSCILLATORS lattices of periodic oscillator®21-23 to be observed in the

) . . .. chaotic case as well.
As the first step of our analysis of cooperative behavior in

a long lattice, we describe briefly the phase synchronization |v. PHASE SYNCHRONIZATION IN THE LATTICE

of two chaotic elements, i.e., consider E¢.for N=2 (see WITH A LINEAR DISTRIBUTION

also[34]). The phase diagram of different regimes observed OF NATURAL FREQUENCIES

in the system for varying the couplinrgand frequency mis- i ) ) . .
matché= w,— w, exhibits three regions of qualitatively dif- We have. performed ngmerlcal simulations with lattices of
ferent behaviofsee Fig. 2 20-50 oscillators, for different values of the parameters

(I) The synchronization region is where the frequencies:@1,6. The main quantities we calculated were the ob-
are locked;=0,. It is important to note that there is no Served frequencieQ;. Generally, as the coupling increases,
threshold of synchronization; this is a particular feature oféll the frequencie§); become equal; we call this the onset of
the phase coherent Bsler attracto(see[34])_ global SynChrOf“Zatlon. We have found that the regime of

(1) The region of nonsynchronized oscillations is whereglobal synchronization in the chalftg. (1)] can appear in

|1~ Q,|=|Q,|>0. In analogy to the case of periodic os- WO ways, depending on the relative frequency mismatch
cillators, this frequency), can be considered as a “beat ¢/ w1. Below we describe these two scenarios, referred to as

frequency.” the soft and the hard appearance of global synchronization.

(1) In this region, due to the interaction, oscillations in
both systems disappear. This effect is known for periodic
systems as an oscillation quenching phenomddér-49.

We note that the boundaries between different regimes are We first consider the case of relatively small frequency
slightly dispersed and windows of periodic behavior aremismatchesd/w;<<1. With the increase of coupling, a mu-

A. Small frequency mismatch: Soft transition
to a synchronous state
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FIG. 4. Mean frequencie®; for different values of coupling.
The number of elementsN=20, the frequency mismatch

— —4 —
0=2x10"" ande;=1. FIG. 6. Lyapunov spectry; for different values of coupling for

o ) relatively large frequency mismatch. The number of elements
tual synchronization of the oscillators occurs at the ends ofy=50, the frequency mismatch=9x 103 andw;=1.

the lattice, i.e., only elements with small and larpere
synchronizedsee Fig. 4 With a further increase of, an  observed. Noise destroys full phase synchronization in the
increasing number of oscillators join the synchronous reiattice in the same way as it destroys it in the system of two
gions, so they become more extend&ily. 4). Finally, for  coupled oscillatord50]: due to noise phase slips become
¢ exceeding a critical value*, all oscillators are synchro- possible.

nized, i.e., all the mean frequenci€yg coincide. With the

transition to a global phase synchronization the amplitudes B. Large frequency mismatch: Chaos suppression

of the oscillators remain chaotic, which is clearly marked by and clustering

the Lyapunov spectrum reported in Fig. 5. The number of

positive Lyapunov exponents remaiNseven in the globally For relatively large frequency mismataffw, the first

synchronous regime at>s*. As has been shown if84], effect_ of the interaction is the suppression of chaos. As the
v\%)uplmgs grows, the number of positive Lyapunov expo-

the appearance of phase synchronization in the system of t ts d Bef hronizati frect
coupled oscillators manifests itself in the Lyapunov spec—nen S decreases. belore any synchronization etiects are seen,

trum, namely, one of the zero exponents becomes negativgnIy a few Lyapunov exponents are positilee Fig. 6.

while the two largest exponents remain positive. For the lat: ynchronization occurs in the form of clusters: the oscilla-

tice, the N largest Lyapunov exponents remain positive,tors Iar_e dl'v'?ed m}}o groups Zi\]fmg the ;ame frequency, er:h
while from the nextN exponents only one zero exponent?j re at:jvey argf;eh reqtl)Jencydlf erence etweﬁn gro!flps. The
survives, andN—1 become negative. ependence of the observed frequency on the oscillator po-

The regime of full phase synchronization is rather sensi—s'tIon has a characteristic staircase fofsee Fig. J. With

tive to external noise. We have simulated the dynamics o%he increase of coupling the number of clusters decreases.

the lattice(1) with noisy Gaussian terms being added to thefreTSeezn(:;lﬁerrrliesnnﬁgtglh:ahsec:ia:ggle dcgf‘g'cgnfgg fgqt?]”eanr% l?arrgt]iees
right-hand side of the equations fgy andy;. Even small q y y P prop

noise leads to a nonconstant distribution of observed fre9]c two interacting systems discussed in Sec. lll. First, let us

guencies; so, strictly speaking, global synchronization is nopwennpn that a larger frequency mismatch requires a Iarger
coupling for synchronization to occur. We have shown in

Sec. Ill that for small couplings the frequency difference can

0.08 ' ‘ be arbitrarily small; therefore, with an increase of coupling a
. * £=0.003 smooth transition to synchronization is observed in the lat-
006 FFititteen., s ] tice. Contrary to this, for large couplings the frequency dif-
(,, e, Treelte., ' ference is either zero or finite; therefore, synchronous clus-
'§ ty ters are formed with “jumps” between them.
g 0.04 1 . ’ 1 In the space-time dynamics the boundaries between clus-
g . ters correspond to the positions where the phase slips occur.
S o002 1 We illustrate this with space-time plots in Fig. 7. In all plots
g the gray scale is used, with minimal values being represented
. by white and maximal by black. The left panel shows the
el R L"'"Trﬁ?ﬁf‘fg;—{f quantity sing;)=y;/A; [see Egs.(6) and (7)], so that the
el white stripes correspond to the phas@&#/2 and the black
-0.02 - 9 " % 20 stripes to the phase 7/2. The right panel shows the ampli-

. tudes of the oscillators. To characterize the instantaneous
phase difference between neighboring oscillators, we plot in
FIG. 5. Lyapunov spectra; for the regimes reported in Fig. 4. the center panel the quantity
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FIG. 7. Mean frequencieQ; and space-time structures in the lattice of 50 coupled oscillatorsawitax 102 and different couplings.
All plots show a gray-scale representation of the corresponding quantiies=0.03: no clusters are observed, although relatively large
regions of phase coherence are sébne =0.06: first clusters appear, but the defects are extended in tone=0.18: a regular train of
defects is observedd) £ =0.6: at the transition from seven to six clusters an irregular sequence of defects is seen near the right edge of the
lattice. (e) e=0.7: a regular train of well localized defects.

Near the transition at which the number of clusters changes,
) (100 the defects appear irregularly in both space and tisee
Fig. 7(d)], the border between the clusters is smeared.
which is zero if the phases are equal and one if they differ by
an

S]' = Slnz( —¢j _2¢J 1

The defects, which are clearly seen as maxilvack re- C. Oscillations quenching

gions of s; and minima(white region$ of the local ampli- If the coupling between elements is not very small, the
tude, can appear regularly at certain positions on the latticenteraction can lead not only to a synchronization, but also to
in this case the border between the clusters is sfiigs.  a suppression of oscillations. This effect, known as “oscilla-
7(c)—7(e)]. Obviously, the frequency difference between thetion quenching,” is observed for both pairs and chains of
clusters is equal to the frequency of the defects’ appearancperiodic oscillatord46—48. The loss of self-excitation of
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FIG. 8. Space-time diagrams of evolution @ x;(t) and (b) 1.04 3 T v

A;(t). In the middle of the chain the oscillations are suppressed due 1.02 L
to the interaction, i.e., oscillation quenching is observed. The pa- 1.10 |
rameters areN=50, the frequency mismatchs=15x10 3, C
w;=1, ande =0.75. 108 o - e .
106 f = ° “
two chaotic oscillators due to the interaction has been dis- P - o -
cussed in Sec. lll. Here we demonstrate this effect for the 1.04 o e oL e
chain of coupled oscillators. 1.02 &
To explain this effect, let us rewrite Egdl) as 1.10 ¢

v — 1.08 | et
Xj=—o)yj=2, [
: o106 F, eou * "o .

yi=wjXjt(a—28)yjte(yjs1tYj-1), (11 1.04 e RIS

2,=0.4+(x,~8.57Z. 102 —— T

It is clear that the influence of the coupling can be considered
as some additional damping introduced into the system
[compare with Eq.3)]. For large enough frequency mis- o o _ )
match the force from the neighboring oscillators is not reso- F!G- 9. Distribution of observed frequencies in a lattice with
nant and does not compensate for the increased losses. Aggural  frequencies —uniformly  distributed in the interval
result, if 2¢>a the oscillator can go out of the self-excited 1= ®=1:05- From bottom to top=0,0.01,0.02,0.05,0.2.

regime and oscillations decay, or “die out.” of coupling than in the case of linear distribution. Qualita-
This effect can occur locally in the chains of chaotic os-tively, this can be explained as follows. For the case of a
cillators simultaneously with the synchronization. This is il- linear distribution of frequencies, the left neighbor of some
lustrated in Fig. 8, where the state with two synchronouselement is on average behind in phase and the right neighbor
clusters near the ends of the lattice separated by the nonosci$ respectively ahead. Hence they “pull” the oscillator in

lating elements is shown. different directions, and in this sense their actions are com-
pensated. For the random case it is possible that both neigh-
V. SYNCHRONIZATION IN THE LATTICE WITH bors are behindahead in phase and both res.pectively s_low
RANDOMLY DISTRIBUTED NATURAL FREQUENCIES (speed the element dowiiup). As a result, their frequencies

tend to each other, and these elements form a synchronous

Here we describe the effect of coupling on a lattice withcluster. Such clusters can arise at arbitrary places in the chain
randomly distributed natural frequenciege als$51,6]). As  and can coexist with oscillators that belong to no cluster.
in the case of a linear distribution of frequencies, the regimaVith the increase of coupling the clusters are first observed
of global synchronization arises via the formation of clustersat the location of elements with smaller frequency mismatch.
(Fig 9). We note that distributions of mean frequencies do not de-

The essential difference is that for the same mismatclpend on initial conditions, i.e., for each random distribution
between the largest and the smallest partial frequengjes of partial frequencies in Eqsl) there exists only one attrac-
global synchronization appears for considerably lower valuesor.
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FIG. 11. Average value of the phase differedsg(t)) vs cou-
pling e for different values of the parametaiin the Rassler system
).

jection on the X,y) plane demonstrates not only full rota-
tions around the origin, but also “half” rotationgssmall
loops. In regard to the phase, these small loops produce
phase slips of the value 7 and occur irregularly due to the
chaotic nature of the process.

In the lattice of funnel Rssler attractor§l) (here we take
all the oscillators to be identicathese phase slips, in con-
trast to the phase-coherent case, prevent a global synchroni-
zation. However, as the coupling increases, relatively large
regions of coherent rotation of the oscillators appear, sepa-
rated by defectéFig. 10. The defects appear spontaneously
due to local irregular phase slips. It is interesting that their
lifetime is relatively large compared to the cluster regime of
the phase-coherent oscillators. This is because after a slip the
phase difference between neighboring oscillators~is,
which roughly corresponds to the unstable but stationary
configuration of phases. The relaxation to the stable phase
difference~0 is therefore slow.

To describe the synchronization of the funnel attractors
guantitatively we have characterized the instantaneous phase
difference with the quantitg; [see Eq.(10)], which is de-
B e picted in Fig. 10.(Because all oscillators are identical, one
(b) sonce Sézce 500 S‘Z)ice 50 cannot characterize synchr(_)nization as the frequency lock-

ing: the averaged frequencies are always efju&ith the
increase ofe the number and length of defects decrease,

FIG. 10. Space-time evolution of the field and the phase differindicating the tendency to synchronization. Small values of
encefaccording to Eq( 10)] in the lattice of funnel Rssler attrac- ~ S; correspond to the zero phase difference, while the phase
tors with a=0.23 and different couplingsta) £=0.02 and(b) difference~m gives large values;~1. In Fig. 11 the de-
£=0.05. The values of;(t) normalized on the amplitude are de- pendence of the average {t) (for independent systems it
picted in order to make the phase dynamics Vvisibleis obviously 0.5) on the coupling is shown for different pa-
Ly;/A;=sin(¢y)]. rameter values of the Reler attractor. While for the phase-
coherent case the full synchronization appears for very small

. couplings, in the funnel case a rather slow decayspf is
VI. PHASE SYNCHRONIZATION OF THE RO SSLER observed.

SYSTEMS WITH THE FUNNEL ATTRACTOR

Above_ we have considered thg case of thfe phase—c_oherent VIl. DISCUSSION
attractor in the Rssler system. This attractor is topologically
simple and, correspondingly, the phase is well defined. If, In this paper we have considered phase synchronization
however, the parameter in Eq. (2) exceeds 0.21, the so- effects in a lattice of diffusively coupled Rsler oscillators.
called funnel attractofFig. 1(b)] is observed. Here the pro- When the individual attractors are phase coherent, the phase
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is well defined and its dynamics is similar to that of regular  Although we do not suggest a rigorous definition of the
oscillators. In the inhomogeneous lattice synchronization apphase for chaotic systems, in many situations it can be de-
pears when the coupling exceeds some threshold. We ha¥i@ed at least approximately. Thus one can expect that the
found two scenarios of the transition: in the first one aphase synchronization is a general property of chaotic sys-
gradual adjustment of the frequencies is observed, while ifems. The effect is, however, greatly influenced by the phase-
the other one an intermediate clustered state occurs. The bafpherent properties of the attractor. The two regimes in the
ders of the clusters appear in the space-time diagrams &gssler system exactly represent the cases of extreme phase
positions where phase defects are observed. We have deigpherence and the presence of phase slips. The study of the

onstrated that these defects can be both periodic and irregdystems with moderate phase coherence is now in progress.
lar. The two scenarios directly correspond to the synchroni-

zation properties of two interacting systems: for small
couplings the frequencies are adjusted gradually, while for
large couplings a virtual jump is observed. If the dynamics of
the phase in the individual system is nontrivial, like for the
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