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Phase synchronization effects in a lattice of nonidentical Ro¨ssler oscillators

Grigory V. Osipov,* Arkady S. Pikovsky,† Michael G. Rosenblum,‡ and Ju¨rgen Kurths
Max-Planck-Arbeitsgruppe ‘‘Nichtlineare Dynamik’’ an der Universita¨t Potsdam, Am Neuen Palais 10, Postfach 601553, D-14415

Potsdam, Germany
~Received 23 August 1996; revised manuscript received 17 October 1996!

We study phase synchronization in a chain of weakly coupled chaotic oscillators. In the synchronous state,
the phases of oscillators are locked, while the amplitudes remain chaotic. We demonstrate that the coexistence
of several clusters of mutually synchronized elements and global synchronization of all oscillators is possible.
Two mechanisms of the transition to global synchronization are shown. The dynamics of spatiotemporal
defects is discussed for the cases of phase-coherent and funnel Ro¨ssler oscillators.@S1063-651X~97!01803-7#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Collective dynamics in large ensembles of periodic se
excited oscillators has been intensively studied in the p
two decades@1#. Such models have been used for the d
scription of Josephson-junction arrays@2#, multimode lasers
and laser arrays@3,4#, relativistic magnetrons@5#, and other
contexts@6–8#. Arrays of oscillators also appear in studies
biological rhythms of the heart@9#, nervous system@9,10#,
intestines@11#, pancreas@12#, and other biological problem
@13–16#. Coupled oscillator models are also widely used
general models in studies of complex dynamics in a none
librium medium@17–19#.

One of the most interesting and practically important p
nomena in large ensembles is mutual synchronization of
cillators @20–24#. With the spread of studies of chaos, t
notion of mutual synchronization has been extended to
case of chaotic oscillations. In this context, there are diff
ent phenomena that are usually referred to as ‘‘synchron
tion.’’ First, due to the interaction of at least two identic
chaotic systems their states can coincide, while the dynam
in time remains chaotic@25,26#. In this case one can spea
about ‘‘full synchronization’’ of chaotic oscillations. Thi
effect can be easily generalized to the case of slightly n
identical systems@26,27# or interacting subsystems@28#. In
another approach synchronization in chaotic systems
been defined as the overlap of power spectra of respec
signals@29,30#, thus drawing the analogy to the coinciden
of frequencies of synchronized periodic systems. It has b
shown that due to an interaction, the widths of the peaks
the power spectra become practically equal and the pe
become closer in frequency. The appearance of synchron
tion was quantified by means of cross-correlation functio
@29# or cross spectra@31#. Another approach is based on th
calculation of the attractor dimension of the whole syst
and its comparison with the partial dimensions calculated
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the phase subspaces formed by the coordinates of each
acting oscillator@32,33#.

Recently, the phenomenon ofphase synchronizationof
chaotic systems has been found@34–37#. This effect is a
direct extension of the classical definition of synchronizat
of periodic oscillators, where only the phase locking is im
portant, while no restriction on the amplitudes is imposed
has been shown that, at least for some paradigmatic mo
the notion of phase can be introduced for chaotic s
sustained oscillators as well. Hence a phase synchroniza
of a chaotic system can be defined as the appearance o
trainment between the phases of interacting systems, w
the amplitudes remain chaotic and, in general, noncorrela
This effect has been demonstrated in@34# for two coupled
nonidentical systems, and Ro¨ssler oscillators in particular
for an ensemble of globally coupled chaotic oscillators@35#,
and for the case of external synchronization by periodic
noisy forcing@36#. Phase synchronization was also observ
in a physical experiment with the electronic model of tw
coupled Ro¨ssler oscillators@37#. Similar to the synchroniza-
tion of periodic oscillators, phase synchronization of chao
systems appears for very weak or even vanishing couplin
the detuning between interacting oscillators is small.

In this paper we study cooperative behavior in a chain
diffusively coupled nonidentical Ro¨ssler oscillators. We are
interested in whether the phenomena usually encountere
the networks of periodic oscillators can be observed for c
otic systems as well. The main effect is the existence o
regime of global synchronization, i.e., all elements of t
chain are synchronized, or the existence of several cluste
synchronized oscillators@38,39#. We also investigate the
properties of the collective behavior inherent in chaotic n
works.

A work very similar to our study was done in@19,40#,
where one- and two-dimensional lattices ofidenticalRössler
oscillators have been considered. Observed in@19#, the effect
of the appearance of a macroscopic mean field for very sm
couplings can be interpreted in our terms as the appear
of a phase-synchronous state. In the case ofnonidentical
oscillators the transition is, however, nontrivial, as we w
show below.

The paper is organized as follows. In Sec. II we decsr
the model under study, briefly introduce the notion of
phase for the chaotic Ro¨ssler oscillator, and discuss criter
of synchronization in an oscillator network. In Sec. III w
discuss mutual synchronization of two Ro¨ssler oscillators.
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2354 55OSIPOV, PIKOVSKY, ROSENBLUM, AND KURTHS
‘In Secs. IV and V we present the results of the numeri
study of synchronization in the one-dimensional lattic
~chains! of coupled Ro¨ssler oscillators with linear and ran
dom distribution of natural frequencies. Section VI is d
voted to synchronization of identical Ro¨ssler oscillators with
the so-called funnel attractor. The results are summarize
Sec. VII.

II. BASIC MODEL

A. Lattice of Rössler oscillators

Our basic model is the chain of coupled nonidenti
Rössler oscillators@41# with a nearest-neighbor diffusiv
coupling. It can be written as a set of ordinary different
equations

ẋ j52v j y j2zj ,

ẏ j5v j xj1ayj1«~yj1122yj1yj21!, ~1!

żj50.41~xj28.5!zj .

Here the indexj51, . . . ,N is the position of an oscillator in
the lattice and« is the coupling coefficient. The paramet
a determines the topology of the attractor; its significance
discussed below. The parameterv j corresponds to the natu
ral frequency of the individual oscillator. This can be eas
seen if the Ro¨ssler equations

ẋ52vy2z,

ẏ5vx1ay, ~2!

ż50.41z~x28.5!

are rewritten in the form

ÿ2aẏ1v2y52vz,

ż18.5z50.41z~ ẏ2ay!/v. ~3!

To study synchronization in the lattice of nonidentical o
cillators, we introduce a linear distribution of natural fr
quenciesv j ,

v j5v11d~ j21!, ~4!

whered is the frequency mismatch between neighboring s
tems. Another variant considered below is a random dis
bution of natural frequencies in the rang
@v1 ,v11d(N21)#. We also assume free boundary con
tions

y0~ t !5y1~ t !, yN11~ t !5yN~ t !. ~5!

Because the Ro¨ssler system typically shows windows of p
riodic behavior as the parameterv is changed, we choos
v1 and d in such a way that large periodic windows a
avoided.
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B. Phase of the Ro¨ssler oscillator

There is no unambiguous and general definition o
phase for chaotic systems. Roughly speaking, we wan
define a phase as a variable that corresponds to the
Lyapunov exponent of the continuous-time chaotic dyna
cal system, while other variables can be referred to as
plitudes. This can be achieved via partial Poincare´ maps or
via an analytic signal approach based on the Hilbert tra
form @42,43#. A detailed discussion and comparison of the
approaches to the phase definition are presented elsew
@36#.

For the Ro¨ssler system~2! possible definitions of the
phase depend on the topology of the attractor, which is
termined by the value of the parametera. For a50.15 the
phase coherent attractor is observed with rather simple to
logical properties@44,45#. If we project the attractor on the
plane (x,y), this projection resembles the smeared lim
cycle where the phase point always rotates around the or
@Fig. 1~a!#. Hence, the phase here can be introduced i
simple way~see also@35,40#!, namely, as

f5arctan~y/x!. ~6!

The amplitude correspondingly can be defined as

A5Ax21y2. ~7!

As the phase of a chaotic system is well defined, one
straightforwardly calculate the phase difference betwe
neighboring oscillatorsf j2f j11. If the phase difference
does not grow with time but remains bounded, we have a
phase locking.„Generally, an n to m locking
@ unf j (t)2mf j11(t)u, const# can be observed, but thi
case is not considered in this study.… A weaker condition of
synchronization is the coincidence of the averaged pa
frequencies defined as

V j5^ḟ j&5 lim
T→`

f j~T!2f j~0!

T
. ~8!

For practical~experimental! applications it is important tha
the mean frequency of chaotic oscillations~observed fre-
quency! V j can be calculated as

V j5 lim
T→`

2p
MT

j

T
, ~9!

FIG. 1. ~a! Phase coherent and~b! funnel Rössler attractors with
parametersa50.15 anda50.25.
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55 2355PHASE SYNCHRONIZATION EFFECTS IN A LATTICE . . .
whereMT
j is the number of rotations of the phase po

around the origin during timeT. This method can be directly
applied to observed time series, when one, e.g., takes
MT

j the number of maxima ofxi(t). For the Ro¨ssler attractor,
the estimates~8! and ~9! practically coincide@36#.

The topology of the Ro¨ssler attractor changes if the p
rametera exceeds the value 0.21. The phase in this c
~which is called the funnel attractor! is not well defined:
there are large and small loops on the (x,y) plane@see Fig.
1~b!#, and it is not evident which phase gain should be
tributed to these loops. Thus we cannot calculate the ph
and the frequency in a simple way. Nevertheless, as we
cuss below in Sec. VI, some synchronization effects in
lattice with funnel attractors can be observed in this case
well. In Secs. III–V we consider the phase-coherent Ro¨ssler
attractor (a50.15) only.

III. MUTUAL SYNCHRONIZATION
OF TWO RÖSSLER OSCILLATORS

As the first step of our analysis of cooperative behavio
a long lattice, we describe briefly the phase synchroniza
of two chaotic elements, i.e., consider Eqs.~1! for N52 ~see
also@34#!. The phase diagram of different regimes observ
in the system for varying the coupling« and frequency mis-
matchd5v22v1 exhibits three regions of qualitatively dif
ferent behavior~see Fig. 2!.

~I! The synchronization region is where the frequenc
are lockedV15V2. It is important to note that there is n
threshold of synchronization; this is a particular feature
the phase coherent Ro¨ssler attractor~see@34#!.

~II ! The region of nonsynchronized oscillations is whe
uV12V2u5uVbu.0. In analogy to the case of periodic o
cillators, this frequencyVb can be considered as a ‘‘be
frequency.’’

~III ! In this region, due to the interaction, oscillations
both systems disappear. This effect is known for perio
systems as an oscillation quenching phenomenon@46–49#.
We note that the boundaries between different regimes
slightly dispersed and windows of periodic behavior a

FIG. 2. Regions of nonsynchronous~II ! and synchronous~I!
motion and of oscillations quenching~III !. The diagram is approxi-
mate; the windows of periodic behavior in regions I and II are
shown.
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present, although for a large domain of parameters in
gimes I and II the amplitudes of the oscillations are chao

Next, we study the behavior of the beat frequencyVb as
the frequency mismatch changes~Fig. 3!. We see that for
weak coupling~small «) the beat frequencyVb smoothly
depends ond. This means that the state where the frequ
cies of interacting oscillators differ by a rather small value
possible. For sufficiently strong coupling the transition fro
the synchronous to the asynchronous state appears t
rather sharp: a virtual jump in the dependenceVb on d is
observed. This means that the frequencies of interacting
cillators cannot be close: they either coincide or differ by
finite value. These two types of transitions to~or from! syn-
chronization are similar to those well known for period
oscillators@49#. We will see below that this difference resul
in two distinct types of behavior in a lattice of Ro¨ssler sys-
tems.

Hence we can conclude that the dynamics of the phas
the chaotic Ro¨ssler oscillator is similar to that in well-studie
classical periodic systems, e.g., the van der Pol oscillator
particular, we expect the synchronization effects known
lattices of periodic oscillators@21–23# to be observed in the
chaotic case as well.

IV. PHASE SYNCHRONIZATION IN THE LATTICE
WITH A LINEAR DISTRIBUTION
OF NATURAL FREQUENCIES

We have performed numerical simulations with lattices
20–50 oscillators, for different values of the paramet
d,v1 ,«. The main quantities we calculated were the o
served frequenciesV j . Generally, as the coupling increase
all the frequenciesV j become equal; we call this the onset
global synchronization. We have found that the regime
global synchronization in the chain@Eq. ~1!# can appear in
two ways, depending on the relative frequency misma
d/v1. Below we describe these two scenarios, referred to
the soft and the hard appearance of global synchronizati

A. Small frequency mismatch: Soft transition
to a synchronous state

We first consider the case of relatively small frequen
mismatchesd/v1!1. With the increase of coupling, a mu

t

FIG. 3. Dependence of the beat frequencyVb on the frequency
mismatchd for different values of coupling«. In full analogy to the
classical case of two coupled periodic oscillators, the transition
~from! synchronization occurs smoothly or practically by a jump f
weak and strong coupling, respectively.
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2356 55OSIPOV, PIKOVSKY, ROSENBLUM, AND KURTHS
tual synchronization of the oscillators occurs at the ends
the lattice, i.e., only elements with small and largej are
synchronized~see Fig. 4!. With a further increase of«, an
increasing number of oscillators join the synchronous
gions, so they become more extended~Fig. 4!. Finally, for
« exceeding a critical value«* , all oscillators are synchro
nized, i.e., all the mean frequenciesV j coincide. With the
transition to a global phase synchronization the amplitu
of the oscillators remain chaotic, which is clearly marked
the Lyapunov spectrum reported in Fig. 5. The number
positive Lyapunov exponents remainsN even in the globally
synchronous regime at«.«* . As has been shown in@34#,
the appearance of phase synchronization in the system of
coupled oscillators manifests itself in the Lyapunov sp
trum, namely, one of the zero exponents becomes nega
while the two largest exponents remain positive. For the
tice, the N largest Lyapunov exponents remain positiv
while from the nextN exponents only one zero expone
survives, andN21 become negative.

The regime of full phase synchronization is rather sen
tive to external noise. We have simulated the dynamics
the lattice~1! with noisy Gaussian terms being added to t
right-hand side of the equations forxj and yj . Even small
noise leads to a nonconstant distribution of observed
quencies; so, strictly speaking, global synchronization is

FIG. 4. Mean frequenciesV j for different values of coupling.
The number of elementsN520, the frequency mismatch
d5231024 andv151.

FIG. 5. Lyapunov spectral i for the regimes reported in Fig. 4
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observed. Noise destroys full phase synchronization in
lattice in the same way as it destroys it in the system of t
coupled oscillators@50#: due to noise phase slips becom
possible.

B. Large frequency mismatch: Chaos suppression
and clustering

For relatively large frequency mismatchd/v1 the first
effect of the interaction is the suppression of chaos. As
coupling « grows, the number of positive Lyapunov exp
nents decreases. Before any synchronization effects are
only a few Lyapunov exponents are positive~see Fig. 6!.
Synchronization occurs in the form of clusters: the oscil
tors are divided into groups having the same frequency, w
a relatively large frequency difference between groups. T
dependence of the observed frequency on the oscillator
sition has a characteristic staircase form~see Fig. 7!. With
the increase of coupling the number of clusters decrease

The difference in the lattice dynamics for small and lar
frequency mismatches directly corresponds to the prope
of two interacting systems discussed in Sec. III. First, let
mention that a larger frequency mismatch requires a lar
coupling for synchronization to occur. We have shown
Sec. III that for small couplings the frequency difference c
be arbitrarily small; therefore, with an increase of coupling
smooth transition to synchronization is observed in the
tice. Contrary to this, for large couplings the frequency d
ference is either zero or finite; therefore, synchronous c
ters are formed with ‘‘jumps’’ between them.

In the space-time dynamics the boundaries between c
ters correspond to the positions where the phase slips oc
We illustrate this with space-time plots in Fig. 7. In all plo
the gray scale is used, with minimal values being represen
by white and maximal by black. The left panel shows t
quantity sin(fj)5yj /Aj @see Eqs.~6! and ~7!#, so that the
white stripes correspond to the phase'3p/2 and the black
stripes to the phase'p/2. The right panel shows the ampl
tudes of the oscillators. To characterize the instantane
phase difference between neighboring oscillators, we plo
the center panel the quantity

FIG. 6. Lyapunov spectral i for different values of coupling for
relatively large frequency mismatch. The number of eleme
N550, the frequency mismatchd5931023 andv151.
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FIG. 7. Mean frequenciesV j and space-time structures in the lattice of 50 coupled oscillators withd5931023 and different couplings.
All plots show a gray-scale representation of the corresponding quantities.~a! «50.03: no clusters are observed, although relatively la
regions of phase coherence are seen.~b! «50.06: first clusters appear, but the defects are extended in time.~c! «50.18: a regular train of
defects is observed.~d! «50.6: at the transition from seven to six clusters an irregular sequence of defects is seen near the right ed
lattice. ~e! «50.7: a regular train of well localized defects.
b
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sj5sin2S f j2f j11

2 D , ~10!

which is zero if the phases are equal and one if they differ
p.

The defects, which are clearly seen as maxima~black re-
gions! of sj and minima~white regions! of the local ampli-
tude, can appear regularly at certain positions on the latt
in this case the border between the clusters is sharp@Figs.
7~c!–7~e!#. Obviously, the frequency difference between t
clusters is equal to the frequency of the defects’ appeara
y

e;

e.

Near the transition at which the number of clusters chang
the defects appear irregularly in both space and time@see
Fig. 7~d!#, the border between the clusters is smeared.

C. Oscillations quenching

If the coupling between elements is not very small, t
interaction can lead not only to a synchronization, but also
a suppression of oscillations. This effect, known as ‘‘oscil
tion quenching,’’ is observed for both pairs and chains
periodic oscillators@46–48#. The loss of self-excitation of
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2358 55OSIPOV, PIKOVSKY, ROSENBLUM, AND KURTHS
two chaotic oscillators due to the interaction has been
cussed in Sec. III. Here we demonstrate this effect for
chain of coupled oscillators.

To explain this effect, let us rewrite Eqs.~1! as

ẋ j52v j y j2zj ,

ẏ j5v j xj1~a22«!yj1«~yj111yj21!, ~11!

żj50.41~xj28.5!zj .

It is clear that the influence of the coupling can be conside
as some additional damping introduced into the sys
@compare with Eq.~3!#. For large enough frequency mis
match the force from the neighboring oscillators is not re
nant and does not compensate for the increased losses.
result, if 2«.a the oscillator can go out of the self-excite
regime and oscillations decay, or ‘‘die out.’’

This effect can occur locally in the chains of chaotic o
cillators simultaneously with the synchronization. This is
lustrated in Fig. 8, where the state with two synchrono
clusters near the ends of the lattice separated by the nono
lating elements is shown.

V. SYNCHRONIZATION IN THE LATTICE WITH
RANDOMLY DISTRIBUTED NATURAL FREQUENCIES

Here we describe the effect of coupling on a lattice w
randomly distributed natural frequencies~see also@51,6#!. As
in the case of a linear distribution of frequencies, the regi
of global synchronization arises via the formation of clust
~Fig 9!.

The essential difference is that for the same misma
between the largest and the smallest partial frequenciesv j ,
global synchronization appears for considerably lower val

FIG. 8. Space-time diagrams of evolution of~a! xj (t) and ~b!
Aj (t). In the middle of the chain the oscillations are suppressed
to the interaction, i.e., oscillation quenching is observed. The
rameters areN550, the frequency mismatchd51531023,
v151, and«50.75.
s-
e
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of coupling than in the case of linear distribution. Qualit
tively, this can be explained as follows. For the case o
linear distribution of frequencies, the left neighbor of som
element is on average behind in phase and the right neig
is respectively ahead. Hence they ‘‘pull’’ the oscillator
different directions, and in this sense their actions are co
pensated. For the random case it is possible that both ne
bors are behind~ahead! in phase and both respectively slo
~speed! the element down~up!. As a result, their frequencie
tend to each other, and these elements form a synchro
cluster. Such clusters can arise at arbitrary places in the c
and can coexist with oscillators that belong to no clust
With the increase of coupling the clusters are first obser
at the location of elements with smaller frequency mismat
We note that distributions of mean frequencies do not
pend on initial conditions, i.e., for each random distributi
of partial frequencies in Eqs.~1! there exists only one attrac
tor.

e
-

FIG. 9. Distribution of observed frequencies in a lattice w
natural frequencies uniformly distributed in the interv
1,v,1.05. From bottom to top«50,0.01,0.02,0.05,0.2.
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VI. PHASE SYNCHRONIZATION OF THE RO¨ SSLER
SYSTEMS WITH THE FUNNEL ATTRACTOR

Above we have considered the case of the phase-cohe
attractor in the Ro¨ssler system. This attractor is topological
simple and, correspondingly, the phase is well defined.
however, the parametera in Eq. ~2! exceeds 0.21, the so
called funnel attractor@Fig. 1~b!# is observed. Here the pro

FIG. 10. Space-time evolution of the field and the phase dif
ence@according to Eq.~ 10!# in the lattice of funnel Ro¨ssler attrac-
tors with a50.23 and different couplings:~a! «50.02 and ~b!
«50.05. The values ofyj (t) normalized on the amplitude are de
picted in order to make the phase dynamics visi
@yj /Aj5sin(fj)#.
ent

f,

jection on the (x,y) plane demonstrates not only full rota
tions around the origin, but also ‘‘half’’ rotations~small
loops!. In regard to the phase, these small loops prod
phase slips of the value'p and occur irregularly due to the
chaotic nature of the process.

In the lattice of funnel Ro¨ssler attractors~1! ~here we take
all the oscillators to be identical! these phase slips, in con
trast to the phase-coherent case, prevent a global synch
zation. However, as the coupling increases, relatively la
regions of coherent rotation of the oscillators appear, se
rated by defects~Fig. 10!. The defects appear spontaneous
due to local irregular phase slips. It is interesting that th
lifetime is relatively large compared to the cluster regime
the phase-coherent oscillators. This is because after a slip
phase difference between neighboring oscillators is'p,
which roughly corresponds to the unstable but station
configuration of phases. The relaxation to the stable ph
difference'0 is therefore slow.

To describe the synchronization of the funnel attract
quantitatively we have characterized the instantaneous p
difference with the quantitysj @see Eq.~10!#, which is de-
picted in Fig. 10.~Because all oscillators are identical, on
cannot characterize synchronization as the frequency lo
ing: the averaged frequencies are always equal.! With the
increase of« the number and length of defects decrea
indicating the tendency to synchronization. Small values
sj correspond to the zero phase difference, while the ph
difference'p gives large valuessj'1. In Fig. 11 the de-
pendence of the average ofsj (t) ~for independent systems
is obviously 0.5) on the coupling is shown for different p
rameter values of the Ro¨ssler attractor. While for the phase
coherent case the full synchronization appears for very sm
couplings, in the funnel case a rather slow decay of^sj& is
observed.

VII. DISCUSSION

In this paper we have considered phase synchroniza
effects in a lattice of diffusively coupled Ro¨ssler oscillators.
When the individual attractors are phase coherent, the ph

-

FIG. 11. Average value of the phase difference^sj (t)& vs cou-
pling « for different values of the parametera in the Rössler system
~2!.
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2360 55OSIPOV, PIKOVSKY, ROSENBLUM, AND KURTHS
is well defined and its dynamics is similar to that of regu
oscillators. In the inhomogeneous lattice synchronization
pears when the coupling exceeds some threshold. We
found two scenarios of the transition: in the first one
gradual adjustment of the frequencies is observed, whil
the other one an intermediate clustered state occurs. The
ders of the clusters appear in the space-time diagram
positions where phase defects are observed. We have
onstrated that these defects can be both periodic and irr
lar. The two scenarios directly correspond to the synchro
zation properties of two interacting systems: for sm
couplings the frequencies are adjusted gradually, while
large couplings a virtual jump is observed. If the dynamics
the phase in the individual system is nontrivial, like for t
funnel attractor in the Ro¨ssler model, in the homogeneou
lattice a spontaneous appearance of defects is observed,
ing to a complex phase dynamics of the lattice with spa
time clusters.
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Although we do not suggest a rigorous definition of t
phase for chaotic systems, in many situations it can be
fined at least approximately. Thus one can expect that
phase synchronization is a general property of chaotic s
tems. The effect is, however, greatly influenced by the pha
coherent properties of the attractor. The two regimes in
Rössler system exactly represent the cases of extreme p
coherence and the presence of phase slips. The study o
systems with moderate phase coherence is now in progr
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