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VOSS A., ET AL.: Multiparametric Analysis of Heart Rate Variability Used for Risk Stratification Among Sarvi-
vors of Acute Myocardial Infarction. 4 multiparametric heart rate variability analysis was performed to prove if
combined heart rate variability (HRV) measures of different domains improve the result of risk stratification in patients
after myocardial infarction. In this study, standard time domain, frequency domain and non-linear dynamics measures
of HRY assessment were applied to 572 survivors of acute myocardial infarction. Three parameter sets each consisting
of 4 parameters were applied and compared with the standard measurement of global heart rate variability HRVi. Dis-
criminant analysis technique and 1-test were performed 10 separate the high risk groups from the survivors. The predic-
tive value of this approach was evaluated with receiver operator (ROC) and positive predictive accuracy (PPA) curves.
Results — The discriminant analysis shows a separation of patients suffered by all cause mortality in 80% (best single
parameter 74%) and sudden arrhythmic death in 86% (73%). All parameters of set | show a high significant difference
(p<0.001) between survivors and non-survivors based on two-tailed t-test. The spacificity level of the multivariate pa-
rameter sets is at the 70% sensitivity level (ROC) about 85-90%, whereas HRVi shows maximum levels of 70%. The
PPA in the all cause mortality group is at the 70% sensitivity level twice as high as the univariate HRY measure and
increases to more than fourfold as high within the VI/VF group. In conclusion, in this population, the multiparametric
approach with the combination of four parameters from all domains especially from NLD seems to be a berter predictor
of high arrhythmia risk than the standard measurement of global heart rate variability.
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Introduction

Many concepts of non-linear dynamics have
been applied to cardiovascular research in the past
15 years. Some have been related to heart rate vari-
ability (HRV)'® and blood pressure variability
(BPV).* Most investigators favored traditional
methods from chaos theory like Lyapunov expo-
nents,” fractal dimensions>*’ or phase space repre-
sentations.” These methods require a rather long
and stationary time series and are sensitive to noise.

HRYV in humans has been described as fractal.'
Applying spectral analysis to the long term heart
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rate time series, the so called inverse power law
scaling 1/f can be obtained, if one plots the data as
the log of spectral power versus log of frequency.>’
One major problem of applying 1/f is the severe
influence of non-stationarities (e.g. physical activ-
ity) occurring in most time series and leading to a
falsified envelope.

To gain a higher level of robustness against in-
fluences of noise and non-stationarities several
groups have developed other non-linear concepts.
These methods have been based on different types
of entropy estimation like approximate entropy’ or
entropies from distributions of symbolic dynam-
ics.* With surrogate techniques® or discriminant
analysis techniques® several investigators demon-
strated the origin contribution of non-linear meas-
ures.
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Among this variety of non-linear approaches
there are only a few studies which assess the clini-
cal usefulness of non-linear measures for high risk
stratification based on HRV analysis.”® No exten-
sive prospective study has been performed to show
the efficacy of these new methods.

We recently evaluated a new concept of multi-
parametric HRV analysis in a pilot study® attempt-
ing to classify risk in patients after myocardial in-
farction. We hypothesize that the four-dimensional
multiparametric HRV analysis improves the result
of risk stratification in patients after myocardial
infarction.

Methods

Patients

HRV measures were applied to 572 survivors
of acute myocardial infarction (AMI). All patients
underwent 24-hour Holter monitoring before dis-
charge from the hospital (5 to 8 days after AMI)
and were followed up for 2 years. No patient re-
ceived any antiarthythmic treatment. Treatment
with beta-adrenergic blocking agents was inter-
rupted at least 48 h before the recording. During
the follow-up 14 patients suffered from sudden
arrhythmic death (SAD), 22 patients suffered from
sudden death (SD), 34 patients from cardiac death
(CD), 13 patients suffered from ventricular tachy-
cardia or fibrillation (VI/VF) and 43 patients suf-
fered from all cause mortality (ACM).

HRV-analysis

Short-term HRV measures from time and fre-
quency domain were computed as mean values
from successive S-minutes periods (HRV short
term 5 min - HRVSTsy,) and from a 30-minutes
stationary stage (HRV short term stationary -
HRVST,,). The non-linear measures used require
longer time series with at least 1500 samples (that
means approximately 20-30 minutes). Thus, the
short term HRV based on non-linear parameters
was calculated as the mean value of successive 30-
minutes windows (HRV short term 30 min -
HRVST3om,). Long-term HRV measures were
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computed as parameters over the entire 24 hours
(HRY long term HRVLT).

Using statistical procedures like hierarchical
cluster analysis and stepwise discriminant function
analysis® we limited the parameter number to four,
where the following three parameter sets tumed out
to be the most useful ones in risk stratification:

Parameter set 1 (PS1)
shannon (I‘IRVSTsm), (V1f+lﬂ/p (I'IRVSTsm),
wpsum02 (HRVST30min), meanNN (HRVST,)

Parameter set 2 (PS2)

plvarl0 (HRVSTsy), Tenyi025 (HRVLT), shan-
non (HRVLT), If/hf (HRVST 40)

Parameter set 3 (PS3)

hifp (HRVSTsmn), VIf+lifyp (HRVSTsmi),
fwshannon (HRVST30min), meanNN (HRVSTy,,).

A special filter method, which considers the ba-
sic variability in the time series, was used to filter
out arrhythmias, missing beats and artifacts. From
all corrected time series (NN time series) the fol-
lowing parameters were calculated:

The triangular index HR Vi is a geometrical time
domain parameter.'*"! It is the integral of the den-
sity distribution (number of all NN intervals) di-
vided by the maximum of the density distribution.
This measure expresses overall HRV measured
over 24 hours and is mainly influenced by lower
frequency processes. One major advantage of this
parameter lies in its relative insensitivity to the
quality of the investigated HRV time series. '

The parameter ‘shannon’ from the first pa-
rameter set PS1 denotes the averaged Shannon en-
tropy of the histograms from successive S-minutes
intervals over the entire 24 hours. The parameter
‘(VIf+ifyp’ marks the averaged normalized low
frequency component calculated from successive 5-
minutes intervals of the 24h-tachogram (‘vIf’ repre-
sents the power in the frequency band 0.0033 Hz -
0.04 Hz, ‘If 0.04 Hz - 0.15 Hz, ‘p’ is the total
power). The spectra are estimated by use of the
Fast Fourier Transformation. To avoid the
‘leakage’ effect a Blackman Harris window func-
tion was applied.

‘wpsum02’ is a nonlinear measure derived from
symbolic dynamics.® There are several quantities
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that characterize symbol strings. For 30 minutes
intervals we investigate the probability distribution
of length 3 words (words which consist of three
symbols from an alphabet {0,1,2,3}). In this way,
one can obtain 64 different types of words (bins).
A high percentage of words consisting only of the
symbols '0' and 2' (“wpsum02°) is a measure for an
intermittent decreased HRV. Parameter ‘meanNN’
is the mean value of the NN-intervals calculated
from the most 30 minutes stationary stage within
the 24h-tachogram.

The first parameter from the second set PS2
‘plvar10’ is an additional mode of symbolic dy-
namics for transient low variability analysis. In this
mode we observe 6 successive symbols of a simpli-
fied alphabet, consisting only of symbols ‘0’ or ‘1°.
Here the symbol ‘0’ stands for a difference be-
tween two successive interbeat intervals lower than
10ms whereas ‘1’ represent those cases where the
difference between two successive interbeat inter-
vals exceeds this special limit. Words consisting
only of six zeros are counted, that means ‘plvar10’
represents the probability of the word type
‘000000’ occurrence. The term ‘renyi025° denotes
the Renyi-entropy (order 0.25) of word distribu-
tion, calculated from a long term symbolic dy-
namics mede. The word distribution was formed of
length-6 words of the alphabet {0,1,2,3,4,5}. In
this way we get 7776 different word types con-
taining different information about the dynamics in
the time series. The parameter ‘shannon’ denotes
the Shannon-entropy of the 24h histogram. That
means, that only one histogram and one Shannon
entropy are calculated. This parameter describes the
global 24h HRYV including all long term phenom-
ena like circadian rhythms. Finally, ‘If/hf” is the
well known low_frequency to high frequency ratio'
calculated from the most stationary phase.

In parameter set PS3 the measures ‘(vif+ifyp’
and ‘meanNN° are already described. The parame-
ter ‘hf/p’ (0.15Hz - 0.4Hz) marks the averaged
nommalized high frequency component calculated
from successive S-minutes intervals of the
24h-tachogram. Finally, the parameter ‘fwshannon’
is also a measure from npon-linear dynamics
(symbolic dynamics). The same word definition for
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this parameter as for ‘wpsum02’ is used From
these 64 different word types described above a
word distribution is calculated. The Shannon-
entropy of this special distribution describes the
basic variability of the most stationary region.

Data quality control

Under clinical routine conditions the collected
ECG records represent a typical mixture of good,
average, and moderately poor quality long term
recordings. Unfortunately, this quality inhomoge-
neity of ECG records leads to misclassifications
and non-comparable results. Therefore, we had to
develop an algorithm for amtomatic exclusion of
those heart rate time series which are too short or
including too many arrhythmias and artifacts.

A long term tachogram will be excluded if one
of the following conditions holds:

El. The recording time deducting the measured
artifact time is less than 19 hours (excludes
recordings which are too short or which have
too many artifacts).

E2. The parameter °‘sdaNN5’ is greater than
120ms (excludes time series were the number
of RR-interval misclassifications is beyond

©  the selected limit).

E3. The measure ‘phvar20’ is greater than 0.2
(reject all time series with long episodes of ar-
rhythmias like atriat fibrillation or bigeminy).

Parameter ‘sdaNNS5’ is the averaged standard
deviation of the NN-intervals calculated from suc-
cessive 5-minutes intervals of the 24h-tachogram.

‘phvar20’ denotes a long term measure for transient

high variability analysis. We observe 6 successive

symbols of a simplified alphabet, consistng only
of symbols ‘0” or ‘1°. Here, the symbol ‘1’ stands
for a difference between two successive beats
higher than 20 ms whereas ‘0’ represent those cases
where the difference is lower. ‘phvar20’ represents
the probability of the word type ‘111111’ occur-
rence. Applying these criteria to St.George’s data
base did reduce the number of included patients
from 810 to 572.
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Figure 1. ROC curves of ACM group caiculated for parame-
ter HRVi and parameter set |

Statistical analysis

The two tailed univariate t-test for equality of
means is used to test whether the means of the non-
survivor groups differ significantly from the survi-
vor group. With discriminant finction techmique
the degree of multivariate linear independence be-
tween these groups is calculated. To determine the
maximum specificity for each value of sensitivity
the receiver operator characteristics (ROC) were
computed.' To express the percentage of correctly
positive classified patients in relation to all patients
the positive predictive accuracy (PPA) was deter-
mined. ROC and PPA curves distinct between in-
dividual end points based on multivariate combi-
nation of the three parameter sets and on univariate
HRVi

Results

In recent stndies we computed approximately
50 HRV analysis parameters. Using standard sta-
tistical procedures the parameter number was re-
duced to three sets each with four parameters.

The results of discrimination analysis showed a
separation of the ACM and the survivor group of
80% for parameter set 1 and 2 and of 81% for set
3. Consequently all three parameter sets are suit-
able for a multiparametric HRV analysis.

Receiver operator and the positive predictive
accuracy curves were computed to optimize the
classification of patients after myocardial infarc-
tion.

Figure 1 shows the maximum achieved level of
specificity at pre-selected levels 30%, 50% and
70% of sensitivity (ROC). At the 30% sensitivity
level all multivariate parameter sets have a rather
high specificity, the univariate parameter HRVi is
slightly lower. Similar results have been obtained at
the 50% level. The speciﬁcity level of the muiti-
variate parameter sets is at the 70% sensitivity level
about 85-90%, whereas HRVi shows maximum
levels of about 70-75%.

In Table I the maximum achieved level of posi-
tive predictive accuracy at pre-selected levels 30%,
50% and 70% of sensitivity is presented. The
maximum achieved levels of PPA varies at the
30% sensitivity level in the multivariate parameter
sets from about 40% to 95%, whereas HR V1 varies
from about 5% to 50%. At higher levels of sensi-
tivity the PPA is reduced. The PPA level of the
multivariate parameter sets at the 70% sensitivity

Table |
The maximum achieved level of PPA at pre-selected levels of sensitivity related to the three parameter
sets and HRVi
[Sensib'vity 30% 50% 70%
iPPA PS1 PS2 PS3 HRVi| PS1 PS2 PS3 HRVi| PS1 PS2 PS3 HRVi
SAD 72% 96% 78% 48% | 35% 21% 36% 8% |[20% 10% 23% 8%
SD 47% 40% 50% 10% [ 29% 14% 2% 10% | 16% 8% 15% 7%
CD 87% 71% 79% 43% | 44% 35% 45% 20% | 30% 20% 31% 17%
VT/VF 70% 85% 37% 6% |38% 23% 24% 6% |26% 12% 16% 6%
IACM 70% 59% 68% 38% |40% 33% 42% 22% | 29% 20% 29% 15%
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Table Il
Basic statistics of HRV analysis performed with parameter set 1 (mean value
m + standard deviation s). The columns p show the different ievels of significance (two sided t-
test, survivors versus risk groups, * p<0.05, ™ p<0.01, ** p<0.001).

shannon (vif+if)/p wpsum02 meanNN

m + s p m £ S P m £ s p m =+ S p
SAD 2.02+0.42 | ™ | 0.67+0.11 ~ | 0.6110.17 = | 73851197 | ™
SD 2124042 | = | 06610.11 { ™ | 0.59+0.17 = | 798.8+156.5 | ™
CD 1.99+046 | ™ | 0641013 | = | 0631017 | ™™ | 773.9+x151 8™
VTNF 2.18+0.48 - 0.62+0.11 | ==~ | 0.5420.19 | n.s. | 842.5+170.4 .
ACM 2024044 { = | 064+0.12 | ™ | 063017 | ™ 798.7+1644 | ™
Survivors 2.52+0.38 0.73+0.07 0.48+0.16 987.2+182.7

level is about twice as high as the univariate HRVi. Discussion

Table I shows that the survivors have a higher
Shannon entropy ‘shannon’ compared to non-
survivors. A lower Shannon entropy reflects a more
dominant peak in the density distribution and im-
plies a more reduced variability. That means, their
HRYV is more complex, the dynamical behavior is
increased. The normalized low frequency compo-
nent ‘(vif+lfyp’ is decreased in the nisk groups.
This finding is surprising, as we know from the
literature that the low frequency components are
increased in high risk patients after myocardial in-
farction.'>'® The measure ‘wpsum02’ shows higher
intermittent low variability phases in all mortality
groups. All high risk patients show a increased
steady-state heart rate (during most stationary
phase).

The PPA in the all cause mortality group ACM
is with PS1 at 70% sensitivity level twice as high as
with the univariate HRV measure (Fig. 1) and this
difference increases to a factor of more than 4
within the VT/VF group (Table I) .

The specificify at 70% sensitivity level is in the
univariate case (ROC ACM group) 68% and with
PS1 85% (Fig. 2) and increases to 72% respec-
tively 94% in the VT/VF group.

This study examines the capability of a multi-
pammetricalldomainHRVanaiysisapproachto
increase the recognition of patients after myocar-
dial infarction threatened by sudden cardiac death
and severe tachyarrhythmias. The main result of
this study in analysis of heart rate variability is a
doubling of diagnostics precision.
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In the population of the St. George’s hospital
postinfarction data base, the combination of pa-
rameters from all domains especially from NLD is
a better predictor of high arrhythmia risk than stan-
dard measurement of global heart rate variability.
The favored parameter combination includes the
measures ‘shannon’, ‘(vif+lf)/p’, ‘wpsum02’ and
‘meanNN’ - the mean heart rate during the most
stationary phase.

. This measure ‘meanNN’ reflects a steady state
Test HRV excluding sigmificant physical and mental
stress influences and could be interpreted as basic
autonomous status under a non (or normal) stimu-
lated basic condition. A higher basic mean heart
rate stands for a higher risk. There are several other
attempts to emphasize the mean heart rate as a suit-
able risk predictor.’

Shannon entropy as a time domain parameter of
the NN inmterval density histogram represents
mainly the day-night time behavior as well as the
range of variability during the whole day. In that
way ‘shannon’ is rather similar to the St. George’s
‘HRVi'-measure.'® The main difference between
‘shannon’ and “HRV3’ is that ‘shannon’ includes all
(weighted) information of the histogram while
‘HRVi® considers only the height of the major
(highest) peak and the derived basis.

Calculating the normalized frequency compo-
nent ‘(vViftifyp’ we get an information about
changes in lower frequency activity which is
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modulated mainly by sympathetic activity as well
as vagal activity.”” A decrease of lower frequency
components in connection with an increase of
higher frequencies could be a sign of autonomic
imbalance with a more dominant vagal component.
This result is in contrast to other findings'® showing
a remarkable increase of sympathetic activity in
high risk patients. One explanation for this phe-
nomenon could be the clinical treatment. It is re-
ported that angiotensin-converting enzyme (ACE)
inhibitors,® B8-blockers” and antihypertensive
drugs® may decrease the LF component and in-
crease the HF component. To answer this question,
we have to investigate in further studies if the pa-
rameter ‘(vif+lf)/p’ might reflect the efficacy of a
treatment and can be influenced by the therapy of
the physicians (high risk patients get more of these
drugs). In addition we should also consider a pos-
sible similar effect of the combination of different
drugs.

‘wpsum02’ is a nonlinear measure of overall
variance homogeneity. A high value of ‘wpsum02’
reflects a reduced HRV. This lack of variability
may occur either as a general reduced HRV or as
an intermittent reduced HRV. In opposition to any
kind of standard deviation in time domain
‘wpsum02’ detects any epoch of reduced variabil-
ity independently from the mean variability. That
means, if a time series shows a relative high stan-
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