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shape, scaled so that R(K)=1, with total
length L. The inverse-square ‘energy’ (S(K),
A, writhe, and so on) can be estimated by
assuming the ‘mass’ of the knot is concen-
trated at points p on the integer lattice. Con-
centric shells of unit thickness about each p
each contribute the same amount, so the
contribution for p is that constant multiplied
by the number of shells, which is of the order
of L1/3. Multiplying by the number of points,
L, gives L4/3. The proof that S(K) linearly
bounds A is simple vector geometry.

The 4/3 exponent is sharp. Consider the
Hopf link of two tori in its natural geo-
metrical position. Fill each torus with N
loops parallel to the centre curve, each loop
a strand of radius 1 (Fig. 1a). Then with any
tight packing of the loops, the minor radii of
the tori is of the order of √N. The conforma-
tion fits inside a sphere of radius 4√N, so the
total rope length is about N3/2. Each loop is
linked with N loops in the perpendicular
torus, so the crossing number is about N2.
Therefore the rope length is of the order of
C(K)3/4. Because 11L(K)4/3/4πA(K)/C(K),
this example has A in the order of L(K)4/3.

The minimum rope length for a knot is
bounded by 3C(K)2. This can be seen by
arranging the knot so that the crossings are
evenly spaced along a line (Fig. 1d). For the
simpler knot types, L(K), S(K) and A in
minimized conformations all ‘appear’ to be

linearly related7. An explanation is that the
simpler conformations are ‘planar’: from
most perspectives a unit arc of the knot
crosses only a few other unit arcs.

As complexity increases, there are many
families of knots and links with three-
dimensional growth, exhibiting the 4/3
power law. Families with single-dimension-
al growth (Fig. 1b,c) have a linear relation-
ship among the measures. With planar
growth, we expect A to be linear with C(K)
and S(K) to be of the order of  L(K)logL(K).

We propose that the rope length
required (Fig. 1e–i) to tie an N-crossing
knot or link varies only between k1N

3/4 and
k2N. Other investigators have also recently
observed the 4/3 law in knots on the cubic
lattice9 and in vector fields10.

A good knot energy has only a finite
number of knot types realized below any
given energy level. Our theorem gives us
this property for L(K) and S(K), proving
that there is a finite number of knots that
can be tied with a finite length of mathe-
matical rope. 
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Heartbeat synchronized
with ventilation

It is widely accepted that cardiac and respi-
ratory rhythms in humans are unsynchro-
nised1. However, a newly developed data
analysis technique allows any interaction
that does occur in even weakly coupled
complex systems to be observed. Using this
technique, we found long periods of hidden
cardiorespiratory synchronization, lasting
up to 20 minutes, during spontaneous
breathing at rest. 

Synchronization is a universal phenom-
enon that occurs when two or more non-
linear oscillators are coupled. It is observed
in many fields of science and is widely
applied in engineering. The case of syn-
chronisation in periodic, or even noisy,
oscillators is well understood2–4. The
notion of synchronization has often been
used to analyse the interaction between
physiological (sub)systems1, but these
studies have been restricted to almost peri-
odic rhythms. No approach has been sug-
gested to probe the weak interactions
between such irregular and non-stationary
oscillators as the human heart and respira-
tory system. 

These two physiological systems are
known to be coupled by several mecha-
nisms, but apart from respiratory modula-
tion of heart rate, first observed in 1847 and
known as ‘respiratory sinus arrhythmia’
(RSA)5–7, no other effects have been report-
ed. Moreover, in spite of some early com-
munications8, it has been concluded that
“there is comparatively weak coupling
between respiration and the cardiac
rhythm, and the resulting rhythms are gen-
erally not phase locked”1. 

We used the concept of phase syn-
chronization of chaotic oscillators9,10 to
develop a technique to analyse irregular
non-stationary bivariate data. We analysed
data obtained in non-invasive examina-
tions of eight healthy volunteers (14–17-
year-old, high-performance swimmers;
four of them male and four female). While
subjects lay at rest, electrocardiograms
(ECGs) were recorded while respiratory
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FFiigguurree  11 Knot conforma-
tions. aa, Packed Hopf tori. bb,
L̀inear’ conformations. Left,
a product of trefoils; right, a
thick chain with a linear
relationship between cross-
ing number and rope
length. The chain also
seems to be a continuous
family of minima for rope
length, in which case mini-
ma are not isolated in the
link class. cc, ‘Linear’ confor-
mation of a twist knot —
apparent minimum. dd, An
N-crossing knot fits in a
square of side order N. ee,ff,
Minima for figure-eight and
square knot respectively. No
particular accuracy is
claimed — these knots were
tied before the calculation
of the computer data7, and
both the conformation and
the values for rope length
match almost exactly, as
did several other knots. gg,
Minimum for the ‘granny’
knot, differing in shape from
the minimum found by
computer11, and having a different symmetry. hh, Another view. We estimate this to be the true global mini-
mum. ii, Some support for the accuracy of the rope calculations is given by this conformation of the five-
crossing torus knot, which by rope seemed to be a lower minimum than the conformation reported in ref. 7.
Further computation confirmed this.
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flow was simultaneously measured with a
thermistor at the nose. Both signals  were
digitized with a 1,000-hertz sampling rate
and 12-bit resolution. Each record lasted 30
minutes. 

The resulting time series were irregular,
strongly non-stationary and noisy. These
characteristics made it inappropriate, in
analysing the mutual dependencies
involved, to use even sliding versions of
traditional spectral and correlations tech-
niques, or direct computation of instanta-
neous phase differences9,10. So instead of
these techniques, we used a new kind of
data presentation which we call a cardiores-
piratory synchrogram (CRS), to detect dif-
ferent synchronous states and transitions
between them.

We first used the Hilbert transform9 to
calculate the instantaneous phase fr(t) of
the respiratory signal. fr(t) is defined on
the real line (not restricted to the [0,2p]
interval). Next, we regarded the respiratory

phase stroboscopically at times tk, where the
R-peak in the kth heartbeat occurs and
hence the phase of the heart rhythm
increases by 2p. In the simplest case of n:1
synchronization, there are n heartbeats in
each respiratory cycle; these beats appear at
n certain values of respiratory phases, which
are constant over all cycles.

Plotting these relative phases c as a
function of time shows n horizontal
stripes. In the general case of n:m syn-
chronization, such a structure appears if
we relate the phases of the heart beats to
the beginning of m adjacent respiratory
cycles, c(tk)=(fr(tk) mod 2pm)/2p; we
have n horizontal stripes within m respira-
tory cycles.

This technique allows us to distinguish
between different periods of synchroniza-
tion, even for noisy and non-stationary
data. For example, we observe 5:2 locking
between the respiratory frequency vr and
the heart rate vh (5vr≈2vh) during a

period of about 300 seconds, then after a
transition period, a regime of 3:1 phase
locking is found for about 20 minutes (Fig.
1). These two kinds of locking can be rec-
ognized using histograms (Fig. 1c) and the
autocorrelation function of phases (Fig.
1d). 

Our analysis showed cardiorespiratory
synchronization of several locking ratios
occurring in six out of eight subjects (Table
1). Subjects with the strongest synchroniza-
tion had no remarkable RSA, whereas both
subjects with the highest RSA exhibited no
synchronization.

We conclude that phase locking of
respiratory and the cardiac rhythms, and
respiratory modulation of heart rate, are
two competing aspects of cardiorespiratory
interaction. From a physical viewpoint, syn-
chronization and modulation are different
phenomena and are related to different
coupling. RSA generation is associated
mainly with the baroreflex feedback loop
and its respiratory phase-dependent infor-
mation processing7.

Perhaps cardiorespiratory synchroniza-
tion is an expression of another kind of
cardiorespiratory interaction, such as a cen-
tral coupling between cardiovascular and
respiratory neuronal activities.
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FFiigguurree  11 Analysis of cardiorespiratory cycles. aa,, Cardiorespiratory synchrogram, showing the transition (red)
from 5:2 frequency locking (black) to 3:1 phase locking (blue). Each point shows the normalized relative
phase of a heartbeat within two adjacent respiratory cycles c(tk)=(fr(tk) mod 4p)/2p. bb,, Number of heartbeats
within two adjacent respiratory cycles. cc,, Histogram of phases. The six horizontal stripes in the blue region
of the CRS result in six well-pronounced peaks in the distribution of phases. dd,, Autocorrelation function of
phases Rc(t)=Sk(c(tk)–<c>)(c(tk+t)–<c>)/Sk(c(tk)–<c>)2. The coloured curves correspond to respective regions.

Table 1 Subjects, ordered by the amplitude of respiratory sinus arrhythmia (RSA) determined as the averaged difference between the longest and

shortest R–R interval within every respiratory cycle*

Code Sex Age R–R (ms) Resp. cycle (ms) RSA (ms) Synchronization
Median DQuart. Median DQuart. Median DQuart.

A m 16.1 1,104 28 3,110 390 15 40 3:1 (1,000 s), 5:2 (300 s), 8:3 (20 s)
B m 14.6 1,018 95 3,210 610 31 38 3:1 (several spells of 40 s)
C m 13.9 975 110 3,230 850 46 57 3:1 (20 s), 7:2 (20 s), 4:1 (20 s)
D f 15.2 1,157 157 2,930 780 56 57 5:2 and 3:1 (several spells of 30 s)
E m 16.9 1,026 89 3,650 620 67 47 7:2 (60 s), 3:1 and 4:1 (20s)
F f 15.0 1,024 143 2,960 700 74 75 11:4 (20 s)
G f 15.9 733 70 5,615 1,550 83 70 No synchronization detectable
H f 16.3 1,256 197 4,260 2,100 264 296 No synchronization detectable

*If an R–R interval spans two adjacent cycles, it is considered to belong to that one which contains more than 50% of the interval. For R–R intervals, respiratory cycles and the
RSA, the medians of respective distributions and differences between the first and third quartile (DQuart.) are given. We observe that cardiorespiratory synchronization tends to
become weak with increasing RSA.


