A Comparative Classification of Complexity Measures

R. WACKERBAUER ${ }^{1}$, A. WITT ${ }^{2}$, H. ATMANSPACHER ${ }^{1}$, J. KURTHS ${ }^{2}$, H. SCHEINGRABER ${ }^{1}$

'Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, DW-8046 Garching
${ }^{2}$ Arbeitsgruppe Nichtlineare Dynamik der Max-Planck-Gesellschaft an der Universität Potsdam. Am Neuen Palais, DO-1571 Potsdam

Abstract

A number of different measures of complexity have been described, discussed, and applied to the logistic map. A classification of these measures has been proposed, distinguishing homogeneous and generating partitions in phase space as well as structural and dynamical elements of the considered measure. The specific capabilities of particular measures to detect particular types of behavior of dynamical systems have been investigated and compared with each other.

1. INTRODUCTION

1.1 Complexity

The notion of complexity has been object of numerous and extensive studies since it has become clear that the exact sciences, in particular physics, can no longer afford to disregard the behavior of systems which cannot be treated simply. A simple treatment has always been assumed to be possible either if only few degrees of freedom are involved or if central limit theorems can be applied in case of many degrees of freedom. These assumptions cannot be maintained for nonlinear dynamical systems in general. In such systems, complex (in contrast to simple) behavior can occur with only few degrees of freedom, and central limit theorems are not always applicable.

A very clear and suggestive illustration of a basic issue arising in the context of defining complexity is due to Grassberger [1]. It is reproduced in Figure 1 and it shows three patterns corresponding to a

 (irassterger [l] wath kind permossion of the anther

Wiferent degree of complexity. Figure la shows a completely regular, ordered structure. Figure in an a, completely random. disordered structure, and Figure th represents a mixture of order and 1 iswo. regularity and randomness. From an intuitive point of view, the latter pattern will quite natuma considered most complex by most people. This intuitive judgment, however, contradicts the histomm caticst formal measure of complexity as suggested by Koimogorov in 1965 [2]. It is called algoriblin; complexity and has been further developed by Chaitin [3]. The algorithmic (Kolmogorov- (haitin) ... plevity of a pattern is essentially given by the length of the shortest algorithm capable of reproducine: patern. As such, it would assign highest complexity to Figure Ic instead of Ib, Algorithmic comple: ins in many. but not in all cases) a measure of randomness like Shannon infurmation or dynamical ennay nut of complexity in the intuitively appealing sense.

Presently a bunch of different definitions of complexity and corresponding measures of complexin Pxcellent overviews considering the state of the art up to 1988 have been kiven by (irassberger well as by Lindgren and Nordahl [5]. Main current concepts are due tw Hoproft and [liman , if
 and Xt]an [14]. Lloyd and Pagels [15]. Crutchfield and Young [16], Langton [17]. Huberman ami $14, \mathrm{E}$ [1s]. Bates and Shepard [19]. While complexity according to references [6] to [1]] is more $1, \ldots$ measure of randomness as algorithmic complexity, the remaining approaches represent different atwhl inward a definition of complexity as suggested by the intuitive notion sketched above. Within this funt romplexity is not monotonically related to dynamical entropy (or Shannon information) but is a glotat convex function of it. Complexity is low for minimum and maximum entropy (information), and high at intermediate entropy (information) values.

Several authors studying notions of complexity that are in the spirit of the latter approach have found indications that complexity becomes maximal whenever a system's control parameter passes a value at which the behavior of the system switches between regular and chaotic. It has even been suspected that complexity at those "phase transitions" diverges in the thermodynamic limit. At phase transitions, the information processing (computational) capabiities of a dynamical system are regarded to be very high. lin Grassbergers terminology, this corresponds to the capability to master a meaningful task of very high degree of difficulty [4]. From a thermodynamic point of view, a system produces a maximum amount of Guctuations at a phase transition or, respectively, at an instability, if non-equilibrium systems are concerned.

1.2 Basic Concepts

Although there is already a basic distinction between complexity à la Kolmogorov-Chaitin (algorithmic complexity) and complexity according to the intuitive notion presented above, the large and still increasing number of complexity measures calls for a more detailed scheme into which these measures may be categorized. In the present section such a scheme will be introduced. It is explicitly built upon the antinomies of structural versus dynamical properties of point sets and of homogeneous versus generating partitions on their support. The basic types of support considered here are phase space and position space.

- IIomogeneous partitions (P^{H}) are partitions into cells (boxes, balls, etc.) of identical volume with respect to the Lebesgue-measure. This kind of partition corresponds to a homogeneous concept of space, and it is practically easy to handle. Apart from these, no additional reasons exist that might favor the use of homogeneous partitions compared with any other, arbitrarily chosen inhomogeneous partition. A homogeneous partition implies an appeal of universality, since each measure derived within a corresponding partition is independent of (context-free with respect to) any specific properties of the system concerned.
- Generating partitions $\left(P^{G}\right)$ are partitions into cells whose boundaries are generated by the propertics (in particular by the dynamics) of the system under investigation. The most important feature of this type of partition is that boundaries between cells are always mapped onto themselves during the evolution of the system. This means that any generating partition is a Markov partition (but not vice versa). The payoff for this advantage is that a generating partition has to be constructed for each system individually and requires knowledge of the dynamical laws governing its evolution. In this sense it turns out to be system-specific, hence context-dependent in contrast to universal.
- Structural measures, of a system are measures of those of its properties which do mot arme - wham information ahout its dyammes. The formal hasis of a measure for such poppertme ar

 an this sense.

 measures; (for example information gain. mutual information) are defined by transition proten iftes. which can formally be reduced to state probabilities. These measures will be ronsiderne structural measures.
\therefore inbining these four separate revteria of classification, four different chasses of measures wh omple an be obtained. Subsequently they are listed together with aspects of their suggested interpretatun. uplication.
$\therefore P^{\prime \prime}$ Structural measures based on a homogeneous partition.
These measures are suggested for use with respect to structural properties of systems as are directly and concretely observable in usual (external) position space k^{3}. They are based a homogeneous partition intu cells of identical size. This type of partition is relevant, if is a set is considered independent of the underlying creating dynamics le.g. for a given distribut of points without knowledge of the dynamicsi. It can be justitied an well by the assumpha: woal homogeneity of space. When enables that applications to shati sate systeme nppeat masomable.
- $/{ }^{\prime \prime}$ Simotural measures based on a generating partition.

Is mentioned above these measures are suitable with respect to the tharacterization of stment properties of systems as they are represented in phase space, but they require knowledge of dynamics by which the structure has been generated. Once the dynamics is known, the contexinini , It the generating partition enables a unique definition of its own history. In contrast, the than: relevance of structures in external position space. structures in phase space can be regarden
abstract structures. Phase space coordinates are different from position space coordinates in a formal and in a conceptual sense.
$\int P^{H}$ Dynamical measures based on a homogeneous partition.
These measures refer to dynamical. but abstract properties of a system in terms of a parameter time t which is used in order to define rates of change, e.g., velocity as the temporal change of (externah) position. Parameter time t is abstract insofar as it is not object to direct perception in external position space. Any measurement of time t is based on an observation of concretely perceivable positions, e.g., of the pointers of a clock. In this sense, t can be understood as an external. but abstract concept of time. It is crucial for all types of unitary dynamical laws, and corresponds to the point of view of temporal reversibility.
$D P^{G}$ Dynamical measures based on a generating partition.
In contrast, concrete dynamical properties of a system can be characterized by the concept of an internal time τ. In an illustrative manner, notions like age, memory, and related phenomena of decaying correlations between quantities defined locally in phase space fall into this category. For instance, intrinsically instable systems with positive Kolmogorov-Sinai-entropy K possess an "intrinsic" correlation time given by K^{-1}. (This does not contradict the existence of longer, non"intrinsic" correlation times, e.g., due to memory effects.) Direct operational access to τ seems to be possible only from the interior perspective of the system itself. In this perspective, internal time is responsible for all types of phenomenological arrows of time, hence emphasizes the point of view of temporal irreversibility.

The preceding characterization entails the antinomies of internality and externality (endo/exo) as well as of abstraction and concreteness. the latter one coinciding with that of the descriptive level of models and the observational level of systems. For more details on a formal treatment of these antinomies and their relationships with each other, we refer to a more detailed discussion given elsewhere [20, 21].

1.3 Organization of the Article

Section 2 of the present paper is devoted to the notions of structural and dynamical measures of complexity, to their definition, and to the assignment of specific existing complexity measures to both of these categories. For instance, concepts like algorithmic complexity, generalized information, and information gain will be classified as structural measures. In contrast, concepts based on fluctuation of information gain, as well as on machine complexity belong to dynamical measures. An inexhaustive, but hopefully
:- presentative number of corresponding examples will be discussed. The investigated neasure in -nexiy bgether with their behavior in the limiting ases of periodic and stuchastic behavior will that :... smmmarized. Surion 3 applies the measures as treated in hection \because to the example of the logistic map. In pantana
 mint, at band merging, in the period 3 window, and at filly developed chans. If is shown that atione
 ...mpirison of these differences is given.
atim 4 roncludes the paper and relates its content io the ongone and controversat fiocusen

 arefy sytactic (semantic free descriptions.

2. QUAN'IIFICATION OF COMPLEXITY

BY STRUCTURAL AND DYNAMICAL MEASURES

2.1 General Definitions

In this paper we consider ont-dimensional dynamical systems in discrete time, given by a map 1 foni: : - lused interval A onto itself:

$$
r: \quad \mathbf{A} \rightarrow \mathbf{A} \cdot x \mapsto r(x)
$$

$r-\mathrm{A}$ is calied state of the system, the range of $r \in R$ represents the parameter space of the system. H/H - oresponding set of dynamical systems is characterized by discreteness in time but continuty w :ant *ace. In case of dynamical systems with continuous time as. e.g., any kind of differential equations. .: hansormation into time discrete maps is possible hy varivus methods (Pomeare sections, sirotuen an иаре [2:2.23]).
Pom a temporally discrete, spatially continuous map a symbolic dynamual system can be generaten an cudditional discretization of the state space $\mathbf{A} \quad|24|$. If the state space \mathbf{A} of a dynamical sytme. Avided into A cells A, that are non-empty with respect to the Lebesgue measure of the system, :han Whe collection of all cells is called a partition $P=\left\{A_{i}\right\}_{i=1}^{V}$ if the A_{i} are mutually disjoint and the anm. of A_{i} reproduces the state space: $\bigcup_{i=1}^{N} A_{i}=\mathbf{A}$.
By labeling each element of the partition $P=\left\{A_{i}\right\}_{i=1}^{N}$ with a symbol a_{0}, the time evolution un f^{\prime}
dynamical system (i.e., its discretized trajectory) can be expressed by a symbol sequence $S=s_{0} s_{1} s_{2} \ldots$. This sequence is constructed such that after each time step i the state of the system x_{i} is assigned to the corresponding symbol s_{i}. This symbol is determined by the cell A_{j} that is met by the trajectory at time i. The set of all possible symbols $s_{i} \in\left\{a_{0}, a_{1}, \ldots a_{N-1}\right\}$ is called an alphabet of cardinality N. The resulting symbolic dynamical system is defined as

$$
\Sigma_{F} \rightarrow \Sigma_{F}, \quad S \mapsto \hat{\sigma}_{F}(S)=S^{\prime}
$$

such that each symbol in the sequence S satisfies the condition $s_{i+1}=s_{i}^{\prime}=\hat{\sigma}_{F}\left(s_{i}\right)$.
Σ_{F} is the space of all admissible symbol sequences. Admissible sequences are sequences that are induced by the dynamics of the system F for all initial states $x_{0} \in \mathbf{A}$ at time step $i=0$. The operator $\hat{\sigma}_{F}$ is called the shift operator on Σ_{F} and describes the dynamics generated by F in the space Σ_{F} of symbol sequences. The length L of a symbol sequence S is defined by $S=\left\{s_{i}\right\}_{i=0}^{L-1}$. In principle, the theory of symbolic dynamical systems deals with sequences of infinite length ($L=\infty$). For practical purposes. however, L is often regarded as a finite number.
The symbolic dynamical system (Eq.(2)) is constructed in a way that leaves it topologically equivalent to Eq.(1) [24]. This implies a well-defined assignment of trajectories to symbol sequences that represent the topological properties of the underlying dynamical system F (e.g., the number of periodic points of the system) faithfully.

As indicated in section 1.2, different kinds of partition can be utilized in order to discretize the state space \mathbf{A}.

1) A homogeneous, context-free partition P^{H} into cells A_{i}^{H} of identical size: $P^{H}=\left\{A_{i}^{H}\right\}_{i=1}^{N^{H}}$, where N^{H} is the number of states (cells) in the state space \mathbf{A}.

2a) A generating partition P^{G}, or P_{n}^{G}, generated by the dynamics of the system: $P^{G}=\left\{A_{i}^{G}\right\}_{i=1}^{N_{1}} \cdot N^{G}$ is the number of cells (states) in \mathbf{A}. If necessary to avoid misunderstanding, an index n will be added to P_{n}^{G}, N_{n}^{G}, or $A_{i, n}^{G}$, respectively, characterizing the number of time steps considered to generate the partition. This index n is also called the order of refinement of the generating partition. More details will be given later. A generating partition P^{G} creates arbitrarily small cells as the order n of refinement goes to infinity. Given trajectories can be assigned to corresponding symbol sequences in a well-defined manner [25].

2b) Based on some alphabet $\left\{a_{0}, a_{1}, \ldots, a_{N_{1}^{G}-1}\right\}$, the set $P_{n}^{G *}$ of all possible subsequences (words) of length n out of a symbol sequence S represents the total set of "trajectories" with respect to all

 whans $p^{h}=p^{\text {ci }}$ for the smmetric 10 map [2ti].
Ife generating partition $P^{\prime i}$ is a Markon partiton, since it has the Uundamental property.

This implies that boundaries between cells are mapped onto themselves: they are kept invariant dm : wn dyamical evolution of a system, if the cells are constructed by a generating partition 27 If of a tomogeneous partition $P^{h i}$. boundaries between cells are in general wot havariant with respery ... imanics of the system

Do aralyze the dynamics generated by F_{n}. we now define some probabilistic quantities used to character

The state probability p_{i} is the probability that a trajectory on state space \mathbf{A} visits bex i defined by the natural measure $\mu: \nu_{2}:=\mu \cdot 1_{1} \cdot=1 . \ldots$.
In case of $P^{G *}$ this is equivalent to the probability that a given word A_{i}^{W},f length " appecathe symbol sequence s
\therefore I sing the joint probability p_{2}, hat cells A_{1} and $A_{\text {, are }}$ visited by the system in wo succession steps we define the sransition probabilities $p_{i \rightarrow 1}$, and $p_{1-}, 11 . j=1 \ldots$ V:
$p, \quad=\frac{i_{2}}{i_{1}}$ is the conditiona probability for the transition from a given state weil $4, \ldots$ successive state A,
$p_{i-y}:=\frac{p_{12}}{p_{j}}$ is the conditional probability for the transition to a given state A_{j} from its predecessor A_{i}.

The probabilities $p_{i \rightarrow j}$ and $p_{i \leftarrow j}$ can be repesented using a transition matrix, whose rows sum up to one.

In case of $P_{n}^{G *}$, both transition probabilities are defined for sucessive time steps if the states are represented by $A_{i, n}^{W}=s_{k} s_{k+1} \ldots s_{k+n-1}$ and $A_{j, n}^{W}=s_{k+1} s_{k+2} \ldots s_{k+n}$ for all possible k. $k \in\{0, \ldots, L-n\}$, of the symbol sequence S.

Under the assumption that the various kinds of possible dynamical behavior of a system (periodic. chaotic, uniformly stochastic, and doubly stochastic) can be resolved in the coarse-grained partition of state space, they can be characterized in terms of these probabilities.

- Periodic behavior of period $\wp, \wp \leq N$:

Without restrictions upon generality let $p_{i} \neq 0 \quad \forall i=1, \ldots, \wp$ for the following. In case of periodic behavior with period $\wp, \wp \leq N$ and $i, j \in\{1, \ldots, \wp\}$, we have $p_{i}=1 / \wp$ for the state probabilities and $p_{i \rightarrow j}=1$ for the transition probabilities. All remaining state and transition probabilities for $i, j \in\left\{\{1, \ldots, N\} \times\{1, \ldots, N\} \mid p_{i \rightarrow j} \neq 1\right\}$ have to vanish. Periodic behavior is undetectable if the number of states N is smaller than the period \wp of the system.
As an alternative criterion, a periodic point x of period ξ satisfies the condition $F^{\natural}(x)=x$, where $F^{o}(x)=x, F^{\mathfrak{p}}(x)=F\left(F^{\mathfrak{p}}(x)\right)$. Analogously a symbol sequence of period \wp satisfies $s_{i+\wp}=s_{i}$ $\forall \quad i=0, \ldots, L-\wp$. The least positive \wp for which $F^{\bullet}(x)=x$ or $s_{i+p}=s_{i}$ holds is called the prime period of x or S.

- Uniformly stochastic behavior:

Uniformly stochastic behavior is characterized by an equi-distribution of the probabilities $p_{i}=1 / N$ $(i \in\{1, \ldots, N\})$ of all possible states on the space \mathbf{A} with respect to some arbitrary, but fixed refinement of the partition. Transition probabilities are not considered in this context.

- Doubly stochastic behavior:

For doubly stochastic behavior [27] we require $p_{i}=1 / N$ as well as $p_{i \rightarrow j}=1 / N^{\prime}$ with $N^{\prime} \leq N$ for all $i, j \in\{1, \ldots, N\}$. N is again the number of states on $\mathbf{A} . N^{\prime}$ is the number of transitions with nonvanishing transition probabilities for each cell $A_{i}, \quad i=1, \ldots, N$. (Note that $N^{\prime}=N_{1}$, respectively $N^{\prime}=2$ for a binary alphabet.)
Stochasticity in this sense is characterized by uniformity of state probabilities and transition probabilities, thus motivating the notion of doubly stochastic behavior.
For $N=N^{\prime}$ doubly stochastic behavior is equivalent to a coin-tossing process, which implies total

 mone is not doubly stochastic in eneneral.

 Wechastic bedabion.

- Minotar brharam:

2.2 Structural Complexity Measures: \because / \prime

Samed wh the framework of the formalism of symbolic dynamical systems this subsection describers a : an:
 Ghis in lo say that spatial properties will be ronsidered whereas the explicit dynamical behavmp ibll i. Wreqarded. Depending un the investigated problem, wher structures m pesition space or in phase fe:
 -an obviously deserves to be denoted as abstract.

2.2.1 Algorithmic Complexity

Q !. !nstoricalls earliest and probably most pophlar measure of amplexity tias been introduced is fors naworov in 1965 [2|. It is called algorithmic complexity, and it is definet as the number of hits at Gurtest algorithm (e.g. computer program) which is capable of reproducing a given symbol sequena !ractical realization of this theoretical approach has been proposed by hiv and lemmel lin Ziv-Lempel-algorithm is otten applied as a convenient method w ompress data struns an

 $\because=n_{0} s_{1} \ldots n_{k+n_{1+1}-2}$
[o give an example. the sequence $S=1101001111010010 \ldots$ of length L splits into $(1)(10)(100)(111)(1010010) \ldots$ providing a number $c(L)=5$ of resulting words $A_{i, n}^{W}$ of different length n_{i}. For a symbol sequence consisting exclusively of totally independent symbols, $c(L)$ takes its maximum value according to the relation (logarithms are always binary logarithms):

$$
\begin{equation*}
\lim _{L \rightarrow \infty}\left(c(L)-\frac{L}{\log L} \log V_{1}^{G}\right)=0 \tag{11}
\end{equation*}
$$

1 sing this maximum as a normalization factor, the algorithmic complexity C_{a} is given by:

$$
\begin{equation*}
C_{a}=\lim _{L \rightarrow \infty} c(L) \frac{\log L}{L \log N_{1}^{G}} \tag{.}
\end{equation*}
$$

where N_{1}^{G} is the cardinality of the underlying alphabet.

For periodic behavior with period φ, the relation $c(L) \leq \wp$ provides vanishing complexity C_{a}. In case of a sequence of totally independent symbols, Eq.(5) leads to $C_{a}=1$. Between these limiting cases. algorithmic complexity may take values in the range $0 \leq C_{a} \leq 1$.

Algorithmic complexity C_{a} is a non-probabilistic measure. For this reason, it cannot directly be categorized into the scheme introduced above. Nevertheless it may be assigned to the class $S P^{G}$ of complexity measures, since the number of words $c(L)$ within a symbol sequence is primarily a structural, and definitely not a dynamical system property. Moreover, the symbol sequence is generated by an alphabet based on P^{G}, which suggests to classify C_{a} as $S P^{G}$-measure. Under the aspect that words of different length n are considered, C_{a} can be classified as $S P^{G *}$-measure, as well. The fact that C_{a} approaches the K-S-entropy $K^{(1)}$ for an infinite sequence [7] confirms this assignment.

2.2.2 Generalized Informations and Related Complexity Measures

Algorithmic complexity shares basic properties with information measures à la Shannon [29]. Thesc measures can very elegantly be captured by a formalism introduced by Renyi [30]. This framework uses the concept of a generalized information $I^{(q)}$ on some partition P as it is defined by:

$$
\begin{equation*}
I^{(q)}=\frac{1}{1-q} \log \sum_{i=1}^{N} p_{i}^{q} \tag{6}
\end{equation*}
$$

For $q \rightarrow 1$ the generalized information of order one is given by:

$$
\begin{equation*}
I^{(1)}=\lim _{\varphi \rightarrow 1} I^{(q)}=-\sum_{i=1}^{N} p_{i} \log p_{i} \tag{7}
\end{equation*}
$$

where N is the number of cells $A_{i}, i=1, \ldots, N$, for a given partition $P^{H}, P^{G}, P^{G *}$, and $p_{i}=\mu\left(A_{i}\right)$.
\therefore Ante important properties of $I^{(/ i)}$ are:

- /at is a monotomically decreasing finction of if

 witworder:
 diverges for arbitrarily time partitions $1.1 \times \times$.

Applications of generalized information have been studied with respect t.epartitons of type $\boldsymbol{H}^{\prime \prime \prime}$. /ni- In general, $I^{(0)}$ depends on the particular chome of the partition amd its respective retinemen: : the bollowing, complexity measures will be discussed that are based on $P^{\prime \prime}$ (wase A) and on P^{i}, (ane is A Focussing on homogeneous partitions P^{H} one can specify a number of additional quantities for and acterizing the complexity of a system in terms of its structural properties.

The generalized dimensions $D^{(q)}[31,32]$, measures of type $S P^{H}$, are defined as the scaling expontenthe generalized information of order q with respect to the size $E:=1, N^{H}$, of cells $A_{t}^{H}, \ldots, \ldots \ldots,{ }^{\prime}$ the partition:

$$
D^{(q)}=-\lim _{x \rightarrow 0} \frac{f_{\underline{(q)}}^{\log \varepsilon}}{\log }
$$

In contrast to $I^{(a)}$, the dimensions $D^{(q)}$ offer sensitive discrimination of periodic from uniformiy stornat: Wehavior because they are defined for an infinitesimally tine partition $(: \rightarrow 0)$.

- Hor periodic behavior in case of discrete 1 -dimensional maps. the dimension of urder if and and given by:

$$
D^{(q)}=-\lim _{\varepsilon \rightarrow 0} \frac{\log g}{\log \varepsilon}=0
$$

$D^{(q)}$ is independent of the order q. The speed of convergence for a given refinement 1 depentis: $\log g$, i.e. on the period.

- In the uniformly stochastic case $D^{(a)}$ is given by:

$$
D^{(q)}=-\lim _{\varepsilon \rightarrow 0} \frac{\log N_{\varepsilon}}{\log \varepsilon}=1
$$

for 1 -dimensional maps. As in the periodic case, it is constant as a function of q.
B) The second alternative is a generating partition P_{n}^{G} or $P_{n}^{G *}$, respectively, which provides generalized entropies $K^{(q)} \quad[33]$. Therefore the entropies $K^{(q)}$ represent a structural measure (in an abstract sense). although they are usually (and correctly) characterized as dynamical invariants of dynamical systems. For a given initial uncertainty in state space, $K^{(q)}$ measures the temporal spread of the distribution of admissible trajectories along the attractor. It can be interpreted as a rate of internal information production of the system $[34,35]$, corresponding to the rate of information loss of an external observer.

$$
\begin{equation*}
K^{(q)}=\lim _{n \rightarrow \infty} \frac{I_{n}^{(q)}}{n} \tag{9}
\end{equation*}
$$

$I_{n}^{(q)}$ is the information of a dynamical system F on a refined partition P_{n}^{G} (or $P_{n}^{G *}$) of order n. Since P^{G} and $P^{G *}$ are generating partitions, $K^{(q)}$ is the supremum $\sup _{P} \frac{I_{n}^{(q)}}{n}$ with respect to all possible partitions P. Then $K^{(q)}$ is the dynamical entropy of order q. For $q=1$, one obtains the Kolmogorov-Sinai entropy, a fundamental invariant of dynamical systems.
The partitions P_{n}^{G} and $P_{n}^{G *}$ are equivalent for given n, since the natural measures of corresponding states $A_{i, n}^{G} \in P_{n}^{G}$ and $A_{i, n}^{W} \in P_{n}^{G *}$ are identical $\left(\mu\left(A_{i}^{G}\right)=\mu\left(A_{i}^{W}\right)=p_{i}\right.$ for all $\left.i=1, \ldots, N\right)$. As a consequence, determination of $K^{(q)}$ on the basis of P^{G} and on the basis of $P^{G *}$ provides identical results.

Similar to the generalized dimensions in homogenous partitions, the generalized entropies are given by:

- $K^{(q)}=\lim _{n \rightarrow \infty} \frac{\log p}{n}=0$ in the periodic case.
- $K^{(q)}=\lim _{n \rightarrow \infty} \frac{\log N_{n}}{n}$ for an equi-distribution of state probabilities for all $n(n \rightarrow \infty$, and with $N_{n}=N_{n}^{G}$, respectively $N_{n}=N_{n}^{W}$). Thus if the limiting value exists, doubly stochastic behavior is marked.

In case of (for instance) $P_{n}^{G *}$ all possible words of length n are admissible, which leads to $N_{n}=\left(N_{1}\right)^{n}$ and therefore $K^{(q)}=\log N_{1}$. (Consider, e.g., a $2: 1$-map. Then the number of cells (states) grows with $N_{n}=2^{n}$, which provides $K^{(q)}=1$.)

There is a unique relation between $D^{(q)}$ and the $f(\alpha)$ - spectrum [36] as well as between $K^{(q)}$ and the $g(\Lambda)$-spectrum [37]. It is therefore not necessary to discuss these spectra (which are often used for an appropriate characterization of multifractals) in detail here.

2.2.3 Local Slopes and Related Complexity Measures

Dynamical entropies $K^{(q)}$ as defined above can be considered as asymptotic slopes of $I_{n}^{(q)}$ as a function of n. Numerically, this limit is most easily accessible from the "local" slopes $[38,1]$:

$$
\begin{equation*}
h_{n}^{(q)}:=I_{n+1}^{(q)}-I_{n}^{(q)}, \quad h_{0}^{(q)}:=I_{1}^{(q)} \tag{10}
\end{equation*}
$$

Thev specify the amount of additional information needed to predict the successive state at imme: Inven the state at time step n. For a generating partition $p_{n}^{\prime ;}, p_{n}^{(i *}$ the local slopes $h_{n}^{(q)}$ approxmman $h_{\text {, }}$ wneralized entropy such that $K^{(q)}=\lim _{n \rightarrow \infty} h_{n}^{(q)}$. For Warkov processes of order ${ }^{\prime}$ (sometmes dem, ini . "mentory ${ }^{\prime}$ the asymptotic value is reached for $n=0 \quad 39$

Veanures as information gain (case A) mutnal information (case 13 ! and effective measure comptes:

 adncable to state probabilities via local shopes.
 Sme steps n and $n+1$. Hence, the dynamical aspect of transition probabilities is replaced by the difnem Anwen structural measures at different instants of fime.
 measures in general, i.e. without a priori specitication of a particular partition. However, any dynamuai measure based on transition probabilities should be defined on P^{5}. since the dynammes of the systeta, miquely related to generating partitions only. In this sense measures related to homogeneous partitnan reflect a more or less abstract point of view.
A) An important way to characterize the complexity of dynamical systems is based on the informutuo: y/un S_{13} (often called Kullback information [40|). It represents the information required to select a -4.1 ., if its preceding state A_{i} is given.

$$
i_{0}=-\log p_{2}
$$

The mean information gain $\langle(i\rangle$, i.e the average of the information gain over all possible transitur $; \rightarrow j$ is defined as:

$$
\theta_{i}=\sum_{i, j=1}^{\forall} p_{i} \gamma_{i}=-\sum_{i=1} p_{i} \log p_{2 \rightarrow}
$$

 $\because r_{1} \log p_{t}$. If the second term $\sum_{i} p_{i} \log p_{i}$ corresponds to the information $\|_{i}^{(1)}$ at time n then tar an Whn describes the information $I_{n+1}^{(1)}$ at time $n+1$. Thus, on a partition of refinement u. Eq. (12 ! |tank \&

$$
\because,=I_{n+1}^{11}-l_{i}^{11}=h_{n}^{(11)}
$$

- For periodic behavior there are strictly determined transitions $\mid p_{i-},\{\{0.1\} \quad \forall \quad$, and the mean information gain vanishes for all periods of order p. Ised as a measure of complexit:
$G>$ is therefore only capable to discriminate periodic from non-periodic behavior. It dore ne: provide information about the period p itself.
- $\langle G\rangle$ is defined for $I^{(1)}$ at two successive time steps $n, n+1$ (Eq. 13). In order to characterize uniformly stochastic behavior, it is appropriate to consider $I^{(1)}$ itself.
- In case of doubly stochastic behavior ($p_{i}=p_{j}=1 / N, p_{i \rightarrow j}=1 / N^{\prime}$) one has $\langle G\rangle=\log \frac{v_{n+1}}{N_{n}}=$ $\log N^{\prime}$. For a totally random, statistically independent process for which $N^{\prime}=N$. this implies $<G\rangle=\log N$.
B) The interdependence of two different states A_{i}, A_{j} can be quantified by the measure of mutual information:

$$
\begin{equation*}
M_{i j}=\log \frac{p_{i j}}{p_{i} p_{j}} \tag{1.4}
\end{equation*}
$$

In stochastically independent cases $p_{i j}=p_{i} p_{j}$, one has $M_{i j}=0$ and the two states A_{i}, A_{j} can be considered to be mutually independent in the sense that information about one of them does not depend on information about the other one.

The mean mutual information is defined by:

$$
\begin{equation*}
<M>=\sum_{i, j=1}^{N} p_{i j} M_{i j}=\sum_{i, j=1}^{N} p_{i j} \log \frac{p_{i j}}{p_{i} p_{j}} \tag{15}
\end{equation*}
$$

which provides, using Eqs.(7),(12),(13):

$$
\begin{equation*}
\langle M\rangle=I_{n}^{(1)}-\langle G\rangle=2 I_{n}^{(1)}-I_{n+1}^{(1)} \tag{16}
\end{equation*}
$$

Mutual information $<M>$ is therefore categorized as $S P^{G}$-measure (or $S P^{G *}$-measure, respectively).

- In periodic cases where $\langle G\rangle=0$, Eq.(16) yields $\langle M\rangle=I_{n}^{(1)}=\log \wp$. Hence mutual information is capable of distinguishing between different periods \wp.
- Fvaluating Fq. (16) for the doubly stochastic case where $\langle G\rangle=\log N^{\prime}$, the mean mutual information is obtained by: $\langle M\rangle=\log \frac{N}{N^{\prime}} \geq 0$.
As a consequence, $N=N^{\prime}$ implies $\langle M\rangle=0$. This applies if the corresponding process is statistically independent (like coin-tossing).
C) Using the concept of "local" slopes for $q=1$, Grassberger has introduced the effective measure complexity EMC [1].

$$
\begin{align*}
E M C & =\sum_{n=1}^{\infty} n\left(h_{n-1}^{(1)}-h_{n}^{(1)}\right) \tag{1i}\\
& =\sum_{n=0}^{\infty}\left(h_{n}^{(1)}-K^{(1)}\right) \tag{18}\\
& =\lim _{n \rightarrow \infty}\left(I_{n}^{(1)}-n \cdot K^{(1)}\right) \tag{19}
\end{align*}
$$

 $\because \operatorname{lem}$
FM, Mon

 E.He'according to Eq. 1 Tl can be retormulated as:

$$
\beta N C^{\prime}=\sum_{i-1} n \log \frac{\vdots}{V_{i--i} V_{i+1}}=11
$$

2.3 Dynamical Complexity Measures: //

Weasmes considered in this section are dynamical measures in the semse that they depend on burt : ...
 fur fotuced to structural measures be expressing transition probabilitios in terms of state probabilitan

 whited to local slopes. $D P^{H}$-measures redect an abstract point of wew: they entajl transition fronata
 ['. take this concrete dymamics into acoount, and should therefore be prefered whemever dymanat comploxity measures are used.

2.3.1 Fluctuation Complexity

Anagous to mean information gain, defined in section 2.2.3. the mean information boss it . in :

that a system has lost about a preceding state A_{i} after it has entered the successive state A_{j} :

$$
\begin{equation*}
<L>=\sum_{i . j=1}^{N} p_{i j} L_{i j}=-\sum_{i . j=1}^{N} p_{i j} \log p_{i-j} \tag{22}
\end{equation*}
$$

The net information gain $\Gamma_{i j}$ of a system is then expressed by:

$$
\begin{equation*}
\Gamma_{i j}=G_{i j}-L_{i j}=\log \frac{p_{i}}{p_{j}} \tag{2:3}
\end{equation*}
$$

Due to the normalization $\sum_{j} p_{i \rightarrow j}=1$, the mean net information gain vanishes: $<\Gamma>=\sum_{i, j} p_{i j} \Gamma_{i j}=1$. During the evolution of a system, $\Gamma_{i j}$ may fluctuate about its mean value and therefore may have a nonvanishing mean-square deviation σ_{Γ}^{2}. This quantity can be understood as fluctuation in net information gain. It has been introduced as a complexity measure by Bates and Shepard [19]:

$$
\begin{align*}
\sigma_{\Gamma}^{2} & =\left\langle\Gamma^{2}\right\rangle-\langle\Gamma\rangle^{2} \tag{21}\\
& =\sum_{i, j=1}^{N} p_{i j}\left(\log \frac{p_{i}}{p_{j}}\right)^{2} \tag{25}
\end{align*}
$$

Fluctuation complexity σ_{Γ}^{2} is a dynamical complexity measure since its definition includes both state probabilities and transition probabilities explicitly and irreducibly. It has originally been introduced on a partition P^{H}, but more adequate use can be made of it, if it is applied to a generating partition P^{G} (see [41]).

- In case of periodic behavior fluctuation complexity vanishes independent of the prime period \wp. In order to detect periodic behavior, sufficient resolution is necessary only with respect to state probabilities, not with respect to transition probabilities (see section 3.3.1).
- σ_{Γ}^{2} depends on transition probabilities $p_{i \rightarrow j}$ only if the state probabilities are not equi-distributed. In uniformly stochastic as well as in doubly stochastic cases, i.e., in case of any equi-distribution of state probabilities ($p_{i}=p_{j} \quad \forall i, j=1, \ldots, N$), fluctuation complexity vanishes: $\sigma_{\Gamma}^{2}=0$. Therefore fluctuation complexity does not distinguish uniformly stochastic from doubly stochastic behavior.

2.3.2 Complexity of ϵ-Machines

The idea to use automata for a definition of complexity goes back to Kolmogorov [2] and led to the concept of algorithmic complexity. It is based on a deterministic automaton and represents, loosly speaking, a measure of randomness. Crutchfield and Young [16] suggested to apply stochastic automata, which they call ϵ-machines. The determination of the complexity C_{ϵ} of an ϵ-machine can be divided into four main steps.

 The transition probabilities between differme states in this antomaton are determmed ene: fon the original sequence is reconstructed in an esmar manner. Increasing l_{1} and i_{2} wants an : increasing resolution of the dynamics.

1. complexity: The t-complexity C^{\prime}, is defined as the Shannon information of the state probabinti.. of the automaton.

Fir the construction of an t-machine for a given symbol sequence (rutchfield and Yong suggentai procedure to determine an "optimum" value of 4 . However, their procedure does not guaranter that an wiven sequence is optimally reproduced by the corresponding automaton. For this purpose the follownt lechnique estimating suitable tree parameters l_{1}, l_{2}, is proposed.

- For a given binary string the probabilities p_{i} of states $A_{t, n}^{W}$ of the $\|$-cylinder partition $f_{\text {. }}$. an calculated.
- The construction of cach t machine depends on a certain combination of tree lemeth if. - antar
 sequences obtained from the corresponding e-machine are compared with the state probabilites for of the original partition $P_{n}^{x \cdot *}$ by calculating the Euclidian distance:

$$
\begin{equation*}
\Delta\left(\hat{P}_{n}^{G *}: I_{n}^{C \cdot}\right)-\left[\sum_{i}\left(p_{t}-p_{1}\right)^{2}\right]^{\frac{1}{2}} \tag{21}
\end{equation*}
$$

- The complexity of the ϵ-machine with minimal Δ is detined as the complexity of the given xinlm: string.

Fig. 2. An intelligible example to illustrate the procedure of calculating ϵ-complexity for the periodic sequence $S=001001001001 \ldots$. It is assigned to the binary tree of length $l_{1}=6$ (a). By definition of the equivalence classes (subtrees of length $l_{2}=3$) (b) the corresponding automaton (c) is derived.

Fig. 3. Automaton for doubly stochastic behavior.
ϵ-complexity belongs to the class of dynamical measures, but the reason is not as easy to verify as for fluctuation complexity. For ϵ-complexity it is essential that it is defined on the level of a model, not on the level of the data themselves. The representation of the data (symbol sequence) by a model (the ϵ-machine) requires a mapping of states of the symbol sequence onto automaton states, which is not injective in general (for $\epsilon>0$). Although ϵ-complexity is simply based on state probabilities on the level of the automaton, it refers to both transition probabilities and state probabilities on the level of the symbol sequence. Since the mapping between both levels is not injective, ϵ-complexity is not reducible to state probabilities on the level of the symbol sequence, hence it is characterized as $D P^{G *}$. (On the model level, ϵ-complexity would simply be a structural measure, since it is identical with $I^{(1)}$). More technical details on C_{e} are given in [42].

- In case of periodic behavior with period $\wp: C_{\varepsilon}=\log \wp$, if $\wp \leq l_{2}$.

An intelligible example illustrating how the concepts of binary trees and equivalence classes are used to determine ϵ-complexity is given for the periodic sequence $S=00100100100100 \ldots$. This sequence can be assigned to a binary tree according to Figure 2a. By definition of the equivalence

3. STRUCTURAL AND DYNAMICAL COMPLEXITY FOR THE LOGISTIC MAI'

Sh this section a variety of different features of strmetural and dynamical kind. senerated hio the hus map. is characterized by different complexity measures as they have been discussed in sention \because awir intention of the present section 5 sto show that and how different properties of different complas: armares are of different value in detecting different features. In a more fundamental sense this muman aftects an attempt to justify the non-maversal and non-wnique variety of exting complexity naman I \because the non-universal and non-umique variety of purposes for which they. respectively, may procirno: - nitable, or even well-adapted.

Fig. 4. bifurcation diagram for the logistic map in the parameter regime $r \in[3.5,4]$.

3.1 The Logistic Map

One-dimensional discrete dynamical systems can show chaotic dynamics if they are noninvertible. A well-known example is the logistic map:

$$
\begin{equation*}
[0,1] \rightarrow[0,1], \quad x \mapsto H_{r}^{\prime}(x)=r x(1-x) \tag{27}
\end{equation*}
$$

For $r \in[0,4] \mathrm{Eq}$. (27) is a map on the unit interval $I:=[0,1]$ [43]. For $r>4$ the iteration of Eq. (27) diverges for almost all initial values, which induces chaos on a Cantor set [44]. In this paper we consider the parameter regime $r \in[3.5,4]$.

The critical point of the logistic map is $x_{c}=0.5$. It is associated with a maximum value of $F_{r}(0.5)=\frac{r}{4}$. Thus Eq. (27) defines a surjective map only for $r=4$. In case $r<4$, the map is injective on the intervals $[0,0.5],[0.5,1]$, respectively. F_{r} is a unimodal map, which is monotonically increasing for $x<0.5$ and monotonically decreasing for $x>0.5$. Because the Schwarzian derivative is negative on I, F_{r} has only one attracting periodic orbit at most.

If one state of an orbit coincides with the critical point $\left(x_{c}=0.5\right)$, then the derivative is vanishing, $\frac{d}{d x} F_{r}^{i}(0.5)-0$, and the orbit is called superstable. The functional dependence of superstable orbits on the control parameter r is represented by supertrack functions $s_{i}(r)$ [45]. In case of the logistic map, supertrack functions are continuous polynomials in r. They are recursively defined by $s_{0}(r)=0.5, s_{1}(r)=F_{r}(0.5)=\frac{r}{4}, s_{i}(r)=F_{r}\left(s_{i-1}\right)=r s_{i-1}\left(1-s_{i-1}\right)$ for all $i=1,2,3, \ldots$ The bifurcation diagram in Figure 4 shows these functions $s_{i}(r)$ as dark lines. They are caused by the fact that iterates of x_{c} correspond to singularities in the natural measure of F_{r}.

I: a function of r. the orbits of the logistic map provide different kinds of structural and wamm: hentheior as it is reflected by the bifurcation diagram (Figure 4) as well as by the laphumo expont: Below the so-called accumulation point $r_{0}=3.569 \ldots$ the Ljapunov pxponerit 1 does nol exme. . . Hhe indicates period doubling behavior for r \& r. Starting from a table periodat , arie at :
 who ends at the accumulation point r, where the dynamics is periodic whep pertod ". asonclated attractor is given by a ('antor set.
 wid urindows with basic period k arise intermittenty and separate these regimes. wheneme for

 Gurcation scheme observed in the range $r \leq r_{x}$. Period-doubling cascades of a k-periodic window ant: a He accumulation point $r_{k, a}$ with $r_{a}:=r_{1, \ldots}$.
At certain values $r_{k, w}$ the dynamical behavior of the map changes discontinuously and qualitativel: is such a way that the attractor is suddenly reduced from k subintervals to only one single interval .a.. ligure 4). This transition from chaos to chaos, known as interior crisis [46, is caused by the "oollston if the attractor with the corresponding unstable k-periodic orbit and defines the upper bound it in. window. The period-3 window $(k=3)$ has been used to investigate the transition between chas an wrder in detail. Here the third iterate of F_{r} has 3 stable fixed points. Periodic behavior with purn $\prime=k=3$ starts at $r_{3,0}=1+\sqrt{8}$, where the supertrack functions s_{4} and s_{1} intersect. The correspommm period-doubling behavior terminates at the accumulation point $r_{3 . \infty}=3.843 \ldots$ As shown in figur. : an attractor consisting of $k=3$ subintervals is created. The interior crisis at $r_{3}=3.857 \ldots\{25\}$ delime: the upper bound of this period-3 window.
The qualitative behavior of the logistic map as a function of r within the period- 3 window is selt anmilut tw all other windows with $r \in\left[r_{\infty}, 4\right]$ and with basic periods $k=3,4,5$.

Lit the range $r>r_{\infty}$, a so-called reverse bifurcation sequence describes the changing structure of :n. attractor of the logistic map. Any attractor in this range consists of 2^{4} subintervals (bands). and an ane. riodic orbit meets these 2^{u} subintervals successively in a "bandperiodic" way. (A bandperiodic orbn! wht! period 2^{u} falls into the same subinterval after 2^{u} time steps.) At band merging points $r_{1, \ldots, *}, u=1, \because$. any existing 2^{u} bands join pairwise into 2^{u-1} bands. Band merging points are defined by the interser. thon of supertracks: $s_{3 \cdot 2^{u-1}}\left(r_{u_{u}-}\right)=s_{4 \cdot 2 *-1}\left(r_{u, *}\right)$. For example there is band merging from 4 to $2 \cdot$ banuls on
$r_{2, *}=3.592 \ldots$, band merging from 2 to 1 occurs at $r_{1, *}=3.678 \ldots$. (For convenience, $r_{1, *}:=r_{\star}$ in the following.) The decreasing sequence $\left\{r_{u, *}\right\}_{u=1}^{\infty}$ converges geometrically toward the accumulation point r_{∞}. analogous to the increasing period doubling sequence.

For $r=4$ the logistic map is surjective. The complete interval I is covered by the iteration points of F_{4}. The corresponding behavior is called fully developed chaos or exterior crisis.

3.2 Partitions

This section describes how the partitions $P^{H}, P^{G}, P^{G *}$ and the corresponding state probabilities as well as transition probabilities are numerically generated in case of the logistic map.

3.2.1 Homogeneous Partition: P^{H}

For an investigation of structural complexity measures of the logistic map, the unit interval I is divided into $N^{H}=1024$ bins of equal length $\varepsilon=1 / N^{H}$ providing the homogeneous partition $P^{H}=\left\{A_{i}^{H}\right\}_{i=1}^{1024}$. Using topological conjugacy of the tent map, the natural measure for the logistic map at $r=4$ can be obtained analytically as $\mu\left(A_{i}^{H}\right)=\int_{A_{i}^{H}} \rho(x) d x$, where the probability density is given by $\rho(x)=\frac{1}{\pi \sqrt{x(1-x)}}$. For arbitrary $r \in[3.5,4], \mu$ can be determined by numerical evaluation of the map for $N_{i t}$ iterations (after transients have died out) and plotting the result as a histogram. The normalized histogram becomes basically independent from a further increase of $N_{i t}$ at a ratio of $\frac{N_{i}}{N H}=10^{4}$, indicating a fairly good approximation. For a step width $\Delta r=0.001$ of the control parameter $r, N^{H}=1024$ is chosen as a suitable compromise between required CPU-time and numerical accuracy due to coarse-graining. Under these conditions the partition $P^{H}=\left\{A_{i}^{H}\right\}_{i=1}^{1024}$ allows to resolve periodicities up to $\varphi=16$.
By construction, P^{H} is homogeneous in state space but inhomogenous with respect to time. Therefore it does in general not represent a Markovian partition in the sense of the discussion in section 2.1. Nevertheless, abstract transition probabilities between states A_{i}^{H}, A_{j}^{H} can be defined from the geometrical properties of the map. It is useful to keep in mind that these transition probabilities do not reflect the concrete intrinsic dynamics of the system.

3.2.2 Generating Partition: P^{G} and $P^{G *}$

Using generating partitions, structural and dynamical complexity measures of type $S P^{G}, D P^{G}$, respectively $S P^{G^{*}}, D P^{G^{*}}$, can be investigated by discretizing the attracting state space in a manner designed
in the dynamics of the system. Therefore generating partitions are different for different systun this sense they acconnt explicitly for the precise context of the dynamical system considered: then a. ntextual

 - intermining the metric entropy $\boldsymbol{\mu}^{\text {al }}$
 is constructed bey sucessive catculation of the premages $f_{r}^{-1}\left(\begin{array}{l}\text { a }\end{array}\right.$, of in the way in retimemu:

 s given by $D_{n}=\bigcup_{i=1}^{n-1} D_{i} \cup\left\{F_{r<}^{-1}(d), F_{r,>}^{-1}(d) \mid d \in D_{n-1}, O_{n-2}\right\}$. Since the logistic map is a surjective $2: 1$ map only for $r=4$ a n-th order refinement of the unit montat intw $V_{n}^{\prime}=2^{n}$ cells provides an upper limit of N^{\prime} for $r 4$. It is easily recognzed that a lirst whe: partition P_{1}^{G}, dynamically generated, is identical with a $N^{H}=2$ cell partition of type p^{H}
 measure on the partition P^{H}. such that a cell $A_{i}^{\prime ;}$ is represented by an appropriately defined unon . . wlls A_{i}^{H}. Because of discretization effects precise results require $N^{t i} \leqslant N^{H}$ In contrast to P^{H}, a generating partition P^{G} is Markovian in the sense that boundaries between reils ar kept invariant by the dynamics of the system. This implies that the dynamics is considered with respect :1) a homogeneous flow of internal time. which results in an externally inhomogeneous distribution an aHs, Therefore transition probabilities based on $p^{\prime \prime}$ refer to cells of different size.

The transition matrix, which determines the transition probabilities from state A_{i}^{G} to state $A_{!}^{\prime}, f_{1} \ldots$. - lerived analytically. as follows.

- Since any cell $A_{i}^{\prime ;}=\{a, b\rangle$ is dynamically mapped onto the subinterval $F_{r}(a), F_{r}(b)$ created \mathfrak{m} for Markovian generating partition, it can be considered as a union of two adjoint cells of $f^{2, i}$. an: $A_{30}^{(i}, A_{j 0+1}^{G}$. Then the transition probability is given by $p_{i_{0} \rightarrow 00}=\frac{i f n g t h}{F_{-}(b)-A_{j}(a)}$, and $p_{i_{0} \rightarrow y_{0}+1}=1$
- As illustrated in the bifurcation diagram (Figure 4), the attractor of F_{r} is bounded by the supertrayl: functions $s_{1}(r)$ and $s_{2}(r)$. Consequently, the attractor is a subset of the unit interval l. wheneve:
$r<4$. The transition matrix is therefore calculated in a way that excludes empty (with respect to the natural measure) cells outside the attractor.
- In periodic situations and in the interval $r_{\infty}<r<r$. there are cells A_{j}^{G} with vanishing measure on the interval $\left[F_{\tau}\left(\frac{r}{4}\right), \frac{r}{4}\right]$. In those cases where $\mu\left(A_{i_{0}}^{G}\right) \neq 0$ and for instance $\mu\left(A_{j_{0}}^{G}\right)=0$, the "true" transition probabilities $p_{i_{0} \rightarrow j_{0}}=0$ and $p_{i_{0} \rightarrow j_{0}+1}=1$ are taken into account.

In the following, complexity measures based on P^{G} are calculated for a constant order $n=6$ of refinement. producing a symbolic description of the logistic map. The cardinality N^{G} of the resulting partition varies as a function of r, since $\mu\left(A_{i}^{G}\right)>0 \quad \forall i=1, \ldots, N^{G}$. (This is, for instance, of influence for the determination of the topological entropy $K^{(0)}=\lim _{n \rightarrow \infty} \frac{\log N^{G}}{n}$.) For the purpose of the following applications. N^{G} will subsequently be considered as the number of cells A_{i}^{G} with nonvanishing measure. Then the number of cells N_{n}^{G} is equal to the number of cells N_{n}^{W} for given n and for partitions $P_{n}^{G}, P_{n}^{G *}$.
Basically, all complexity measures considered (with the exception of fluctuation complexity σ_{Γ}^{2}, which will in detail be discussed later) are not sensitive to small variations of n.
B) The n-cylinder induced partition $P^{G *}$ is required for measures of the complexity of explicit symbol sequences, e.g. for sequences of words of a language. Examples are algorithmic complexity, effective measure complexity, and ϵ-complexity. The basic partition P_{1}^{G} on the logistic map defines a binary alphabet such that the symbol 0 is assigned, if the iterated value of Eq. (27) falls into the interval [0,0.5]. The symbol 1 is assigned if it falls into the interval $] 0.5,1]$. A n-cylinder induced partition $P_{n}^{C * *}$ of order n is then obtained by all words (substrings) $A_{i, n}^{W}\left(i=1, \ldots, N_{n}^{G}\right)$ of length n that are generated by the map. $P_{n}^{G *}$ and P_{n}^{G} are equivalent insofar as their natural measure and their transition probabilities are the same. They are different insofar as $P_{n}^{G *}$ acts in the space Σ_{F} of symbol sequences, whereas P_{n}^{G} acts in the space of states of the map.

In order to describe the natural measure $p_{i}=\mu\left(A_{i, n}^{W}\right)$ by the relative frequencies of words $A_{i, n}^{W}$ in the finite symbol sequence S in a reliable manner, very long sequences are needed. The necessity for very long sequences is mainly due to the fact that the number of possible words increases exponentially with n in general. Of course, the structure of the symbolic sequence also influences the necessary sequence length L.

- Algorithmic complexity: Sequences of $L=10^{5}$ turned out to be sufficient.
- EMC: Sequences of length $L=10^{6}$ have been choosen to guarantee reliable results.
- ϵ-machine: Sequences up to lengths of 10^{8} have been used.

3.3 Measures of Complexity for the Logistic Map

This section presents how different complexity measures. as introduced in section 2. . reftect specthe $1:$, of denamical and structural features of the logistic map. The main features concerned ate perindin:
 haus ($r=4$). Some of these features are investigated in those regimes where the nectessary monnam in r is a minimum. Due to the self-smilarity of the bifurcation diagran of the logistic map. the wan : principle be found at infinitely many locations in parameter space.
During the following discussion it will be necessary to refer repeatedly to a set of figures that illust ratw an behavior of the various complexity measures investigated. It is therefore most reasonable land comfortath (in the reader), to present these figures as a complete set, not distributed over the putire sectum, Angrams show complexity as quantified by the respective measure as a tunction of the control paranum, r of the logistic map. In detail. Figure 5 indicates algorithmic complexity (C_{a} as an example of a now probabilistic structural measure. Figures 6 a and 6 b represent the Renyi dimensions $D^{(-\mathrm{iol}}$ and blt 1 as structural measures of type $S P^{H}$. Figures 7.8 .9 and 10 show the metric entropy $K^{[1]}$. the muat information gain $\langle G\rangle$, the mutual information $\langle M\rangle$, and the effective measure complexity $E M /$ They are structural measures of type $S P^{G}, S P^{G *}$. The fluctuation complexity σ_{Γ}^{2} shown in Figure a dynamical measure $D P^{G}, D P^{G *}$. The results for ϵ-complexity are given in Figure 12.

3.3.1 Periodicity

We start with the behavior of different complexity measures in case of periodic behavior. Structumi measures as $I^{(q)}, D^{(q)}, K^{(q)}$ are capable of indicating periodic behavior, if the periodicity is resolved with respect to the state probabilities $p_{i}=\mu\left(A_{i}\right)$. For structural measures as $<(;\rangle, \angle, E M C$, ii lho are formalized as depending on $p_{i \rightarrow 2}$) and for dynamical measures of type $D P^{G}, D P^{(\sigma *}$, a correspont ing resolution with respect to the transition probabilities is required in addition. This means that ithe minderlying partition must be fine enough to describe the "true" system behavior in an ideally assmina rontinuous state space.

- Algorithmic complexity C_{a} vanishes for periodic behavior as it is shown in Figure 5 ,

Fig. 5. Algorithmic complexity for sequences of length $L=10^{5}$. The general shape of this curve is qualitatively reproduced already for $L=10^{4}$.

Fig. 6. Renyi-dimensions $D^{(q)}$ versus the control parameter r for $q=-10(\mathrm{a})$ and $q=1$ (b). A partition $P^{H}=\left\{A_{i}^{H}\right\}_{i=1}^{1024}$ is used, and cells with $\mu\left(A_{i}^{H}\right)<10^{-4}$ are not considered.

Fig. 7 . Metric entropy for the logistic map calculated on $P_{n} \boldsymbol{f}$ for $4 \leq n \leq 7$. The ratio $\frac{f_{n}}{n}$ ronverges to the metric fatron $h^{(1)}$ as a function of increasing n

Fig. 8. Information gain $\langle G\rangle$ calculated for P_{5}^{G}

Fig. 9. Mutual information $\langle M\rangle$ calculated for P_{6}^{G}

Fig. 10. Effective measure complexity calculated for $P_{16}^{G *}$. $E M C$ vanishes for $r=4$ and is given by $\log \varphi$ for periodic behavior.

Fig. 11. Fluctuation complexity σ_{Γ}^{2} for the logistic map as a function of r, calculated for P_{6}^{G}. It vanishes for regular behavior and for $r=4$. The peaks at $r<3.56, r \approx 3.8, r \approx 3.95$ correspond to unresolved periodic behavior in the distribution of state probabilities.

Fig. 12. ϵ-complexity calculated for $P_{8}^{G \bullet}$ and for the parameter combination $l_{2}=1,2, \cdots, 8 ; l_{1}=2 l_{2} ; \epsilon=0.02,0.04, \cdots, 0.2$. The small complexity values in the parameter range $[3.80,3.83]$ are caused by the relative small lengths $\left(l_{1}, l_{2}\right)$ of trees and subtrees.

- Renyi-dmensions: Figures ba and 6b present the Renyi-dimensions $D^{\prime \prime \prime}$ for $q=1$ ithe an ant. information dimensions and for $y=-10$. For an mintitely tine partition $\rightarrow 0 \mid$, bantin any periodic case. For the finite partition $\left.p^{\prime \prime} \quad i==1 / 102.4\right)$. D (H) indeed tends ta zero fir :

 values of q. The plots shown in Figures ta and b indicate an essentially dentical behavor.
 $h^{11)}$ correspond to small periods \wp. For periontic behavior with prime period w, the expercted an $K^{(1)}=0$ is obtained in the limit $n \rightarrow \infty$ ('omparing the behavior of $\kappa^{(1)}$ as a function ... different periodic windows (Figure 7), a clear dependence of the speed of convergene on the thera , is observed.
- Mean information gain: In contrast to the complexity measures adressed so far, the informamb, gain $<G>$ depends on transition probabilities $p_{i \rightarrow j}$. If the periodic behavior is resolved bs , in transition probabilities, it is characterized $b y<G>=0$, independent of period \wp isee figure x
- Mutual information: lu order to be sensitive to periodicity, the corresponding pertod mati ... resolved by both, p_{i} and $p_{i \rightarrow j}$. If this requirement is fulfilled, the mutual information $<M>=1, p$, as shown in Figure 9.
 romplexity is obtained for periodic behavior of high period, such that a clearcut distinction trat -haotir behavior becomes difficuit.
- Fluctuation complexity: If periodicity is resolved in the partition, then $\sigma_{\Gamma}^{2}=0$ independent of pernuit , (see Figure 11). If periodicity is not resolved in the partition $P_{n}^{6 ;}$, then σ_{T}^{2} shows a peak. If is understandable, since the corresponding "artificial" non-uniformity of the distribution of ant. probabilities produces an "artificially" small number of cells with non-vanishing measure $p_{i}=$ in i and $p_{i} \neq \frac{1}{b}$. As a consequence, the term $\log \frac{p_{1}}{p_{,}}$in Eq. (24) increases and leads to a large valus . . Huctuation complexity.
- ϵ-complexity: Periodic behavior is indicated by non-vanishing values of complexity $C_{\epsilon}=\log _{\ell}$, if the considered length of the subtrees $l_{2} \geq p$ (Figures 2 and 12).

Although different complexity measures are sensitive to periodicities in a different way, periodic behavior is basically detected by all of them.

3.3.2 Accumulation Point: Onset of Chaos

Due to the finite discretization of the used partition ($n<\infty$), none of the complexity measures considered is capable of fixing the accumulation point $(p=\infty)$ at $r_{\infty}=3.569 \ldots$ exactly. This corresponds to the fact that a finite partition does not permit the sensitivity of complexity measures to periodicities of arbitrarily high order. Therefore, the precise value of the complexity measure in question depends strongly on the refinement n, respectively ε, of the partition. This is consistent with the observation that the memory ν of a corresponding Markov process is very large at r_{∞} (as well as $r_{k, \infty}$).

- C_{a} : As can be recognized in Figure $5, C_{a}$ vanishes for $r<r_{\infty}$, and the behavior for $r>r_{\infty}$ is characterized by a rapid and considerable increase of C_{a}.
- $D^{(q)}$: A similar increase applies to the generalized dimensions as shown in Figures 6a and 6b. The structure of the attractor of the logistic map at r_{∞} is that of a Cantor set. Numerical estimates for its Hausdorff dimension, information dimension, and correlation dimension, repectively, provide $D^{(0)}=0.538 \ldots, D^{(1)}=0.518 \ldots$, and $D^{(2)}=0.501 \ldots \quad[47,48,49]$. These values are identical for all accumulation points $r_{k, \infty}$ of the logistic map.
- $K^{(9)}$: In Figure 7, r_{∞} is indicated by a stop of the step-wise increase of $K^{(1)}$ as a function of r. A theoretical determination of the metric entropy $K^{(1)}$, based on non-chaotic orbits for $r=r_{\infty}$, yields $K^{(\mathbf{1})}=0 \quad[1,39]$.
- $\langle G\rangle$: Mean information gain $\langle G\rangle$ indicates r_{∞} as the transition from $\langle G\rangle=0$ to a finite positive value (Figure 8).
- $\langle M\rangle$: For periodic behavior mutual information is given by $\langle M\rangle=\log \ell$. This leads to an infinite value of complexity for $\wp \rightarrow \infty$; it is indicated by a maximum value at $r=r_{\infty}$ in Figure 9 .
- EMC: Accumulation points of period-doubling cascades are characterized by maximum values of $E M C$-complexity. For finite resolution ($n=16$ in Figure 10) this maximum value is finite, whereas it becomes infinite in the limit $n \rightarrow \infty$ [1].
- σ_{1}^{2} : Fluctuation complexity σ_{1}^{2} vanishes for periodic behavor of any resolved permen. I!e-

 Giverges at actamalatha pant - 10

: .: ". 3 Band Merging

 and merging

 of moricacies and subtleties is given elsewhere at :

Sands in at: abernathe sequedne

10 Hlustrate this is obtained by ploting the difference of fluctuation complexity th: :wow 1. Figure 13b shows such a plot for $\Delta \sigma:=\sigma_{0}(n-5)-\sigma_{\Gamma}^{2}(n=0$ as a thnction of r ber mat

Eig. 13. a) Dependence of fluctuation complexity around band merging $n=6,4,7,5$ (from lowest to highest curve), b) $\Delta \sigma:=\sigma_{\Gamma}^{2}(n=5)-\sigma_{\Gamma}^{2}(n=6)$ as a function of r provides a maximum at the band merging point r_{*}. Negative values of $\Delta \sigma$ arise due to unresolved features.
local maximum at $r=r_{2, *}=3.592 \ldots$ appears, where 4 bands merge into 2 bands, etc. For $r>r_{*}$. $\Delta \sigma$ declines with increasing r as both bands get effectively mixed such that inhomogeneities due to the refining procedure die out. Thus for a refinement $n \rightarrow \infty$ the alternation of σ_{Γ}^{2} with n disappears immediately, as soon as r exceeds r_{\star}. Many subtle effects are associated with the behavior of $\Delta \sigma$. They are discussed in detail in [50].
Summarizing, there are well-defined relationships between refinements of order n, the distribution of separate bands over the entire attractor, the alternating behavior of σ_{Γ}^{2}, and the sensitivity of σ_{Γ}^{2} to band merging points as $r=r_{*}$. The same is true around $r_{k, *}$; for $k=2$ this is indicated in Figure 13a.

- -comple sity:

The sensitivity of t-romplexity for band merging has tirst been disensised in flof. For the pataneq.
 provides a sequence $s=1 s_{1} 1 s_{2} l s_{3} 1 s_{4} \ldots$, where n, can take values or or in a random was In sequence indicates an alternation between bandland band2, and it leads to a binary trecen lentely $l_{1}=6$ (see Figure 1.ta). By definition of the equivalence classes the corresponding antomatur (Figure 14 b) consists of only two states, both with state probability $\eta=0.5,2=1.2$. This provere: $(:=1$

3.3.4 Period-3 Window

For the investigation of the logistic map in the period 3 window ($3.82 \leq r \% 3.87$) an increased resolutho . $\nu_{r}=10^{-4}$ in parameter space is used. As particular features within the period-3 window. 11 , whe: : : Priod-3 accumulation point, the 3 -band attractor, and the feature of interior crisis will be consideren
 peak in complexity is only found using thuctuation complexity, the other complexity measme
 ply approach their specific periodic limit.

The peak of σ_{Γ}^{2} in Figure 15 at $r_{3,0}$ corresponds to a highly non-uniform distribution of state probit. bilities (measure $\mu\left(A_{i}^{G}\right)$) at the transition from the chaotic state, which exhibits a countably intimin. number of singularities, to the periodir state, which covers exactly 3 singularities. σ_{Γ}^{2} is sensilion this type of non-uniformity, caused by tangent bifurcation at intermittency.

Fig. 15. Fluctuation complexity, calculated for P_{6}^{G}, in the parameter regime $r \in[3.82,3.87]$ (period-3 window). Thr transitions from periodicity to chaos and vice versa are investigated with resolution $\Delta r=10^{-4}$. Positive values of σ_{Γ}^{2}, e.g in the neighborhood of $r=3.843$, correspond to unresolved periodicities in the state probabilities.

- Accumulation point:

All considered complexity measures are more or less sensitive to the period- 3 accumulation point $r_{3, \infty}=3.849 \ldots$ Slight differences in sensitivity are due to the same kind of problems as already mentioned for the accumulation point r_{∞}.

- 3-band attractor:

For $r>r_{3, \infty}$ some marginally resolved periodic "sub" windows within the period-3 window are characterized by low complexity.

- Interior crisis:

The transition "from chaos to chaos" at $r_{3, c}=3.856 \ldots$ [25] corresponds to a discontinuous increase of N, the number of cells A_{i}, with nonvanishing measure. Therefore, all considered complexity measures, with the only exception of $E M C$, increase rapidly as soon as r reaches $r_{3, c}$.

Fluctuation complexity increases sharply at $r=r_{3, c}$ and declines for $r>r_{3, c}$. The increase at $r=r_{3, c}$ is a consequence of the increase in N^{G} as well as of the extremely inhomogeneous distribution of state probabilities for $r \approx r_{3, c}$. With a further increase of r, fluctuation complexity declines since the measure on the attractor tends to get more uniform.

Renyi-dimensions for $q<0$ show a similar behavior for $r \geq r_{3, c}$, since they correspond to "anticorrelations" in the natural measure of P^{H} (Figure 6a).

3.3.5 Fully Developed Chaos

 Interval. Hence complexity à la Kolmogorov and (haitu will take its maxmum here, whereas complew

 Heques of randommess as it is the case for algorithmic complexity:

- (A_{1} : By detinition algorithmic complexity is the prototype of a measure of randommess. lion manman $r_{1}=1$ is obtained for $r=1$.
- $D^{(a)}$: Based on the analytical expressions for the natural measme ${ }^{(1 t} r=4$, Renyi-dimens:n n be approximated as:

$$
)^{(q)}=\left\{\begin{array}{ccc}
1 & \text { for } & q \therefore 2 \\
\frac{1}{2(q-1)} & \text { for } & y \geq
\end{array}\right.
$$

The discontinuity at $q=2$ is a consequence of the non-hyperbolicity of the logistic map at is and of the fact that this critical point is mapped onto the two values 0 and 1 only, i.e the meran: has two singularities at $x=0,1$. This situation can be considered as an analog to a thermodynamical phase transition $[51]$. Thus $D^{(q)}$ is not a strictly decreasing function of q, and, in contrast wo chani, behavior in the range $r<4$, the attractor is not a multifractal for $r=4 \quad[25]$.

- $K^{(a)}$: On a generating partition P^{i} the natural measure is uniformly distributed for $r, 4$ and arbitrary $n: \mu\left(A_{i, n}^{G}\right)=1 / N_{n}^{G}=2^{-n} \quad \forall i=1 \ldots V_{n}^{G}$. Therefore the generalized entroples an given by $h^{(q)}=\left\{\right.$ for all q. Thus, the phase transition of the structurai complexity measure $I\left({ }^{(4)}\right.$, type $S P^{H}$) has no counterpart in the structural complexity measure $h^{(q)}$, which is of type \cdot !.
- ($;>$: Since the logistic map shows doubly stochastic behavior with $V=2.6$ for fully developed chaos.
 F_{4} is determined by $N^{\prime}=2$ and $N=2^{n}$ we obtain $<M>=n-1$ for this case. As a consequina, mutual information vanishes for $n=1$. In this case the symbolic dynamics of the logistic man in equivalent to a coin-tossing process, which is completely random as defined in section 2.1. Anen all complexity measures considered here only mutual information can identify a completely randua: process as a specific case of doubly stochastio behavior.
- EMC: Analogous to the partition P_{n}^{G} the states according to $P_{n}^{G *}$ are uniformly distributed for $r=4$. Consequently $E M C=0$.
- σ_{Γ}^{2} : Fluctuation complexity vanishes for $r=4$, since the measure $\mu\left(A_{i}^{G}\right)$ is uniformiy distributed for all subintervals $A_{i}^{G} \in P^{G}$. This behavior is similar to the situation at $r=r_{*}$, since the dynamics of F_{r} at $r=4$ is selfsimilar to the dynamics of F_{r}^{2} at $r=r_{*}$.
- C_{6} : The dynamics of F_{4} generates a completely uncorrelated binary sequence. Thus the corresponding binary tree of length l_{1} consists of all combinatorially possible words of length $n=l_{1}$, providing exactly one equivalence class and therefore vanishing ϵ-complexity (Figure 3 and 12).

Table 2: Sensitivity of the considered complexity measures for specific types of behavior in case of the logistic map. In this table theoretically or numerically approximated values of complexity are given with the corresponding references. For $n \rightarrow \infty, C_{a}$ and $K^{(1)}$ coincide. An asterisk ($*$) in the last column indicates that the given values are only relevant in case of doubly stochastic behavior.

complexity	periodicity	$r_{\infty}=: r_{1, \infty}$	$r_{*}=: r_{1, *}$	$r_{3, c}$	$r=4$
C_{a}	0	0	0.5	increase	1 (*)
$\begin{gathered} I^{(q)} \\ D^{(q)} \end{gathered}$	$\begin{aligned} & \log \varphi \\ & 0 \end{aligned}$	singular $\begin{aligned} & q=0: 0.538 \\ & q=1: 0.518 \\ & q=2: 0.501 \\ & {[48,49]} \end{aligned}$		increase $q>0$ increase $q<0$ peak	$\begin{aligned} & \log N \\ & q \leq 2: 1 \\ & q \geq 2: \frac{q}{2(q-1)} \end{aligned}$
$\begin{array}{r} K^{(1)} \\ <G> \\ <M> \\ E M C \end{array}$	0 0 $\log \varphi$ $\log \varphi$	0 [39] singular singular	0.5	increase increase increase	$\begin{array}{ll} 1 & (*) \\ 1 & (*) \\ n-1 & (*) \\ 0 & (*) \\ \hline \end{array}$
$\begin{aligned} & \sigma_{\Gamma}^{2} \\ & C_{\epsilon} \end{aligned}$	0 $\log \varphi$	singular	alternating 1	peak	$\begin{array}{ll} 0 & \\ 0 & (*) \end{array}$

4. SUMMARY

The central subject of this paper is an attempt tw dassify various existing complexity medsum and a four-fold scheme based on the dichotomous notions of structure 1.6 and dynamics $1 / 1 /$ an well homogeneous partitions $\left(P^{H}\right)$ and generating partitions $P^{(i)}$. Ihe forr lasses of measures rewnita:

 witutation within the huge set of existing complexity measures. stmotural aspects of a point set are reflected by the appearance of state probabilities fu: whin ran a the partition) in the definition of the measure. Dynamical measures contain transition probabinin \therefore.. In addition. In some rases it turns wht that the formal definition of a dyammal measum and Hephrased such that it does no longer contan transition probabilities explicitly. Ihis webe rame fin question of irreducibility in the context of the suggested scheme. Within the given classification, meanm: wre considered as dynamical measures if transition probabilities in their formal definition are not redurnd. (i) state probabilities. Otherwise, they are structural measures.

Only two measures out of the investigated set are dynamical measures of type $D P^{\prime \prime}$ in this sense. fur Ination complexity and e-complexity. Structural measures with reducible transition prubabilities af are dynamical entropies, information gain, mutual information, and effective measure complexity, lig. rhimic complexity, generalized informations, and generalized dimensions are structural measures. whas. definition is totally independent of transition probabilities.
It is apparent that classificational ambiguities due to reducibility of dynamical elements appear solely for those measures defined on generating partitions. The reason is that a generating partition by construction contains the dynamics of a system implicitly. For this reason, it is in principle possible to "cover" particulat innamical aspects by such a partition, thus providing measures of type st P^{G}. Nevertheless, there mmat: Wases of irreducible $D P^{G}$ measures as mentioned above. A well-defined general criterion tor irreducibilit: las not yet been found.

Application of the set of investigated complexity measures to the logistic map shows that partumat measures are required to detect particular features of the map. The specific differences between complexit: measures in this respect are summarized in Table 2. It. is also important to note that there are substant an liscrepancies between homogeneous and generating partitions. In case of the logistic map. this can mon Nearly be seen at fully developed chaos $(r=4)$. Refinement of a generating partition $\mid n \rightarrow x)$ doew 16 general provide measures that are different from those obtained from an identically refined homogemems partition.

Complexity measures of type $S P^{H}$ assign highest complexity to random behavior, In contrast, measures of type $D P^{G}$ vanish for random behavior. For regular (stationary, periodic) behavior, measures of both types either vanish or are given by $\log \wp$. High complexity according to $D P^{G}-\left(\right.$ and some $S P^{G}{ }_{-}$) measures corresponds to specific kinds of more sophisticated dynamical behavior, e.g., the onset of chaos.

In this respect $S P^{H}$ and $D P^{G}$ can be considered as classes of complexity measures accounting for the Lasic two notions of complexity indicated in the introduction. For measures of type $S P^{G}$ this cleai distinction is lost. Some of those measures increase with randomness, others do not. Some of them vanish for regular behavior, others do not.

As a final remark, we should like to add a brief comment on the relationship between the concepts of complexity and meaning as it has been proposed by several authors [1,52,53]. In a recent publication [41] we have pointed out to some detail, how both concepts might be regarded as corresponding to each other conceptually and operationally. Within the classifying scheme presented here, this correspondence is restricted to complexity measures of type $D P^{G}$, in particular to fluctuation complexity σ_{Γ}^{2}.

Acknowledgements - We would like to express our thanks for stimulating and helpful discussions with Jim Crutchfield, Mats Nordahl, and Gregor Morfill. Support concerning computational work has been given by Valentin Demmel and Udo Schwarz.
Part of this paper has been completed during a research visit of one of us (H.A.) at the Santa Fe Institute. This visit was based on NATO grant \# SA.9-15-04 (RV.910588). It is a pleasure to thank the staff and the members of the Santa Fe Institute for their hospitality.
This work has been supported by BMFT grant \# 05 5ME94A,E.

REFERENCES

[1] P. Grassberger, Toward a quantitative theory of self-generated complexity, Int. J. Theor. Phys. 25, 907-938 (1986), How to measure self-generated complexity, Physica 140 A, 319-325 (1986)
[2] A.N. Kolmogorov, Three approaches to the quantitative definition of information, Inf. Trans. 1, 3-11 (1965)
[3] G. Chaitin, Algorithmic information theory, Cambridge University Press, Cambridge (1987)
[4] P. Grassberger, Problems in quantifying self-generated complexity, Helv. Phys. Acta 62, 489-511 (1989)
[5] K. Lindgren, M. Nordahl, Complexity measures and cellular atomata, Complex Systems 2, 409-440 (1988)
[6] J.E. Hopcroft, J.D. Ullman, Introduction to automata theory, languages and computations, Addison-Wesley, Reading. Ma., (1979)
[7] A. Lempel, J. Ziv, On the complexity of finite sequences, IEEE Trans. Inform. Theory 22, 75-88 (1976), Compression of individual sequences via variable-rate coding, IEEE Trans. Inform. Theory 24, 530-536 (1978)
[8] J. Rissanen, Universal coding, information, prediction and estimation, IEEE Trans. Inform. Theory 30, 629-636 (1984)
[9] J. Rissanen, Stochastic complexity and modelling, Annals of Statistics 14, 1080 (1986)
[10] S. Wolfram, Origins of randomness in physical systems, Phys. Rev. Lett. 55, 449-452 (1985)
[11] A.C. Yao, Theory and applications of trapdoor functions, Proceedings of the 29rd IEEE Symposium on the Foundations of Computer Science, 82-91 (1982)
[12] C.H. Bennett, Dissipation, information, computational complexity, and the definition of organization, in Emerging Syntheses in Science, Ed.: D. Pines, Addison-Wesley, Reading, Ma., 215-233 (1985)
1.i] \quad II Bennet. On the nature and ongn of romplexity in discrete homugentous, boally-mteracting systems. : and Phys. 16. 585-592 (198ti)

 Hesley, Reading, Na. 223-269 (1980)
 \therefore Abraham et al. Phom Press. Sew fork 327-33R (19xti
 1 19410
: B.A. Huterman. I. Hogg, Complexity and adaptatom, Fhysoa 22 D. 3T6.3nt lath
 preprint (1901)
 11. Scheingraber, Plenum Press, New York. 205-220 (1994)
 11. Scheingraber, Plenum Press. New York, 343-348 (1991)
 York (1983)
 rntial equations. Physica 60 D, 335-357 (1992)
$[\because 4]$ V.M. Alekseev, M.V. Yakobson, Symbolic dynamics and hyperbolic dynamic systems. Phys. Rep. 75, 287-825, 10x 10
[55] R.W. Leven, B.P. Koch, B. Pompe, Chaos in dissipativen Systemen, Akademie-Verlag, Berlin (1989)
[20] E.A. Jackson, Perspectives of nonlanear dynamics, vol. . Cambridge University Press. (ambridge (1990)
$[27]$ G. Nicolis, (C. Nicolis, Master-equation approach to deterministic chaos, Phys. Rev. 38 A, 427-433 (1988). For another definition of doubly stochastic matrices see D.R. Cox. H.D. Miller. The theory of stochastic processes ('hapman and Hall, London (1987)
[2] F. Kaspar, H.G. Schuster. Easily calculable measure for the complexity of spatiotemporal patterns. Phys. Ket 30 A $842-848$ (1987)
[29] C.E. Shannon. W. Weaver, The mathematical theory of communtcatron, Univ, of Illinois Press, Urbana (194\};
30] J. Balatoni, A. Renyi, in Selected Papers of A. Renyt, vol. 1. Akademiai, Budapest. 558 (1976)
$\because 1]$ P. Grassberger, Generalized dimensions of strange attractors, Phys. Lett. 97 A. 227-230 (1983)
[32] H.G.E. Hentschel. I. Procaccia. The infinite number of generalized dimensions of fractals and strange attracturs Physica 8 D, 435-444 (1983)
$30]$ P. Grassberger, I. Procaccia. Estimating the Kolmogorov entropy from a chaotic signal, Phys. Rev. 28 A. $2591-25!4$ (1983)
[$\because 1]$ R.S. Shaw, Strange attractors, chaotic behavior, and information fiow. Z. Saturforschung 36 A. s(J-112 (1981)
[i] If. Atmanspacher and H. Scheingraber, A fundamental link between system theory and statistical mechanics. Finnit Phys. 17, 939-963 (1987)
?; T. (lalsey, M.H. Jensen, I. P. Kadanoff. I Procaccia. B.I. Shraiman. Fractal measures and their singularities: fl.. characterization of strange sets, Phys. Rev. 33 A. 1141-1151 (1986)
:77) P. Szeplalusy, 'I' Tél, A. Csodás, Z. Kovács, Phase transitions associated with dynamical properties of chaotic systents. Phys. Rev. 36 A. 3525-3528 (1987)
$\left[\begin{array}{ll}{[8]} \\ \hline\end{array}\right] . P$. Crutchfield, N.H. Packard. Symbolic dynamics of one-dimensional maps: entropies, finite precision, and noise, fui J. Theor. Phys. 21, 433-466 (1982)
[:9] W. Ebeling, G. Nicolis, Word frequency and entropy of symbolic sequences: a dynamical perspective, Chaos. Solitons B: Fractals 2, 635-650 (1992)
[10] H. Haken, Information and self-organsation, Springer, Berlin (1988)
[41] H. Atmanspacher, J. Kurths, H. Scheingraber, R. Wackerbauer, A. Witt, Complexity and meaning in nonlinear dynamical systems, Open Systems \mathcal{E} Information Dynamics 1, 269-289 (1992)
[42] A. Witt, KomplexitätsmaBe und ihre Anwendungen in der symbolischen Dynamik, Humboldt University, Berlin. FB Mathematik, Diplomarbeit (1992)
[43] P. Collet, J.-P. Eckmann, Iterated maps on the interval as dynamical systems, Birkhäuser, Boston (1980)
[14] R.L. Devaney, An introduction to chaotic dynamical systems, Benjamin/Cummings Publishing, Ca., (1985)
[45] E.M. Oblow, Supertracks, supertrack functions and chaos in the quadratic map, Phys. Lett. 128 A, 406-412 (1988)
[16] C. Grebogi, E. Ott, J.A. Yorke, Crises, sudden changes in chaotic attractors, and transient chaos, Physica 7D. 181-200 (1983)
[47] P. Grassberger, On the Hausdorff dimension of fractal attractors. J. Stat. Phys. 26, 173-179 (1981)
[18] H.G. Schuster, Deterministic chaos, Physik-Verlag, Weinheim (1984)
[49] E. Aurell, On the metric properties of the Feigenbaum attractor, J. Stat. Phys. 47, 439-458 (1986)
[30] R. Wackerbauer, KomplexitätsmaBe: Klassifikation und Anwendung in der Theorie dynamischer Systeme, Max-PlanckInstitut für extraterrestrische Physik, Garching, Doktorarbeit (1993)
[51] P. Grassberger, R. Badii, A. Politi, Scaling laws for invariant measures on hyperbolic and nonhyperbolic attractors. J. Stat. Phys. 51, 135-178 (1988)
[52] H. Atlan, Self creation of meaning, Phys. Scr. 36, 563-576 (1987)
[53] J. Casti, The simply complex: trendy buzzword or emerging new science, Bull. of the Santa Fe Inst. 7, 10-13 (1992)

