Swing equation in power systems: Approximate analytical solution and bifurcation curve estimate

Cite as: Chaos 30, 013110 (2020); https://doi.org/10.1063/1.5115527
Submitted: 19 June 2019. Accepted: 17 December 2019. Published Online: 07 January 2020

Qi Qiu, Rui Ma, Jurgen Kurths, and Meng Zhan

COLLECTIONS

Paper published as part of the special topic on Dynamics of Modern Power Grids
Note: This paper is part of the Focus Issue on the Dynamics of Modern Power Grids.

ARTICLES YOU MAY BE INTERESTED IN

Using machine learning to predict extreme events in the Hénon map
Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 013113 (2020); https://doi.org/10.1063/1.5121844

Identifying characteristic time scales in power grid frequency fluctuations with DFA
Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 013130 (2020); https://doi.org/10.1063/1.5123778

Characterizing the complexity of time series networks of dynamical systems: A simplicial approach
Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 013109 (2020); https://doi.org/10.1063/1.5100362
Swing equation in power systems: Approximate analytical solution and bifurcation curve estimate

Qi Qiu, Rui Ma, Jurgen Kurths, and Meng Zhan

ABSTRACT

The swing equation plays a central role in the model and analysis of power system dynamics, including small-signal stability and transient stability. As it has the same form as that in a variety of different disciplines, such as the forced pendulum in mechanics, the classical mechanic description of superconducting Josephson junctions in physics, and the classical second-order phase-locking loop in electronics, it has aroused general interest in science and engineering. In this paper, its approximate solution of the limit cycle is obtained by means of the incremental harmonic balance (IHB) method. It is found that the trouble of a more distorted limit cycle when the parameters are closer to the homoclinic bifurcation curve can be easily solved by incorporating higher order harmonics in the IHB method. In this way, we can predict the homoclinic bifurcation curve perfectly. In addition, the method is extended to study a generalized swing equation including excitation voltage dynamics.

Due to the increasing pressure of environmental protection and energy resource, our modern societies are vigorously supporting the development of various renewable energies, in particular, wind power and photovoltaics. Large-scale distributed power sources interfaced with converters have been integrated into power grids in recent years. The power electric system is becoming gradually more power-electronics-based, relying on controllers in converters, and meanwhile, its dynamics behavior is becoming much more complicated compared to that of traditional power systems. In traditional power systems, based on Newton's second equation of motion, the swing equation characterizes the rotor's motion of a synchronous generator under the imbalanced torque and plays a key contribution to our understanding of power system electromechanical dynamics. Thus, it is not surprising to see that, even in studying the power-electronics-based power system, researchers are trying to use a similar equation resembling the dynamics of a synchronous generator to understand and/or control its dynamical behavior. For example, virtual synchronous generators and power-synchronization control methods have been proposed to modify the control algorithms of converters and resemble the dynamic behavior of a synchronous machine. A novel model of the amplitude-phase motion equation has also been advocated to extend the swing equation by including an additional equation for the voltage amplitude. Thus, the classical swing equation is important for our understanding of power system dynamics. However, to the best knowledge of the authors, an approximate analytical solution for periodic motion (limit cycle) and the set of parameters corresponding to the homoclinic separatrix are still unavailable. The objective of this work just aims to solve these unsolved problems by using an incremental harmonic balance method.

I. INTRODUCTION

In traditional power systems, the electromechanical dynamics of a synchronous generator is dominated by its rotor motion, which is represented by a well-known second-order differential equation, the swing equation in the simplest form. It plays a dominant role...
in many basic problems in power systems, such as rotor-angle stability in a single-machine-infinite-bus system and also in coupled multiple machine systems, low-frequency oscillation, and subsynchronous oscillation. This equation is highly nonlinear. In many situations, such as small-signal stability analysis and design of linear controllers, the swing equation is linearized and thus only the stability of the so-called working point (i.e., fixed point) is concerned. However, in the transient stability analysis, we have to deal with its nonlinearity, and thus various dynamical behaviors including fixed points and limit cycle are of interest. In particular, the transient stability is determined by the system state and the basin of attraction of the postfault working point. This is essentially a global stability problem in the language of nonlinear dynamics, and both the fixed point and the coexisting limit cycle are of importance. Therefore, fully grasping the complicated dynamics in the swing equation (or the so-called second-order Kuramoto equation) and even in the coupled swing equations is significant. It is only natural to see that these studies have become a hot topic in nonlinear dynamics and complex systems science recently.2,31-34

In addition, the significance of a nonlinear study of the swing equation is also supported by the fact that it is, in mathematics, exactly the same as the dynamic equations in many other systems, such as forced pendulum in mechanics, the classical mechanistic description of superconducting Josephson junctions in physics, and the classical second-order phase-locking loop in electronics.26,27 A similar model system is the motion of a mechanical particle in a tilted washboard potential in stochastic dynamical systems.31-33 This mechanical analog has been analyzed in detail in statistical physics; see a recent paper and references therein.34

The basic physical picture of the swing equation has been well established and recognized, including three distinct dynamic regimes: stable fixed point, stable limit cycle, and their coexistence for different initial conditions, depending on different system parameters. Their corresponding parameter regions are represented by I, III, and II, respectively, in Fig. 1(a).13,14,26,29 In addition, the existence and uniqueness of the limit cycle have been well addressed in standard textbooks of nonlinear dynamics and chaos.1-7 The fixed point is locally stable within regions I and II and below the horizontal critical line at $P_{m} = 1.0$ and, in contrast, the limit cycle is locally stable within regions II and III and above the crooked critical curve. Basically, the horizontal line at $P_{m} = 1.0$ is recognized as a saddle-node bifurcation, as a pair of a saddle and a node collides and both annihilate after P_{m} is larger than 1.0. In Refs. 29 and 30, under the condition of larger D, it is further subclassified as an infinite-period bifurcation as the collision of the saddle and node happens exactly at one single loop under the over-damped limit. For the curved critical parameters, it is generally recognized to be a homoclinic bifurcation (or called saddle-loop bifurcation), as the limit cycle collides with the unstable manifold of the saddle and annihilates after that.35-37

Although the qualitative picture of the swing equation is clear, quantitative results are still not fully available, including the estimates of the homoclinic bifurcation curve and the approximate analytical solution of the limit cycle. For the first problem, based on the Melnikov method, Guckenheimer and Holmes obtained that it is close to a straight line, $P_{m} = 4D/\pi$, when D is close to zero, as illustrated by a dashed straight line in Fig. 1(a). However, the deviation from the straight line becomes larger for larger D. In addition, some earlier known estimates are as follows: Tricomi gave upper and lower estimates already in 1933, and Boem provided another estimate.38 All these results are not very satisfactory. In a recent paper, Skubov et al. gave a substantial contribution by using a polynomial approximation, which, however, highly relies on the mathematical derivation.40

For the second unsolved problem, as the parameters approach the homoclinic bifurcation curve, the solution of the limit cycle would become much more distorted, making its prediction very difficult. Some studies focused on this problem. For instance, Anup obtained an approximate solution by using the perturbation theory.
but still treated the swing equation as a weakly nonlinear system. Salas used the elliptic Jacobian function and obtained an analytic solution of a gravity pendulum with damping. In addition, a recent work based on calculating matrix continued fractions was conducted.

Because the swing equation belongs to strongly nonlinear systems, the classical techniques, such as the Lindstedt-Poincaré method, the Krylov-Bogoli-Mitropolsky method, and the multiscale method, are not suitable for weakly nonlinear systems, and the harmonic balance method may not solve the problem. The method of the harmonic balance method maintaining only the first harmonic term has also been applied, but it has been found that the estimated result is not satisfactory. If the order of harmonics increases, the mathematical derivation would become very cumbersome and difficult. To solve this puzzle, Lau and Cheung proposed a new method, called the incremental harmonic balance method (IHB), which is a semianalytical and seminumerical algorithm by combining the incremental method and the harmonic balance method. Similar to the classical harmonic balance method, the IHB assumes that the solution of the equation is in the form of harmonics, but it yields the harmonic coefficients by using an iterative calculation of the incremental method, similar to the Newton-Raphson method for solving general nonlinear algebraic equations. By using such a numerical technique, the problem of finding coefficients of different balanced harmonic terms can be efficiently solved by numerical calculation. So far, it has been widely used to solve a variety of strongly nonlinear problems including the van der Pol oscillator, the Duffing oscillator, the beam or plate vibration of large amplitude in various engineering problems, and even the strongly nonlinear fractional-order Mathieu-Duffing equation. However, there is no incremental harmonic balance analysis on the swing equation to the best of the authors’ knowledge.

In this paper, the IHB method is used to obtain the approximate solution of the limit cycle in the swing equation. Further, the homoclinic bifurcation curve is estimated based on these solutions. Finally, this procedure is extended to study a third-order model of the synchronous generator considering voltage dynamics to verify the validity of the IHB method. The final section is devoted to conclusion and discussion.

II. THE CLASSICAL SWING EQUATION
A. Modeling
According to Newton's second equation of motion, the swing equation for the rotor's motion of a synchronous generator is represented by

\[M \ddot{\delta} = -D \dot{\delta} + P_m - K \sin \delta, \]

where \(\delta \) is the rotor angle of the synchronous generator, \(P_m \) is the mechanical input active power, \(M \) and \(D \) denote the inertia and damping of the synchronous generator, respectively, and \(K \) represents the coefficient of the electromagnetic energy output to the grid. All parameters are normalized.

There are four tunable parameters in Eq. (1). Basically, we can keep any two by using a rescaling. Without losing generality, we choose the mechanical input power \(P_m \) and the damping coefficient \(D \) as our primary parameters by fixing the other parameters \(M = 1.0 \) and \(K = 1.0 \), which are also typical in per-unit in power systems. Then, we obtain

\[\ddot{\delta} + D \dot{\delta} + \sin \delta = P_m, \]

which is familiar in nonlinear dynamics.

B. Application of the IHB method
Defining \(\dot{\omega} = \omega \) as a function of \(\delta \) by using the IHB method. As the first step to deal with the incremental, let \(\omega \) be the solution of Eq. (3) and then its perturbed form as \(\omega = \omega + \Delta \omega \). After substituting it into Eq. (3) and omitting all higher order small quantities, we obtain the incremental equation (with \(\Delta \omega \) being an unknown quantity),

\[\dot{\Delta} \omega + (\dot{\omega} + D \omega + \sin \delta - \dot{\omega} \omega = P_m - D \omega - \sin \delta - \dot{\omega} \omega, \]

where \(R = P_m - D \omega - \sin \delta - \dot{\omega} \omega \) is called the unbalanced force. Clearly, when \(\omega \) is the exact solution of the swing equation, \(\Delta \omega = 0 \) and \(R = 0 \).

The second step of the IHB method is the harmonic balance process, the same as what we have done in the classical harmonic balance method. It assumes that

\[
\omega = a_1 + a_2 \cos \delta + a_3 \sin \delta + a_4 \cos 2 \delta + a_5 \sin 2 \delta \\
+ \cdots + a_{2n} \cos n \delta + a_{2n+1} \sin n \delta
\]

and

\[
\Delta \omega = \Delta a_1 + \Delta a_2 \cos \delta + \Delta a_3 \sin \delta + \Delta a_4 \cos 2 \delta \\
+ \Delta a_5 \sin 2 \delta + \cdots + \Delta a_{2n} \cos n \delta + \Delta a_{2n+1} \sin n \delta,
\]

where \(a_i \) denotes the coefficient of the harmonic terms and \(n \) is the highest order of harmonics considered in the calculation. We denote \(A = [a_1 \ a_2 \ \cdots \ a_{2n+1}]^T \) and \(\Delta A = [\Delta a_1 \ \Delta a_2 \ \cdots \ \Delta a_{2n+1}]^T \) for the harmonic coefficients of \(\omega \) and \(\Delta \omega \), respectively, and hence

\[\omega = \left[\begin{array}{c} 1 \\
\cos \delta \\
\sin \delta \\
\cdots \\
\cos n \delta \\
\sin n \delta \end{array} \right] A \]

and

\[\Delta \omega = \left[\begin{array}{c} 1 \\
\cos \delta \\
\sin \delta \\
\cdots \\
\cos n \delta \\
\sin n \delta \end{array} \right] \Delta A. \]

We should also express \(R \) in Eq. (4) into the harmonic form and get the corresponding harmonic coefficients, namely,

\[R = \left[\begin{array}{c} 1 \\
\cos \delta \\
\sin \delta \\
\cdots \\
\cos n \delta \\
\sin n \delta \end{array} \right] R_m, \]

where \(R_m \) is a column vector. Note that \(R_m \) depends on \(A \) (not \(\Delta A \)).

The objective of the next manipulation is to determine \(\Delta A \) on the basis of the already known \(A \) and under the restriction of harmonic balance conditions. Substituting Eqs. (7)–(9) into Eq. (4) and
ignoring all higher harmonics, we obtain
\[Z_m \Delta A = R_m, \]
where \(Z_m \) is the coefficient matrix of the corresponding harmonic term.

In the calculation, an arbitrarily chosen set of coefficients \(A \) is given as the initial value of iteration, and \(\Delta A \) can be solved in the linear algebraic equations [Eq. (10)] with known \(Z_m \) and \(R_m \). Namely, a low order solution of \(\omega \) as a function of \(\delta \) is first obtained. Then, replacing \(A \) with \(A + \zeta \Delta A \), with \(\zeta \) being the iteration coefficient, and substituting it into Eq. (10) to obtain the new \(\Delta A \). In this iterative procedure, as \(Z_m \) and \(R_m \) in Eq. (10) depend on \(A \), they should be updated in each iterate. Repeat these steps until the norm of the imbalanced force \(R_m \) approaches zero. Note that here the choice of \(\zeta (0 < \zeta < 1) \) depends on the value of \(D \); to avoid the situation that the imbalanced force \(R_m \) does not converge, we should choose a smaller \(\zeta \). In general, the smaller \(\zeta \) is, the more iterations are calculated and higher accuracy is obtained. To clearly show the whole calculation process, a detailed flow chart of the IHB algorithm is exhibited in the Appendix. In addition, we have uploaded all relevant program codes and data in Figshare.\(^a\)

C. Approximate analytic solutions of the limit cycle

Before analyzing the bifurcation of the limit cycle, we first illustrate the procedure by computing the limit cycles for a fixed set of parameters \(D = 0.5 \) and \(P_m = 0.8 \). These parameters are arbitrarily adopted within region II and illustrated by an open circle in Fig. 1(b). Let us consider the simplest first-order IHB model with the first form, \(\omega = a_1 + a_2 \cos \delta + a_3 \sin \delta \), and by using the above IHB algorithm, we get
\[\omega = 1.6000 + 0.5638 \cos \delta - 0.1780 \sin \delta. \]
(11)

Meanwhile, to make a comparison, we use an explicit Runge-Kutta (4,5) algorithm to obtain the numerical solution of the original system (2). The error is defined as their mismatch,
\[\text{error} = x_i - y_i, \]
(12)

where \(x_i \) and \(y_i = y_{i-1}, y_{i-1}, \ldots \) are the two time series calculated by the IHB method and the numerical solution, respectively, and \(N \) is the total number of data. The corresponding estimated solution (solid curve) and the numerical result (dotted curve) are illustrated in Fig. 2(a) with their corresponding error results in Fig. 2(b).

In order to further reduce the error, we may choose the second order IHB and obtain
\[\omega = 1.6000 + 0.5768 \cos \delta - 0.1850 \sin \delta - 0.0402 \cos 2\delta + 0.0395 \sin 2\delta, \]
(13)

whose results are shown in Figs. 2(c) and 2(d), where we can see that the error is indeed substantially reduced, compared to that of the first-order result of the top two panels.

Next to systematically characterize the error of different orders of the IHB method, we introduce the mean squared error (MSE),\(^a\)
\[\text{MSE} = \frac{1}{N} \sum_{i=1}^{N} (x_i - y_i)^2. \]
(14)

Table I summarizes the predicted coefficients of each harmonic term and its corresponding MSE. It obviously shows that with the increase of the harmonic terms, more precise approximation results are obtained. For instance, the value of MSE has sharply dropped from 0.002 32 to 0.000 02, when a third order IHB is included.

So far, by using the IHB method, we have already obtained an almost perfect approximation result for one set of system parameters of \(D = 0.5 \) and \(P_m = 0.8 \), which is far away from the homoclinic

TABLE I. Harmonic coefficients and corresponding MSE obtained by different orders of the IHB method (from first to third): \(D = 0.5 \) and \(P_m = 0.8 \), typical within the region of the stable limit cycle.

<table>
<thead>
<tr>
<th>Items</th>
<th>Constant term</th>
<th>(\cos \delta)</th>
<th>(\sin \delta)</th>
<th>(\cos 2\delta)</th>
<th>(\sin 2\delta)</th>
<th>(\cos 3\delta)</th>
<th>(\sin 3\delta)</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.6000</td>
<td>0.5638</td>
<td>-0.1780</td>
<td>-0.0402</td>
<td>0.0395</td>
<td>0.0039</td>
<td>-0.0103</td>
<td>0.002 32</td>
</tr>
<tr>
<td>2</td>
<td>1.6000</td>
<td>0.5768</td>
<td>-0.1850</td>
<td>-0.0412</td>
<td>0.0414</td>
<td>0.0002</td>
<td></td>
<td>0.000 09</td>
</tr>
<tr>
<td>3</td>
<td>1.6000</td>
<td>0.5771</td>
<td>-0.1855</td>
<td>-0.0412</td>
<td>0.0414</td>
<td>0.0002</td>
<td></td>
<td>0.000 02</td>
</tr>
</tbody>
</table>
bifurcation line and within the stable regions of the limit cycle. When the parameters are moved closer to the homoclinic bifurcation line, we find that the IHB method is still workable, but a much higher order of harmonics should be included. As one example, the parameters \(D = 1 \) and \(P_m = 0.98 \) are chosen, as illustrated by an open square in Fig. 1(b). The comparison of the numerical result (heavy solid curves) and approximate results for different orders is given in Fig. 3(a). Their corresponding magnification and the results of error and MSE are shown in Figs. 3(b)–3(d). It is clear that now the periodic motion becomes much more seriously distorted, quite different from the sinusoidal-like wave form in Fig. 2. Thus, to obtain a higher degree of accuracy, we need to increase the order of harmonics. All different order results given in Fig. 3 clearly show that they approach the numerical result gradually, with a sharp decrease of the value of MSE. In addition, to be specific, we list all obtained coefficients of each harmonic term and their corresponding MSE in Table II.

D. Prediction of the homoclinic bifurcation curve

We have seen that the IHB method is efficient to solve the problem of the approximate analytic solution of the limit cycle for any system parameters, either close to or far away from the homoclinic bifurcation curve within the stable region. Next, we like to use these approximate solutions to directly solve the problem of prediction of the homoclinic bifurcation curve.

<table>
<thead>
<tr>
<th>Items</th>
<th>Constant term</th>
<th>(\cos \delta)</th>
<th>(\sin \delta)</th>
<th>(\cos 2\delta)</th>
<th>(\sin 2\delta)</th>
<th>(\cos 3\delta)</th>
<th>(\sin 3\delta)</th>
<th>(\cos 4\delta)</th>
<th>(\sin 4\delta)</th>
<th>(\cos 5\delta)</th>
<th>(\sin 5\delta)</th>
<th>(\cos 6\delta)</th>
<th>(\sin 6\delta)</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9800</td>
<td>0.4949</td>
<td>-0.5101</td>
<td></td>
<td>0.0343</td>
</tr>
<tr>
<td>2</td>
<td>0.9800</td>
<td>0.4843</td>
<td>-0.5265</td>
<td>0.0643</td>
<td>0.0993</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0083</td>
</tr>
<tr>
<td>3</td>
<td>0.9800</td>
<td>0.4797</td>
<td>-0.5386</td>
<td>0.0798</td>
<td>0.0994</td>
<td>-0.0427</td>
<td>0.0121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0032</td>
</tr>
<tr>
<td>4</td>
<td>0.9800</td>
<td>0.4784</td>
<td>-0.5378</td>
<td>0.0833</td>
<td>0.0974</td>
<td>-0.0465</td>
<td>0.0201</td>
<td>0.0086</td>
<td>-0.0220</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0015</td>
</tr>
<tr>
<td>5</td>
<td>0.9800</td>
<td>0.4780</td>
<td>-0.5386</td>
<td>0.0841</td>
<td>0.0963</td>
<td>-0.0464</td>
<td>0.0230</td>
<td>-0.0028</td>
<td>-0.0261</td>
<td>0.0019</td>
<td>0.0045</td>
<td></td>
<td></td>
<td>0.0008</td>
</tr>
<tr>
<td>6</td>
<td>0.9800</td>
<td>0.4778</td>
<td>-0.5385</td>
<td>0.0844</td>
<td>0.0958</td>
<td>-0.0460</td>
<td>0.0240</td>
<td>-0.0047</td>
<td>-0.0269</td>
<td>0.0153</td>
<td>0.0033</td>
<td>-0.0051</td>
<td>0.0062</td>
<td>0.0005</td>
</tr>
<tr>
<td>7</td>
<td>0.9800</td>
<td>0.4777</td>
<td>-0.5385</td>
<td>0.0844</td>
<td>0.0956</td>
<td>-0.0457</td>
<td>0.0244</td>
<td>-0.0056</td>
<td>-0.0270</td>
<td>0.0164</td>
<td>0.0022</td>
<td>-0.0051</td>
<td>0.0087</td>
<td>0.0003</td>
</tr>
<tr>
<td>8</td>
<td>0.9800</td>
<td>0.4777</td>
<td>-0.5385</td>
<td>0.0844</td>
<td>0.0955</td>
<td>-0.0455</td>
<td>0.0246</td>
<td>-0.0060</td>
<td>-0.0270</td>
<td>0.0167</td>
<td>0.0016</td>
<td>-0.0047</td>
<td>0.0098</td>
<td>0.0002</td>
</tr>
</tbody>
</table>
As we know, the homoclinic bifurcation occurs when the limit cycle collides with the unstable manifold of the saddle located at \(\delta = \arcsin(P_m) \), \(\omega = 0 \), and it annihilates after the collision. The minimal value of \(\omega(\delta) \), \(\omega_{\text{min}} \), gradually decreases when the system parameters approach the homoclinic bifurcation curve; this point is clear, if we compare the results in Figs. 2 and 3. In particular, \(\omega_{\text{min}} \) in Fig. 3 nearly touches the zero value. Therefore, we may choose \(\omega_{\text{min}} \) as an index to characterize the distance from the homoclinic bifurcation, and test whether it is equal to zero as the critical condition for the emergence of the bifurcation.

Figure 4 plots \(\omega_{\text{min}} \) vs \(P_m \) with \(P_m \) decreasing from 1.6 to 0.9 \((\Delta P_m = -0.1)\) and \(D = 1 \) fixed; \(D = 1.0 \) is fixed. A monotonic decrease of \(\omega_{\text{min}} \) with the decrease of \(P_m \) is clear, until a critical predicted value \(P_m, c \approx 0.89 \) arrives. Thus, the homoclinic bifurcation point has been well predicted. Note that, for any \(P_m < P_m, c \), as the limit cycle is locally unstable, we cannot obtain any significant solution of the limit cycle any longer. With this single-side data for a fixed \(D \) as that in Fig. 4, we can further determine the locus of the whole homoclinic bifurcation curve by scanning the parameter \(D \). The final results are shown in Fig. 1(b), where clearly they are coincident with the numerical results of the original system (2) when a sufficiently high order of harmonics is considered.
FIG. 6. Similar to Fig. 5, but for a different set of parameters $D = 0.6$ and $P_m = 0.54$ and with a fifth-order IHB method instead. Clearly, when the parameters are closer to the homoclinic bifurcation curve, a more distorted periodic solution of $\omega(\delta)$ is observed, and a higher order of harmonics in the IHB method is needed accordingly.

III. GENERALIZED SWING EQUATION

In this section, we will study a generalized swing equation, namely, a third order model of the synchronous generator incorporating voltage dynamics,

\[
\begin{align*}
\dot{\delta} &= o, \\
M \dot{\omega} &= -D\omega + P_m - BV_s E \sin \delta, \\
T_{d0} \dot{E} &= E_f - (1 + XB)E + XBV_s \cos \delta,
\end{align*}
\]

where E is the quadrature-axis transient voltage of the synchronous generator, T_{d0} represents the direct-axis open-circuit transient time constant of the synchronous generator, E_f denotes the field excitation voltage, V_s is the voltage at the infinitely strong bus, and B and X are derived system parameters. Different from the classical swing equation, this third order model has been regarded as a more realistic model and has been widely used in power system calculations.

Clearly, now we have the three state variables δ, ω, and E, which can be expressed together as a state vector $[\delta \quad \omega \quad E]$. Similarly, we will choose the mechanical input power P_m and the damping coefficient D as our primary parameters, with all other typical per-unit parameters fixed; $M = 1.0, B = 1.0, V_s = 1.0, E_f = 1.0, T_{d0} = 2.0$, and $X = 1.0$. By theoretically analyzing the stability of the fixed points, we obtain the critical parameter for the saddle-node bifurcation: $P_m = 0.6495$.

Let us use the IHB method to solve similar problems in Eq. (15). Changing the variable $\dot{\delta} = \omega(\delta)$, we can pass it to a new independent

\[
\begin{array}{cccccccc}
\text{Items} & \text{Constant term} & \cos \delta & \sin \delta & \cos 2\delta & \sin 2\delta & \cos 3\delta & \sin 3\delta & \text{MSE}(\times 10^{-6}) \\
1 \omega & 1.3614 & 0.2947 & -0.1082 & 0.0289 & 0.0503 & -0.0159 & -0.0031 & 2034 \\
E & 0.4554 & 0.1752 & 0.2382 & 0.0296 & 0.0514 & -0.0078 & -0.0030 & 198.5 \\
2 \omega & 1.3642 & 0.2959 & -0.1137 & 0.0289 & 0.0503 & -0.0159 & -0.0031 & 45.95 \\
E & 0.4541 & 0.1824 & 0.2359 & 0.0296 & 0.0514 & -0.0078 & -0.0030 & 6.899 \\
3 \omega & 1.3644 & 0.2959 & -0.1143 & 0.0289 & 0.0503 & -0.0159 & -0.0031 & 2.160 \\
E & 0.4540 & 0.1828 & 0.2357 & 0.0296 & 0.0514 & -0.0078 & -0.0030 & 0.3578 \\
\end{array}
\]
variable δ,

$$
\dot{\omega} = P_m - D\omega - E \sin \delta,
$$

where $\dot{\omega} = \omega \omega$ and $E = \frac{\omega \omega}{\omega}$. Let $\omega $ and E be the solution of the above equations and express the perturbed ω and E as $\omega = \omega + \Delta \omega$ and $E = E + \Delta E$, we yield the increment equations with $\Delta \omega$ and ΔE,

$$
\Delta \dot{\omega} + \omega \Delta \omega + D \Delta \omega + \Delta E \sin \delta = R_1,
$$

$$
2 \dot{E} + 2 \dot{E} \omega + E \sin \delta = R_2,
$$

where

$$
R_1 = P_m - D\omega - \omega \omega - E \sin \delta,
$$

$$
R_2 = 1 - 2E - 2\dot{E} \omega + \omega \omega.
$$

When ω and E are the exact solutions, R_1 and R_2 will vanish.

Under the assumptions of different orders of harmonics, we have

$$
\omega = a_1 + a_2 \cos \delta + a_3 \sin \delta + a_4 \cos 2\delta + a_5 \sin 2\delta
+ \cdots + a_{2n} \cos n\delta + a_{2n+1} \sin n\delta,
$$

$$
\Delta \omega = \Delta a_1 + \Delta a_2 \cos \delta + \Delta a_3 \sin \delta + \Delta a_4 \cos 2\delta
+ \Delta a_5 \sin 2\delta + \cdots + \Delta a_{2n} \cos n\delta + \Delta a_{2n+1} \sin n\delta,
$$

$$
E = b_1 + b_2 \cos \delta + b_3 \sin \delta + b_4 \cos 2\delta + b_5 \sin 2\delta
+ \cdots + b_{2n} \cos n\delta + b_{2n+1} \sin n\delta,
$$

$$
\Delta E = \Delta b_1 + \Delta b_2 \cos \delta + \Delta b_3 \sin \delta + \Delta b_4 \cos 2\delta
+ \Delta b_5 \sin 2\delta + \cdots + \Delta b_{2n} \cos n\delta + \Delta b_{2n+1} \sin n\delta,
$$

where n denotes the order of the IHB method. Substituting them into Eqs. (17) and ignoring high harmonics, we can determine the coefficients of the same harmonic terms, based on the harmonic balance

$$
Z_m [\Delta A \quad \Delta B]^T = [R_{m1} \quad R_{m2}]^T,
$$

where

$$
\Delta A = \begin{bmatrix} \Delta a_1 & \Delta a_2 & \cdots & \Delta a_{2n+1} \end{bmatrix},
$$

$$
\Delta B = \begin{bmatrix} \Delta b_1 & \Delta b_2 & \cdots & \Delta b_{2n+1} \end{bmatrix}.
$$

Similarly, R_{m1} and R_{m2} are the corresponding column vectors of R_1 and R_2, respectively. Furthermore, similar to the calculation process of the classical swing equation, all coefficients of the harmonics are obtained by an iterative calculation until the norms of R_1 and R_2 are sufficiently small.

As two examples, the results for the parameters of $D = 0.5$ and $P_m = 0.8$ corresponding to the cases far away from the homoclinic bifurcation curve and those of $D = 0.6$ and $P_m = 0.54$ representing the cases close to the homoclinic bifurcation curve are shown in Figs. 5 and 6, respectively. Both show an almost perfect coincidence of the approximate analysis with the numerical result. Meanwhile, we find that for the former sinusoidal-like periodic trajectory, a third-order approximation is sufficient, whereas for the latter distorted one, a fifth-order approximation is needed. To be specific, we list the coefficients of each harmonic term for these different cases in Tables III and IV, respectively.

Similar to the classical swing equation, the parameter space of the third-order model can be divided into the fixed point region, the bistable region, and the limit cycle region. The boundary between the fixed point region and the bistable region is the homoclinic

<table>
<thead>
<tr>
<th>Items</th>
<th>Constant term</th>
<th>$\cos \delta$</th>
<th>$\sin \delta$</th>
<th>$\cos 2\delta$</th>
<th>$\sin 2\delta$</th>
<th>$\cos 3\delta$</th>
<th>$\sin 3\delta$</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ω</td>
<td>0.7039</td>
<td>0.3388</td>
<td>-0.2888</td>
<td>0.1520</td>
<td>0.0712</td>
<td>-0.0373</td>
<td>0.0470</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>0.4118</td>
<td>0.3343</td>
<td>0.2353</td>
<td>-0.0310</td>
<td>0.0387</td>
<td>-0.0457</td>
<td>0.0045</td>
</tr>
<tr>
<td>3</td>
<td>ω</td>
<td>0.7331</td>
<td>0.2993</td>
<td>-0.3184</td>
<td>0.1720</td>
<td>0.0589</td>
<td>-0.0373</td>
<td>0.0470</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>0.4065</td>
<td>0.3488</td>
<td>0.2005</td>
<td>-0.0310</td>
<td>0.0387</td>
<td>-0.0457</td>
<td>0.0045</td>
</tr>
</tbody>
</table>

FIG. 7. Comparison of numerical and predicted results for the bifurcation curve of the generalized swing equation. Two parameter sets $D = 0.5, P_m = 0.8$ (open circle) and $D = 0.6, P_m = 0.54$ (open square) used in the paper are emphasized.
bifurcation line. Finally, let us deal with the estimation of the homoclinic separatrix. Again we select the same criterion as that of the classical swing equation, namely, whether the minimum value of the obtained analytic solution of ω_{min} approaches zero. By analyzing ω_{min} for different P_m's and D's, we identify the whole homoclinic bifurcation line. The result is shown in Fig. 7, with a clear satisfactory coincidence of the prediction with the numerical result, when a higher order is included.

IV. CONCLUSION AND DISCUSSIONS

In summary, the approximate solution of the limit cycle and the estimate of the homoclinic bifurcation line in the classical swing equation and the generalized swing equation are obtained by using the incremental harmonic balance method. All of these predictions are found to be in good agreement with the numerical results of the full systems in Eqs. (2) and (15). For better precision, a higher order of harmonics in the IHB method could be considered and performed, and this manipulation is efficient with the aid of a computer. Therefore, the two unsolved problems in the classical swing equation have been successfully solved in a unified manner. It is notable that the swing equation belongs to strongly nonlinear systems, which generally cannot be solved by the classical techniques for weakly nonlinear systems.

Here, we admit that the physical picture of the swing equation including a fixed point, a limit cycle, and their coexistence for the variation of system parameters has been well-known before. Even back to the period of Poincaré over 100 years ago, the homoclinic bifurcation, saddle-node bifurcation, and existence and uniqueness of the limit cycle have been well addressed, according to the introduction of Strogatz in his famous textbook of nonlinear and chaotic dynamics. Thus, all analytical (or semianalytical) methods for approximated solutions of periodic motions try to obtain an explicit form. This could provide an improved physical insight and is also very important and helpful for many engineering problems.

Finally, as the power system has become more power-electronics-based and how to deal with the grid dynamics when generators are connected to distributed renewable sources of energy is important, we hope that the quantitative results provided in this paper could be helpful for our understanding of complicated dynamics of not only traditional power systems but also power-electronics-based power systems. We also expect that this method could be generalized to study other similar complex networked dynamical systems, which are usually featured with the nature of a high nonlinearity.

ACKNOWLEDGMENTS

The authors thank the two reviewers very much for their comments and suggestions. This work was partially supported by the National Key Research and Development Program of China under Grant No. 2017YFB0902000, and the International (Regional) Cooperation and Exchange Program of the National Natural Science Foundation of China (Research on Inter-Organizational Cooperation: NSFC-DFG) under Grant No. 11861131011.

APPENDIX: FLOW CHART OF THE IHB ALGORITHM

A flow chart illustrating the major steps of IHB is shown in Fig. 8, with the classical swing equation as an example.

FIG. 8. Flow chart of IHB.
REFERENCES

38. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer-Verlag, NY, 1997).
