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ABSTRACT

The swing equation plays a central role in the model and analysis of power system dynamics, including small-signal stability and transient
stability. As it has the same form as that in a variety of different disciplines, such as the forced pendulum in mechanics, the classical mechanistic
description of superconducting Josephson junctions in physics, and the classical second-order phase-locking loop in electronics, it has aroused
general interest in science and engineering. In this paper, its approximate solution of the limit cycle is obtained by means of the incremental
harmonic balance (IHB) method. It is found that the trouble of a more distorted limit cycle when the parameters are closer to the homoclinic
bifurcation curve can be easily solved by incorporating higher order harmonics in the IHB method. In this way, we can predict the homoclinic
bifurcation curve perfectly. In addition, the method is extended to study a generalized swing equation including excitation voltage dynamics.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5115527

Due to the increasing pressure of environmental protection
and energy resource, our modern societies are vigorously sup-
porting the development of various renewable energies, in par-
ticular, wind power and photovoltaics.1 Large-scale distributed
power sources interfaced with converters have been integrated
into power grids in recent years. The power electric system is
becoming gradually more power-electronics-based, relying on
controllers in converters, and meanwhile, its dynamics behavior
is becoming much more complicated compared to that of tradi-
tional power systems.1–6 In traditional power systems, based on
Newton’s second equation of motion, the swing equation char-
acterizes the rotor’s motion of a synchronous generator under
the imbalanced torque and plays a key contribution to our
understanding of power system electromechanical dynamics.7–11

Thus, it is not surprising to see that, even in studying the
power-electronics-based power system, researchers are trying
to use a similar equation resembling the dynamics of a syn-
chronous generator to understand and/or control its dynamical
behavior. For example, virtual synchronous generators12,13 and
power-synchronization control methods14 have been proposed to

modify the control algorithms of converters and resemble the
dynamic behavior of a synchronous machine. A novel model of
the amplitude-phase motion equation has also been advocated to
extend the swing equation by including an additional equation
for the voltage amplitude.3–5 Thus, the classical swing equation
is important for our understanding of power system dynamics.
However, to the best knowledge of the authors, an approximate
analytical solution for periodic motion (limit cycle) and the set of
parameters corresponding to the homoclinic separatrix are still
unavailable. The objective of this work just aims to solve these
unsolved problems by using an incremental harmonic balance
method.

I. INTRODUCTION

In traditional power systems, the electromechanical dynamics
of a synchronous generator is dominated by its rotor motion, which
is represented by a well-known second-order differential equation,
the swing equation in the simplest form.15–21 It plays a dominant role
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in many basic problems in power systems, such as rotor-angle sta-
bility in a single-machine-infinite-bus system and also in coupled
multiple machine systems, low-frequency oscillation, and subsyn-
chronous oscillation. This equation is highly nonlinear. In many
situations, such as small-signal stability analysis and design of linear
controllers, the swing equation is linearized and thus only the sta-
bility of the so-called working point (i.e., fixed point) is concerned.
However, in the transient stability analysis, we have to deal with its
nonlinearity, and thus various dynamical behaviors including fixed
points and limit cycle are of interest. In particular, the transient sta-
bility is determined by the system state and the basin of attraction
of the postfault working point. This is essentially a global stability
problem in the language of nonlinear dynamics, and both the fixed
point and the coexisting limit cycle are of importance. Therefore,
fully grasping the complicated dynamics in the swing equation (or
the so-called second-order Kuramoto equation) and even in the cou-
pled swing equations is significant. It is only natural to see that these
studies have become a hot topic in nonlinear dynamics and complex
systems science recently.22–28

In addition, the significance of a nonlinear study of the swing
equation is also supported by the fact that it is, in mathematics,
exactly the same as the dynamic equations in many other systems,
such as forced pendulum in mechanics, the classical mechanistic
description of superconducting Josephson junctions in physics, and
the classical second-order phase-locking loop in electronics.29,30 A
similar model system is the motion of a mechanical particle in a
tilted washboard potential in stochastic dynamical systems.31–33 This
mechanical analog has been analyzed in detail in statistical physics;
see a recent paper and references therein.34

The basic physical picture of the swing equation has been
well established and recognized, including three distinct dynamic
regimes: stable fixed point, stable limit cycle, and their coexis-
tence for different initial conditions, depending on different system
parameters. Their corresponding parameter regions are represented
by I, III, and II, respectively, in Fig. 1(a).10,11,29,30 In addition, the exis-
tence and uniqueness of the limit cycle have been well addressed
in standard textbooks of nonlinear dynamics and chaos.29 The fixed
point is locally stable within regions I and II and below the horizon-
tal critical line at Pm = 1.0 and, in contrast, the limit cycle is locally
stable within regions II and III and above the crooked critical curve.
Basically, the horizontal line at Pm = 1.0 is recognized as a saddle-
node bifurcation, as a pair of a saddle and a node collides and both
annihilate after Pm is larger than 1.0. In Refs. 29 and 30, under the
condition of larger D, it is further subclassified as an infinite-period
bifurcation as the collision of the saddle and node happens exactly at
one single loop under the over-damped limit. For the curved critical
parameters, it is generally recognized to be a homoclinic bifurcation
(or called saddle-loop bifurcation), as the limit cycle collides with
the unstable manifold of the saddle and annihilates after that.35–37

Although the qualitative picture of the swing equation is clear,
quantitative results are still not fully available, including the esti-
mates of the homoclinic bifurcation curve and the approximate
analytical solution of the limit cycle. For the first problem, based
on the Melnikov method, Guckenheimer and Holmes obtained that
it is close to a straight line, Pm = 4D/π , when D is close to zero,
as illustrated by a dashed straight line in Fig. 1(a).38 However, the
deviation from the straight line becomes larger for larger D. In

FIG. 1. Phase diagram of the classical second-order swing equation in the
Pm − D parameter space, including three different types of dynamical behavior
in the three regions: I (for a stable fixed point), II (for coexistence), and III (for a
stable limit cycle). The horizontal line at Pm = 1 corresponds to the saddle-node
bifurcation, and the bent curve starting from the origin corresponds to the homo-
clinic bifurcation. In (a), a straight dashed line, Pm = 4D/π , is from the estimate
of Guckenheimer and Holmes. In (b), different orders of the IHB form are studied,
compared with the numerical result. Additively, two different parameter sets used
in the paper: (D = 0.5, Pm = 0.8) (open circle) and (D = 1, Pm = 0.98) (open
square) are superimposed.

addition, some earlier known estimates are as follows: Tricomi gave
upper and lower estimates already in 1933, and Boem provided
another estimate.39 All these results are not very satisfactory. In a
recent paper, Skubov et al. gave a substantial contribution by using
a polynomial approximation, which, however, highly relies on the
mathematical derivation.40

For the second unsolved problem, as the parameters approach
the homoclinic bifurcation curve, the solution of the limit cycle
would become much more distorted, making its prediction very dif-
ficult. Some studies focused on this problem. For instance, Anup
obtained an approximate solution by using the perturbation theory
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but still treated the swing equation as a weakly nonlinear system.41

Salas used the elliptic Jacobian function and obtained an analytic
solution of a gravity pendulum with damping.42 In addition, a
recent work based on calculating matrix continued fractions was
conducted.31–33

Because the swing equation belongs to strongly nonlinear
systems, the classical techniques, such as the Lindstedt-Poincaré
method,43 the Krylov-Bogoli-Mitropolsky method,44 and the multi-
scale method45 suiting for weakly nonlinear systems may not solve
the problem. The method of the harmonic balance method main-
taining only the first harmonic term has also been applied, but it
has been found that the estimated result is not satisfactory.40 If the
order of harmonics increases, the mathematical derivation would
become very cumbersome and difficult. To solve this puzzle, Lau
and Cheung proposed a new method, called the incremental har-
monic balance method (IHB), which is a semianalytical and seminu-
merical algorithm by combining the incremental method and the
harmonic balance method.46 Similar to the classical harmonic bal-
ance method, the IHB assumes that the solution of the equation is
in the form of harmonics, but it yields the harmonic coefficients
by using an iterative calculation of the incremental method, simi-
lar to the Newton-Raphson method for solving general nonlinear
algebraic equations. By using such a numerical technique, the prob-
lem of finding coefficients of different balanced harmonic terms can
be efficiently solved by numerical calculation. So far, it has been
widely used to solve a variety of strongly nonlinear problems includ-
ing the van der Pol oscillator, the Duffing oscillator, the beam or
plate vibration of large amplitude in various engineering problems,
and even the strongly nonlinear fractional-order Mathieu-Duffing
equation.46–52 However, there is no incremental harmonic balance
analysis on the swing equation to the best of the authors’ knowledge.

In this paper, the IHB method is used to obtain the approxi-
mate solution of the limit cycle in the swing equation. Further, the
homoclinic bifurcation curve is estimated based on these solutions.
Finally, this procedure is extended to study a third-order model
of the synchronous generator considering voltage dynamics to ver-
ify the validity of the IHB method. The final section is devoted to
conclusion and discussion.

II. THE CLASSICAL SWING EQUATION

A. Modeling

According to Newton’s second equation of motion, the swing
equation for the rotor’s motion of a synchronous generator is
represented by

M
d2δ

dt2
= −D

dδ

dt
+ Pm − K sin δ, (1)

where δ is the rotor angle of the synchronous generator, Pm is the
mechanical input active power, M and D denote the inertia and
damping of the synchronous generator, respectively, and K repre-
sents the coefficient of the electromagnetic energy output to the grid.
All parameters are normalized.7–9

There are four tunable parameters in Eq. (1). Basically, we can
keep any two by using a rescaling. Without losing generality, we
choose the mechanical input power Pm and the damping coefficient
D as our primary parameters by fixing the other parameters M = 1.0

and K = 1.0, which are also typical in per-unit in power systems.28

Then, we obtain

d2δ

dt2
+ D

dδ

dt
+ sin δ = Pm, (2)

which is familiar in nonlinear dynamics.29

B. Application of the IHB method

Defining dδ

dt
= ω = ω(δ), we have d2δ

dt2
=

dω

dt
=

dω

dδ

dδ

dt
= ω̇ω,

where ω̇ =
dω

dδ
and it is different from dω

dt
. Thus, we can pass in

Eq. (2) to a new independent variable δ,

ω̇ω + Dω + sin δ = Pm. (3)

Next, we intend to determine the periodic solution of ω(δ) as a
function of δ by using the IHB method.46–52 As the first step to deal
with the incremental, let ω be the solution of Eq. (3) and then its per-
turbed form as ω = ω + 1ω. After substituting it into Eq. (3) and
omitting all higher order small quantities, we obtain the incremental
equation (with 1ω being an unknown quantity),

1ω̇ω + (ω̇ + D)1ω = Pm − Dω − sin δ − ω̇ω, (4)

where R = Pm − Dω − sin δ − ω̇ω is called the unbalanced force.
Clearly, when ω is the exact solution of the swing equation, 1ω = 0
and R = 0.

The second step of the IHB method is the harmonic balance
process, the same as what we have done in the classical harmonic
balance method. It assumes that

ω = a1 + a2 cos δ + a3 sin δ + a4 cos 2δ + a5 sin 2δ

+ · · · + a2n cos nδ + a2n+1 sin nδ (5)

and

1ω = 1a1 + 1a2 cos δ + 1a3 sin δ + 1a4 cos 2δ

+ 1a5 sin 2δ + · · · + 1a2n cos nδ + 1a2n+1 sin nδ, (6)

where ai denotes the coefficient of the harmonic terms and n is the
highest order of harmonics considered in the calculation. We denote

A =
[

a1 a2 · · · a2n+1

]T
and 1A =

[

1a1 1a2 · · · 1a2n+1

]T

for the harmonic coefficients of ω and 1ω, respectively, and hence

ω =
[

1 cos δ sin δ · · · cos nδ sin nδ
]

A (7)

and

1ω =
[

1 cos δ sin δ · · · cos nδ sin nδ
]

1A. (8)

We should also express R in Eq. (4) into the harmonic form and
get the corresponding harmonic coefficients, namely,

R =
[

1 cos δ sin δ · · · cos nδ sin nδ
]

Rm, (9)

where Rm is a column vector. Note that Rm depends on A (not 1A).
The objective of the next manipulation is to determine 1A on

the basis of the already known A and under the restriction of har-
monic balance conditions. Substituting Eqs. (7)–(9) into Eq. (4) and
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FIG. 2. (a) Comparison of estimated solution (solid curve) and numerical result
(dotted curve) for the first-order IHB method and (b) the corresponding error. (c)
and (d) The same as (a) and (b), but for the second order IHB method instead.
Comparatively, the error has been greatly reduced with the increase of order. The
parameters are D = 0.5 and Pm = 0.8 [an open circle in Fig. 1(b)], typical within
the region of the stable limit cycle.

ignoring all higher harmonics, we obtain

Zm1A = Rm, (10)

where Zm is the coefficient matrix of the corresponding harmonic
term.

In the calculation, an arbitrarily chosen set of coefficients (A)
is given as the initial value of iteration, and 1A can be solved in
the linear algebraic equations [Eq. (10)] with known Zm and Rm.
Namely, a low order solution of ω as a function of δ is first obtained.
Then, replacing A with A + ζ1A, with ζ being the iteration coef-
ficient, and substituting it into Eq. (10) to obtain the new 1A. In
this iterative procedure, as Zm and Rm in Eq. (10) depend on A,
they should be updated in each iterate. Repeat these steps until the
norm of the imbalanced force Rm approaches zero. Note that here
the choice of ζ (0 < ζ < 1) depends on the value of D; to avoid the
situation that the imbalanced force R does not converge, we should
choose a smaller ζ . In general, the smaller ζ is, the more iterations
are calculated and higher accuracy is obtained. To clearly show the
whole calculation process, a detailed flow chart of the IHB algorithm

is exhibited in the Appendix. In addition, we have uploaded all
relevant program codes and data in Figshare.53

C. Approximate analytic solutions of the limit cycle

Before analyzing the bifurcation of the limit cycle, we first illus-
trate the procedure by computing the limit cycles for a fixed set of
parameters D = 0.5 and Pm = 0.8. These parameters are arbitrar-
ily adopted within region II and illustrated by an open circle in
Fig. 1(b). Let us consider the simplest first-order IHB model with
the first form, ω = a1 + a2 cos δ + a3 sin δ, and by using the above
IHB algorithm, we get

ω = 1.6000 + 0.5638 cos δ − 0.1780 sin δ. (11)

Meanwhile, to make a comparison, we use an explicit Runge-
Kutta (4,5) algorithm to obtain the numerical solution of the original
system (2). The error is defined as their mismatch,

error = xi − yi, (12)

where xi and yi(i=1,...,N) are the two time series calculated by the IHB
method and the numerical solution, respectively, and N is the total
number of data. The corresponding estimated solution (solid curve)
and the numerical result (dotted curve) are illustrated in Fig. 2(a)
with their corresponding error results in Fig. 2(b).

In order to further reduce the error, we may choose the second
order IHB and obtain

ω = 1.600 + 0.5768 cos δ − 0.1850 sin δ − 0.0402 cos 2δ

+ 0.0395 sin 2δ, (13)

whose results are shown in Figs. 2(c) and 2(d), where we can see that
the error is indeed substantially reduced, compared to that of the
first-order result of the top two panels.

Next to systematically characterize the error of different orders
of the IHB method, we introduce the mean squared error (MSE),54

MSE =
1

N

N
∑

i=1

(xi − yi)
2. (14)

Table I summarizes the predicted coefficients of each harmonic
term and its corresponding MSE. It obviously shows that with
the increase of the harmonic terms, more precise approximation
results are obtained. For instance, the value of MSE has sharply
dropped from 0.002 32 to 0.000 02, when a third order IHB is
included.

So far, by using the IHB method, we have already obtained an
almost perfect approximation result for one set of system parame-
ters of D = 0.5 and Pm = 0.8, which is far away from the homoclinic

TABLE I. Harmonic coefficients and corresponding MSE obtained by different orders of the IHB method (from first to third); D= 0.5 and Pm = 0.8, typical within the region of

the stable limit cycle.

Items Constant term cosδ sinδ cos 2δ sin 2δ cos 3δ sin 3δ MSE

1 1.6000 0.5638 −0.1780 0.002 32
2 1.6000 0.5768 −0.1850 −0.0402 0.0395 0.000 09
3 1.6000 0.5771 −0.1855 −0.0412 0.0414 0.0039 −0.0103 0.000 02
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FIG. 3. (a) Comparison and (b) its
zoom-in of numerical and approximate
results for different orders. The parame-
ters are D = 1 and Pm = 0.98 [an open
square in Fig. 1(b)], which are closer to
the homoclinic bifurcation line. (c) and (d)
Plots of error and MSE, to show the detail
of the approximate effect, respectively.
Clearly, a better estimate can be achieved
with an increase of the calculation order.

bifurcation line and within the stable regions of the limit cycle.
When the parameters are moved closer to the homoclinic bifurca-
tion line, we find that the IHB method is still workable, but a much
higher order of harmonics should be included. As one example, the
parameters D = 1 and Pm = 0.98 are chosen, as illustrated by an
open square in Fig. 1(b). The comparison of the numerical result
(heavy solid curves) and approximate results for different orders is
given in Fig. 3(a). Their corresponding magnification and the results
of error and MSE are shown in Figs. 3(b)–3(d). It is clear that now
the periodic motion becomes much more seriously distorted, quite
different from the sinusoidallike wave form in Fig. 2. Thus, to obtain
a higher degree of accuracy, we need to increase the order of har-
monics. All different order results given in Fig. 3 clearly show that

they approach the numerical result gradually, with a sharp decrease
of the value of MSE. In addition, to be specific, we list all obtained
coefficients of each harmonic term and their corresponding MSE in
Table II.

D. Prediction of the homoclinic bifurcation curve

We have seen that the IHB method is efficient to solve the prob-
lem of the approximate analytic solution of the limit cycle for any
system parameters, either close to or far away from the homoclinic
bifurcation curve within the stable region. Next, we like to use these
approximate solutions to directly solve the problem of prediction of
the homoclinic bifurcation curve.

TABLE II. Harmonic coefficients and corresponding MSE obtained by different orders of the IHB method (from first to eighth); D= 1 and Pm = 0.98, being quite close to the

homoclinic bifurcation line.

Items
Constant

term cosδ sinδ cos 2δ sin 2δ cos 3δ sin 3δ cos 4δ sin 4δ cos 5δ sin 5δ cos 6δ sin 6δ MSE

1 0.9800 0.4949 −0.5101 0.0343
2 0.9800 0.4843 −0.5265 0.0643 0.0993 0.0083
3 0.9800 0.4797 −0.5386 0.0798 0.0994 −0.0427 0.0121 0.0032
4 0.9800 0.4784 −0.5387 0.0833 0.0974 −0.0465 0.0201 0.0086 −0.0220 0.0015
5 0.9800 0.4780 −0.5386 0.0841 0.0963 −0.0464 0.0230 −0.0028 −0.0261 0.0019 0.0045 0.0008
6 0.9800 0.4778 −0.5385 0.0844 0.0958 −0.0460 0.0240 −0.0047 −0.0269 0.0153 0.0033 −0.0051 0.0062 0.0005
7 0.9800 0.4777 −0.5385 0.0844 0.0956 −0.0457 0.0244 −0.0056 −0.0270 0.0164 0.0022 −0.0051 0.0087 0.0003
8 0.9800 0.0477 −0.5385 0.0844 0.0955 −0.0455 0.0246 −0.0060 −0.0270 0.0167 0.0016 −0.0047 0.0098 0.0002
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FIG. 4. Plot of ωmin vs Pm with Pm decreasing from 1.6 to 0.9 and1Pm = −0.1;
the value of ωmin is the minimum of the estimated ω vs δ for the corresponding
Pm. D = 1.0 is fixed. Based on this tendency, we can infer a critical parameter
Pm,c ≈ 0.89 under the current condition of D = 1.0.

As we know, the homoclinic bifurcation occurs when the limit
cycle collides with the unstable manifold of the saddle located at
[δ = arcsin(Pm), ω = 0], and it annihilates after the collision. The
minimal value of ω(δ), ωmin, gradually decreases when the system
parameters approach the homoclinic bifurcation curve; this point is
clear, if we compare the results in Figs. 2 and 3. In particular, ωmin in
Fig. 3 nearly touches the zero value. Therefore, we may choose ωmin

as an index to characterize the distance from the homoclinic bifur-
cation, and test whether it is equal to zero as the critical condition
for the emergence of the bifurcation.

Figure 4 plots ωmin vs Pm with Pm decreasing from 1.6 to 0.9
(1Pm = −0.1) and D fixed; D = 1. A monotonic decrease of ωmin

with the decrease of Pm is clear, until a critical predicted value
Pm,c ≈ 0.89 arrives. Thus, the homoclinic bifurcation point has
been well predicted. Note that, for any Pm < Pm,c, as the limit
cycle is locally unstable, we cannot obtain any significant solu-
tion of the limit cycle any longer. With this single-side data
for a fixed D as that in Fig. 4, we can further determine the
locus of the whole homoclinic bifurcation curve by scanning the
parameter D. The final results are shown in Fig. 1(b), where
clearly they are coincident with the numerical results of the orig-
inal system (2) when a sufficiently high order of harmonics is
considered.

FIG. 5. (a) and (b) Comparison of
numerical solution (solid line) and approx-
imate solution (dashed line) of ω and
E, respectively, for the generalized swing
equation [Eqs. (15)] considering voltage
dynamics, with a third-order IHB method.
(c) and (d) Errors ofω and E, respectively.
The parameters D = 0.5 and Pm = 0.8
are fixed.
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FIG. 6. Similar to Fig. 5, but for a dif-
ferent set of parameters D = 0.6 and
Pm = 0.54 and with a fifth-order IHB
method instead. Clearly, when the param-
eters are closer to the homoclinic bifur-
cation curve, a more distorted periodic
solution ofω(δ) is observed, and a higher
order of harmonics in the IHB method is
needed accordingly.

III. GENERALIZED SWING EQUATION

In this section, we will study a generalized swing equation,
namely, a third order model of the synchronous generator
incorporating voltage dynamics,7–11

δ̇ = ω,

Mω̇ = −Dω + Pm − BVsE sin δ,

Td0Ė = Ef − (1 + XB)E + XBVs cos δ,

(15)

where E is the quadrature-axis transient voltage of the synchronous
generator, Td0 represents the direct-axis open-circuit transient time
constant of the synchronous generator, Ef denotes the field exci-
tation voltage, Vs is the voltage at the infinitely strong bus, and

B and X are derived system parameters. Different from the clas-
sical swing equation, this third order model has been regarded as
a more realistic model and has been widely used in power system
calculations.

Clearly, now we have the three state variables δ, ω, and E,

which can be expressed together as a state vector
[

δ ω E
]T

.
Similarly, we will choose the mechanical input power Pm and the
damping coefficient D as our primary parameters, with all other typ-
ical per-unit parameters fixed; M = 1.0, B = 1.0, Vs = 1.0, Ef = 1.0,
Td0 = 2.0, and X = 1.0.28 By theoretically analyzing the stability of
the fixed points, we obtain the critical parameter for the saddle-node
bifurcation: Pm = 0.6495.

Let us use the IHB method to solve similar problems in Eq. (15).
Changing the variable δ̇ = ω(δ), we can pass it to a new independent

TABLE III. Harmonic coefficients and corresponding MSE obtained by different orders of the IHB method in the generalized swing equation [Eq. (15)] considering voltage

dynamics (from first to third); D= 0.5, Pm = 0.8 (open circle in Fig. 7).

Items Constant term cosδ sinδ cos 2δ sin 2δ cos 3δ sin 3δ MSE(×10−6)

1 ω 1.3614 0.2947 −0.1082 2034
E 0.4554 0.1752 0.2382 198.5

2 ω 1.3642 0.2959 −0.1137 0.0289 0.0503 45.95
E 0.4541 0.1824 0.2359 −0.0159 −0.0031 6.899

3 ω 1.3644 0.2959 −0.1143 0.0296 0.0514 −0.0078 −0.0037 2.160
E 0.4540 0.1828 0.2357 −0.0165 −0.0023 0.0014 −0.0026 0.3578
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TABLE IV. Harmonic coefficients and corresponding MSE obtained by different orders of the IHB method in the generalized swing equation [Eqs. (15)] (from first to third);

D= 0.6, Pm = 0.54 (open square in Fig. 7).

Items Constant term cosδ sinδ cos 2δ sin 2δ cos 3δ sin 3δ MSE

1 ω 0.7039 0.3388 −0.2888 0.0525
E 0.4118 0.3343 0.2353 0.0080

2 ω 0.7331 0.2993 −0.3184 0.1520 0.0712 0.0142
E 0.4065 0.3488 0.2005 −0.0310 0.0387 0.0045

3 ω 0.7413 0.2844 −0.3187 0.1720 0.0589 −0.0373 0.0470 0.0067
E 0.4059 0.3468 0.1907 −0.0191 −0.0500 −0.0209 −0.0117 0.0023

variable δ,

ω̇ω = Pm − Dω − E sin δ,

2Ėω = 1 − 2E + cos δ,
(16)

where ω̇ =
dω

dδ
and Ė =

dE
dδ

.
Let ω and E be the solution of the above equations and express

the perturbed ω and E as ω = ω + 1ω and E = E + 1E, we yield
the increment equations with 1ω and 1E,

1ω̇ω + ω̇1ω + D1ω + 1E sin δ = R1,

2Ėω + 21Ėω + 21E = R2,
(17)

where

R1 = Pm − Dω − ω̇ω − E sin δ,

R2 = 1 − 2E − 2Ėω + cos δ.

When ω and E are the exact solutions, R1 and R2 will vanish.
Under the assumptions of different orders of harmonics, we

have

ω = a1 + a2 cos δ + a3 sin δ + a4 cos 2δ + a5 sin 2δ

+ · · · + a2n cos nδ + a2n+1 sin nδ,

1ω = 1a1 + 1a2 cos δ + 1a3 sin δ + 1a4 cos 2δ

+ 1a5 sin 2δ + · · · + 1a2n cos nδ + 1a2n+1 sin nδ,
(18)

E = b1 + b2 cos δ + b3 sin δ + b4 cos 2δ + b5 sin 2δ

+ · · · + b2n cos nδ + b2n+1 sin nδ,

1E = 1b1 + 1b2 cos δ + 1b3 sin δ + 1b4 cos 2δ

+ 1b5 sin 2δ + · · · + 1b2n cos nδ + 1b2n+1 sin nδ,

where n denotes the order of the IHB method. Substituting them
into Eqs. (17) and ignoring high harmonics, we can determine the
coefficients of the same harmonic terms, based on the harmonic
balance

Zm

[

1A 1B
]T

=
[

Rm1 Rm2

]T
, (19)

where

1A =
[

1a1 1a2 · · · 1a2n+1

]

,

1B =
[

1b1 1b2 · · · 1b2n+1

]

.

Similarly, Rm1 and Rm2 are the corresponding column vectors of R1

and R2, respectively. Furthermore, similar to the calculation process

of the classical swing equation, all coefficients of the harmonics are
obtained by an iterative calculation until the norms of R1 and R2 are
sufficiently small.

As two examples, the results for the parameters of D = 0.5 and
Pm = 0.8 corresponding to the cases far away from the homoclinic
bifurcation curve and those of D = 0.6 and Pm = 0.54 represent-
ing the cases close to the homoclinic bifurcation curve are shown in
Figs. 5 and 6, respectively. Both show an almost perfect coincidence
of the approximate analysis with the numerical result. Meanwhile,
we find that for the former sinusoidallike periodic trajectory, a third-
order approximation is sufficient, whereas for the latter distorted
one, a fifth-order approximation is needed. To be specific, we list
the coefficients of each harmonic term for these different cases in
Tables III and IV, respectively.

Similar to the classical swing equation, the parameter space of
the third-order model can be divided into the fixed point region, the
bistable region, and the limit cycle region. The boundary between
the fixed point region and the bistable region is the homoclinic

FIG. 7. Comparison of numerical and predicted results for the bifurcation curve
of the generalized swing equation. Two parameter sets D = 0.5, Pm = 0.8 (open
circle) andD = 0.6, Pm = 0.54 (open square) used in the paper are emphasized.
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bifurcation line. Finally, let us deal with the estimation of the homo-
clinic separatrix. Again we select the same criterion as that of the
classical swing equation, namely, whether the minimum value of
the obtained analytic solution of ωmin approaches zero. By analyz-
ing ωmin for different Pm’s and D’s, we identify the whole homoclinic
bifurcation line. The result is shown in Fig. 7, with a clear satisfac-
tory coincidence of the prediction with the numerical result, when a
higher order is included.

IV. CONCLUSION AND DISCUSSIONS

In summary, the approximate solution of the limit cycle and
the estimate of the homoclinic bifurcation line in the classical swing
equation and the generalized swing equation are obtained by using
the incremental harmonic balance method. All of these predictions
are found to be in good agreement with the numerical results of
the full systems in Eqs. (2) and (15). For better precision, a higher
order of harmonics in the IHB method could be considered and
performed, and this manipulation is efficient with the aid of a com-
puter. Therefore, the two unsolved problems in the classical swing
equation have been successfully solved in a unified manner. It is
notable that the swing equation belongs to strongly nonlinear sys-
tems, which generally cannot be solved by the classical techniques
for weakly nonlinear systems.

Here, we admit that the physical picture of the swing equation
including a fixed point, a limit cycle, and their coexistence for the
variation of system parameters has been well-known before. Even
back to the period of Poincaré over 100 years ago, the homoclinic
bifurcation, saddle-node bifurcation, and existence and uniqueness
of the limit cycle have been well addressed, according to the intro-
duction of Strogatz in his famous textbook of nonlinear and chaotic
dynamics.29 Thus, all analytical (or semianalytical) methods for
approximated solutions of periodic motions try to obtain an explicit
form. This could provide an improved physical insight and is also
very important and helpful for many engineering problems.

Finally, as the power system has become more power-
electronics-based and how to deal with the grid dynamics when
generators are connected to distributed renewable sources of energy
is important,1,55 we hope that the quantitative results provided in
this paper could be helpful for our understanding of complicated
dynamics of not only traditional power systems but also power-
electronics-based power systems. We also expect that this method
could be generalized to study other similar complex networked
dynamical systems, which are usually featured with the nature of a
high nonlinearity.
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APPENDIX: FLOW CHART OF THE IHB ALGORITHM

A flow chart illustrating the major steps of IHB is shown in
Fig. 8, with the classical swing equation as an example.

FIG. 8. Flow chart of IHB.
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