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Finite-time Consensus of Leader-following Multi-agent Systems with Mul-
tiple Time Delays over Time-varying Topology

Fenglan Sun*, Mingyan Tuo, Jiirgen Kurths, and Wei Zhu

Abstract: This paper studies the finite-time consensus of leader-following multi-agent systems with multiple time
delays over time-varying topology. The finite-time consensus protocol based on the agents’ states and the communi-
cation topology is designed. By adopting the algebraic graph theory, Lyapunov stability theory and pinning control
method, some sufficient conditions for the finite-time consensus are given. It is proved that the system can reach
consensus in a finite time both over the connected and disconnected topology. Moreover, the upper bound of the
convergence time is given. Several simulations are presented to verify the effectiveness of the adopted method.
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1. INTRODUCTION

Coordinate control of multi-agent system (MAS) has at-
tracted much attention due to its wild application, such as
autonomous underwater vehicles, mobile robot networks,
attitude alignment of satellites, and so on [1-10]. Consen-
sus of the leader-following multi-agent system (LFMAS),
which refers to the state of all followers ultimately reach
the same as that of the leader, has become one of the
important coordinate control problem because of its ex-
tensive application in various fields, such as multi-robot
systems, military control, wireless sensors [5—-8, 10—12].
Based on some control methods, the operating efficiency
of systems is improved and the robustness of systems is
achieved [7, 8, 13—-15]. To avoid the continuous communi-
cation between agents, Tan et al. [7] studied the consensus
for LEMAS through Gronwall’s inequality and impulsive
control method. Zhang et al. [8] discussed the consensus
of the heterogeneous LFMAS over time-varying directed
topologies. However, practically, many systems are ex-
pected to achieve the consensus in a finite time [16-21].
Besides the requirement of shorter convergence time, the
finite-time consensus (FTC) can also better suppress the
disturbance of uncertain factor and there is stronger ro-
bustness. In [16], FTC of the second-order LFMAS was

discussed and the feedback control was designed to es-
timate the velocity information and the external distur-
bances. Du et al. [17] studied the FTC for the high-order
MAS. However, in practice, the communication network
between agents is not always connected [19,22,23]. The
method of pinning control, which through control certain
selected agents to control all agents, can be used to an-
alyze the problem of disconnected network. Guan et al.
[22] studied the FTC for the second-order LFMAS over
undirected disconnected topologies by the pinning control
method. Song et al. [23] used the pinning control method
to analyze the consensus of the directed disconnected net-
work, and the m-matrix is introduced for a better solu-
tion. In addition, the practical environment that the sys-
tem located is usually characterized by some uncertainty
[24-33], in which time delay is the most common and in-
evitable factor [26-32]. Wang et al. [26] studied the con-
sensus for MAS with active leader and time delay. Olfati-
Saber et al. studied the consensus problem of time-delay
systems over switching topologies [27, 28]. Time delay
may destroy the relative stability of a system. For exam-
ple, for the vehicle-road cooperative system, vehicle has a
reaction time between receiving information from neigh-
bour vehicles and starting to perform tasks. If the reac-
tion time, that is time delay, is too long, the cooperative
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control will not be achieved, and even worse, it may lead
to the vehicle-road cooperative system paralyzed [34]. In
the traffic system, time delay may lead to errors in safe
driving positioning between vehicles, which will lead to
traffic accidents [35]. Therefore, the study of FTC prob-
lem for the time-delay system is very significant. Due to
the complexity of the environment, usually, the commu-
nication network between agents is variable, not always
connected, and the time delay between different agents is
different. Because of all these problems, this paper studies
the FTC of the LFMAS with multiple delays over time-
varying topology. The main innovations of this paper are
as follows: (i) FTC for the LFMAS with multiple time de-
lays is studied. (ii) The consider network is time-varying.
(iii) Both the connected and disconnected networks are
considered.

The rest of this paper is as follows: Section 2 gives some
preliminaries and the problem formation. The main results
are given in Section 3. Several simulations are presented in
Section 4. And the conclusions are summarized in Section
5.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1. Preliminaries

Throughout this paper, the weighted undirected graph
of n nodes is denoted as M = (S,V), where S =
{s1,82,-+*,8,} is the set of nodes and V € § x § is
the set of edges. I, = {1,2,---,n} is the vertex set of
graph M, W; = {j|(si,s;) € V} represents that the nodes
s; and s; can transmit information to each other, and
F(t) = [ay;(t)] € R™" is the weighted adjacency matrix,
where o (1) = oji(t) > 0, if i # j, (s;,5;) € V, otherwise,
0;(t) =0 and oy(t) =0, Vi, j € I,. The Laplacian ma-
trix of graph M is defined as £(F) = G — F, where

G =diag(g1,82,-- ,&n), and foralli € I,, gi = ¥, ;(t).
J#i
7ln(t)]T

LetW(t)=[l(¢), - , where [;(7) is the connection
weight between follower i and the leader. If follower i can
receive the leader’s information directly, /;(¢) > 0, other-
wise [;(t) = 0. Denote P(t) = (&(t), -+ ,&,(t))T, where
g(t) is the pinning control gain, &(¢) > 0 if agent i is
pinned and otherwise &(¢) = 0. Let P(t) = P(t) + W(t) =
(71(2), -+ Fu(0))" with 3i(r) = &(1) + 1i(r) i € L.

For further discussion, some lemmas are presented as
follow.

Lemma 1 [36]: Assume that there is a function f(7)
and constants ¥ > 0, 0 < { < 1, such that
(i) f(¢) is a continuous positive-definite function;
(i) f(t) > 0and f(t) < —yf*(t), Vit > 0.
Then for any ¢ > 0, there is
Y(l - g)ta

F0) < f750) -
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I;O
C)
,rneR’” and p €

and f(t) =0, Vt > Ty, where Ty =

Lemma 2 [37]: For any r1,7’27
(0,1], there is

(;ln\) iln"<n1f’(§|r,»|)".

Lemma 3 [38]: Consider the following system

Qi(r) = HQi(t +ZBkSt—uk) t>0, (1

k=
where Q;(f) € R and S;(¢) € R are position states and feed-
back control of agent i, i € I,, respectively, parameters H,
W > 0and B, > 0, k € I, are constants. If

xm:g@+znmm& 2)
with Ltllfl = f° P CSi(s)ds, and Cp =
Bre Ht then

Xi(t) = HXi(1) +BSi(1), 3)

where B= ¥, G, Si(t) = ¢(1)w(Xi(t)). That is
k=1

50 = 00w (@0 + Lc)5).

with the function ¢ (z) € R is bounded and function w(-) :
R — R is continuous. If system (3) is finite-time stabil-
ity, then system (1) is finite-time stability and the settling

time 7'(Q) of system (1) satisfies T7(Q) < T'(X)+ Z Cr s,
where T(X) is the settling time of system (3) X (t) =
(X1 (1), . Xa(1))". and Q1) = (Q1 (1), -+, Qu(r))".

Lemma 4 [39]: FOI'& - (gla"' aén)Tap - (pla"' apﬂ)T
€ R" and a symmetric matrix D = [d;;] € R**", there is an
odd function y : R — R, such that

n n

Y ¥ di&vipi—p))

i=1j=1
1 n n

=5 L Ll

i=1j=1

ENw(pi—pj)-

N

2.2. Problem formulation
Consider the following LFMAS

)+ Y bpi(t = w), i €1,

7:(t) = hq;(t
qi(t) = hai( L @

go(t) =0,

where constant & > 0, by > 0, time delay 7, > 0, k =1,
2, ---,mn, qi(t) €R, pi(t) € R are the position states and
the feedback control of agent i, i € I,, respectively, and
qo(t) € R is the position state of the leader.

Denote g(t) = (q1(t), -+, g, (¢))" the position state vec-
tor, and z(t) = (z1(t), -+, z.(t))T € R™.



Finite-time Consensus of Leader-following Multi-agent Systems with Multiple Time Delays over Time-varying Topology 3

Definition 1: If there exists a positive constant T, such
that for any initial states, there is

—q()] =0,

qi(t) = qo(t), Yt >Ty, i€l

lim (1

then system (4) is said to achieve the FTC.

For system (4), design the following control protocol

P =3 (—K ¥ o (0siel () —=0)”
F3HOSEE0) -l +ha0). O

where K > 0 is the control gain, 0 < ¢ < 1 is a constant,
sig|z;|? = |z;|?sign(z;), sign(-) is the sign function and |z;]
the absolute value of z;, i € I, constant & > 0 is the same
as that in system (4), and

1)+ ZL’?W pi(t), i€l

20(t) = qo(t) +1<Z L(Tfhck)Pm
=1

where LT‘ f_n T ckp,( Yds, ¢y = bre "%, b=

Z Chs Po( ) = —z0(1).
k=1

3. MAIN RESULTS

This section gives the main results.

Theorem 1: If there is a spanning tree with the leader
as the root, then system (4) can reach the FTC under the
control protocol (5) with K > 0,0 < ¢ < 1, and the settling
time T (g) satisfies

n
Z) + Z Ck Tk
k=1
1-¢ +1
where T(z) = % A=A2(QLC) +H). C=
?) 2 2
(Ka,j ) = dmg(l,“’“, e l“’“), and
ﬁ,mm(Qﬁ( )+ 'H) is the minimum eigenvalue of the matrix
2L(C)+H.
Proof: Consider the following system
2i(t) = hzi(t) +bpi(t), i €1y,
. 6)
Zo(l‘) =0.
Let (1) = zi(t) —20(t), i € I, and &(t) = (&i(7), ---,
8,(t))T. Then &;(t) = 2;(t), i € I,.
Choose the following Lyapunov function
V(i)=Y 8(1). )

Then under the control protocol (5), the derivative of (7)
along (6) is

n

:Zi&ma (1) =2 Y &) (hzi(r) + bpil0))
1§ i=1

_225 ) (h(e) +b(— (0
—K'Y o;(t)siglz;(t) —zi(1)|?

Wi

(sl 2()]7))
:zi}&‘(f) (K Y aij()sigle;() — zi(0)]®

JjEW;

~ Se)sigla ()~ a(0)l?)

_ZKZ{ X‘;'/au (1)sig|8;(1) — &(r)|*
Y L8 (1)sigla0)]°.

i=1

From Lemma 4 there is

V) =—KY Y a(0)(8(0) -

i=1jEW;

n

_ Zli([)éi(t)sig|5i(f)|¢

i=1

:—Ki Z (X,‘j(t) ot

i=1 jEW;

0;())sig|0;(t)—8:(1)|?

= &(n)|**!

< (23%)5(0)5(:) + 5%)%5@)) =

ad)
2

= (8"(LE) +1)8()

i 2
where C = ((Kaij(t))ﬁ) ,H =diag(l™", -, I7™).
Note that matrix 2L(C) +H is symmetrlc and positive def-
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inite. Then
' 25
V() < —(lmm(zﬁ(C) +#)87(1)5(1))
< A, (2L +H)VE (0.
1-¢
According to Lemma 1, there is 7' (z) = %, where

A= lmm (2L(C) + H). Hence system (6) is globally
finite-time stability and 7'(z) is the settling time. Then

from Lemma 3, system (4) is globally finite-time stability

and the settling time T (q) satisfies T(q) <T(z) + ¥ ckT.
k=1

The proof is completed. g

Assumption 1: There is at least one %(¢t) > 0, i € I,.

Theorem 2: Suppose that Assumption 1 holds. Then
whether there is a spanning tree with the leader as the root
or not, system (4) can reach the FTC under the following
control protocol

pi(t) =— % (—K Zv:v 0;(t)siglz;(t) —zi(2)]?
+%}7,»(t)sig|zi(t) —ZO(I)(p+hZ[(I)) , 8

with 0 < @ < 1, §i(¢) = &(¢) + ;(¢), and the settling time
T(q) satisfies

k=1
where
2V(0) T 5 e
T(Z)_ /’L(l—(P) ) A’_)’mm (ZE(C)+O)7

and Amin(2L£(C) + O) is the minimum eigenvalue of the
matrix 2£(C) 4 O.

Proof: For system (6), denote &;(¢) = z;(¢) — z0(¢),i €
1,. Then 3,-(t) = z;(t),i € I,. Next similar to the argument
in Theorem 1, choose the candidate Lyapunov function
(7). Under the control protocol (8), the derivative of (7)
along (6) is

(f (Ko (1) (5,(1) - 5(1)?

i=1jeW;
Ea )"
Denote 8(t) = (8,(¢),---,8,(¢))". Then

P+1

V() < —(28"(1)£(C)8(r) + 8" ()OS (r)) =

o+l
—(8"(1)(2L(C) +0)8(1)) ?
Since 2L(C) + O is a symmetric positive-definite matrix,
then
o+l
~ (Aumin 2L(C) +0) 8" (1) (1)) 2
o+l +
Ay 2LC)+ OV (1),
By Lemma 1, system (6) is globally finite-time stability,
and T(z) is the settling time. Then according to Lemma
3, system (4) is globally finite-time stability under the
pinning protocol (8), and the settling time 7'(q) satisfies

T(q) <T(z)+ Y cxT. That is system (4) can reach the
k=1
FTC. O

Remark 1: Although there are many results on FTC of
the MAS, as far as we know, there is few result on FTC for
the leader-following multi-time-delay system over time-
varying topology. That is to say, this work considers the
consensus problem of the system with a leader, multiple
time delays and time-varying networks synthetically.

Remark 2: Due to the complexity of the system with
multiple time delays over time-varying topology, we adopt
the algebraic theory, especially the algebraic transforma-
tion method, to transform the multi-time-delay system into
the relatively simple system. For the disconnected net-
work, we adopt the pinning control technique, which by
controlling certain selected agents to control all the agents,
to make the FTC.

Remark 3: Time delay is inevitable in the practical.
For the MAS, due to the different structure and properties
of agents, communication delay between different agents
is usually different, therefore the study of systems with
multiple time delays is important. There are many related
applications, such as the cooperation of robotic system,
the vehicle-road cooperative system, unmanned air vehi-
cles and so on.

4. NUMERICAL EXAMPLES

This section gives several simulations to illustrate the
correctness of the main results.

Consider system (4) with 10 followers, which are de-
noted by i =1, -+, 10 and a leader i = 0. Note that there
is a spanning tree in graph M; and M, with the leader
node being the root.

Firstly, consider system (4) over M, as in Fig. 1. For
simplicity, denote T = [71, T2, - -+, Tjo]! . The initial states
of agents are ¢o(0) = 10.1773, ¢1(0) = 4.8393, ¢»(0) =
10.3504, ¢3(0) =2.8980, g4(0) = 6.2387, ¢5(0) = 1.8777,
q6(0) = 8.3155, ¢7(0) = 1.8872, g3(0) = 5.0999, ¢9(0) =
7.1241, ¢10(0) = 9.2806. Under the protocol (5), choose
K=1,h=1,b=1,(k=1, ---, 10), (P:OS, aij(t) =
142, L(t)=2t4+1 i, j=1, -+, 10), and T = [0.01,
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0.01, 0.01, 0.01, 0.01, 0.02, 0.02, 0.03, 0.03, 0.03]. The
state trajectories are given in Fig. 2, which shows that the
states of all followers achieve that of the leader in a finite
time. That is under the protocol (5), system (4) over M
achieves the FTC.

Secondly, consider system (4) over M, as in Fig. 3.
The initial states of agents are go(0) = 4.8801, ¢;(0) =
13.0861, ¢2(0) = 13.4367, ¢3(0) = 9.2940, ¢4(0) =
10.4851, ¢s(0) = 10.9491, ¢¢(0) = 4.3335, ¢7(0) =
9.8978, ¢s(0) = —0.7998, ¢9(0) = 10.3240, ¢10(0) =
—0.1580. Under the protocol (5), choose K =2, h = 1,
bi=1(k=1,---,10), 9 =0.8, 0;; (1) =3t + 1, l;(t) =1 +2
Vi, j=1,---,10),and 7=1[0.5,0.5,0.5,0.2,0.2,0.2, 0.6,
0.6, 0.6, 0.1]7. The agents’ state trajectories are given in
Fig. 4, which shows that the states of all followers achieve
that of the leader in a finite time. That is under protocol
(5), system (4) over M, achieves the FTC.

Next, consider system (4) over networks M3 in Fig. 5.
Note that there is no spanning tree with the leader being
the root in M3. For system (4) with 3 followers, which are
denoted by i = 1, 2, 3 and a leader i = 0, denote 7 = [1;,
T, 73)7. The initial states of agents are go(0) = 1.1731,
q(0) = [—4.3805, 8.9402, 2.3462]7. Under the pinning
control protocol (8), choose K =1, h=1,b;, =10 (k= 1,
2,3),0=05,0;(t)=t+2(Vi, j=1,2,3), P(r) = 2t +1,
0, 0)7, W(¢) = [0, 0, 0]7, and % = [0.1, 0.2, 0.3]. Then
P(t) =2t +1, 0, 0]7. The state trajectories ¢;(¢) (i = 0,

4 ™,
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follower1
follower2 | -
linwer3

8 \ leader

tis

Fig. 8. State trajectories of the agents over My.

1, 2, 3) are given in Fig. 6, which shows that the states of
all followers achieve that of the leader in a finite time over
the disconnected topology M.

For system (4) over My as in Fig. 7, the initial states
are ¢o(0) = 5.8654, ¢(0) = [11.0808, —5.8827, 6.2849]" .
Choose K =1, h =1, by =10 (k = 1,2,3), ¢ = 0.6,
a;i(t)=3t+1(Vi, j=1,2,3),P(t)=[0,0,0]", W(r) =0,
2t+1,0]7, £=10.1,0.2,0.3]7. Then P(¢) = [0, 2t +1,0].
The state trajectories of all the agents are given in Fig. 8,
which shows that the states of all followers achieve that of
the leader in a finite time. That is system (4) can achieve
the FTC.

For system (4) over Mas, if there is no pinning con-
trol, that is P(z) = [0,0,0]” in protocol (8), choose the
initial states go(0) = 1.1731, ¢(0) = [—4.3805, 8.9402,
2.3462)7,and K =1,h=1,b; =10 (k=1,2,3), =0.5,
oi(t)=t+2 @G j=1,2,3), T=1[0.1, 0.2, 0.3]". The
state trajectories of all the agents are given in Fig. 9, which
shows that the states of the followers can not achieve that
of the leader in a finite time. That is without the pinning
control, system (4) can not achieve the FTC over the dis-
connected network M3. Fig. 6 and Fig. 9 show that the
method used in this work is more effective when the net-
work is disconnected.

5. CONCLUSIONS

This paper studies the FTC of multi-time-delay LF-

10

agent 1
agent 2
agentd
leader

x(t)
E
|
|
|
|

s

Fig. 9. State trajectories of the agents over M3 without pin-
ning control.

MAS over time-varying topologies through the pinning
control. Based on the Lyapunov function theory, graph
theory and algebraic theory, sufficient conditions for the
leader-following FTC are obtained. Several presented sim-
ulations verify the effectiveness of the adopted method.
However, the related problem, such as swarming, flocking,
or under the saturation control case, has not been consid-
ered. It is the future work to be done.
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