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This paper is concerned with the exponential lag function projective synchronization of
memristive multidirectional associative memory neural networks (MMAMNNSs). First,
we propose a new model of MMAMNNSs with mixed time-varying delays. In the proposed
approach, the mixed delays include time-varying discrete delays and distributed time
delays. Second, we design two kinds of hybrid controllers. Traditional control methods
lack the capability of reflecting variable synaptic weights. In this paper, the controllers
are carefully designed to confirm the process of different types of synchronization in the
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MMAMNNSs. Third, sufficient criteria guaranteeing the synchronization of system are
derived based on the derive-response concept. Finally, the effectiveness of the proposed
mechanism is validated with numerical experiments.

Keywords: Multidirectional associative memory; memristor; hybrid control; lag function
projective; exponential synchronization.

1. Introduction

Being an highly important property of the brain-systems and enormous social phe-
nomenon, the associative memory has attracted considerable attention. Owing to
the complexity of human brains, many-to-many associative memory is a basic dy-
namical behavior of the human cognition. Comparing to the one-to-many associa-
tion and many-to-one association, many-to-many associative memory can describe
the evolutionary process of the storage pattern in the human brains more effec-
tively. Thus, it can be widely applied in artificial intelligence, pattern recognition,
and so on.

Since M. Hagiwara first proposed the multidirectional associative memory neu-
ral networks (MAMNNS) in 1990, owing to its ability to simulate many-to-many
association, the synchronization and the stable analysis of various MAMNNSs have
become a research hot spot.2* With the concept of memristor,® memristive neural
networks (MNNs) has provoked crucial attention.5"!2 Inspired by this, according
to replace the conventional resistor with the MAMNNS, the memristive multidi-
rectional associative memory neural networks (MMAMNNS) can process more in-
formation capacity, which would expressively enhance the applications of MNNs
for data clustering,'® optimization and massively parallel computing,'4 real-time

15 16,17

encoding and compression, > and machine learning.

Synchronization as a fundamental dynamic behavior of NNs,'® has widely po-
tential application in biological and chemical systems,'® power grid networks,2%:2!
and so on. In 1988, Kosko proposed the bidirectional associative memory neural
networks (BAMNNS).22 This kind of neural networks is similar with MAMNNSs in
terms of the structure. Moreover, as a special class of MMAMNNS, the research
on synchronization of memristive bidirectional associative memory neural networks
(MBAMNNS) has attached considerable attention.2327 Nevertheless, the synchro-
nization of MMAMNNS are rarely reported in literatures. Additionally, time delays
can significantly influence the dynamic behaviors of a chaotic system,?83¢ so the
appropriate control strategies are required to make systems stable. Therefore, the
synchronization and stability of MMAMNNS with mixed time-varying delays desire
much more research attention. This is the first motivation of this paper.

Inspired by the synchronization of diverse dynamic chaotic systems, Mainieri
and Rehacek3” first proposed the projective synchronization. This is a type of
synchronization which affected by the scaling factor. Because of its widely fea-
ture, the projective synchronization can achieve faster communication according
to extend binary digital to M-nary digital.?® Furthermore, the projective synchro-
nization can be treated as a general form of anti-synchronization and complete
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synchronization. In recent years, some researchers have studied projective synchro-
nization of MNNs with or without delays.3? 4! However, there are a lot of useful
information ignored in the study of the MMAMNNS, such as the characters of the
memristor, the structure of the MMAMNNS, etc. How to utilize these useful infor-
mation to do further research on MMAMNNS is still a challenging problem. Thus,
this is the second motivation of this paper.

Furthermore, among the various types of synchronization, owing to the in-
evitable signal transmitted delay between the drive and response systems, the
lag synchronization?? can be a rational scheme from the point of practical ap-
plications and the features of channel. However, the lag synchronization problem
of the MMAMNNSs is seldom illustrated in literatures. When investigating the
MMAMNNS, previous studies have demonstrated that only deterministic parame-
ters have been considered, and the lag synchronization conditions are derived based
only on the fixed-value parameters. The situation of the parameters mismatched in
some MNNSs is often occurred, and its characteristic can be reasonably expressed
by some mathematical methods.%34 Hence, under this circumstances, it is valuable
to study the lag synchronization of MMAMNNSs with parameters mismatched. At
present, although there are some studies on the stability of MAMNNs,2 % the ex-
ponential lag function projective synchronization of MMAMNNSs with parameters
mismatched has not been reported to the best of our knowledge.

In this paper, we concentrate on the exponential lag function projective synchro-
nization control of MMAMNNS with mixed time-varying delays. With the aid of the
set-valued mapping, the mathematical model of memristor, differential inclusions,
linear feedback controller, adaptive linear feedback controller, and the definition
of exponential lag function projective synchronization, two new sufficient criteria
are derived to guarantee the exponential lag function projective synchronization of
MMAMNNSs with and without distributed time-varying delay. The main contribu-
tions of this paper can be summarized as follows:

(i) We first investigate the exponential lag function projective synchroniza-
tion of MMAMNNSs with mixed time-varying delays based on the proposed
definition.

(ii) On the basis of analyzing the characters of memristor mathematical model, we
discuss the parameters mismatched issue between the drive-response systems.
Based on the achievements, two kinds of hybrid linear feedback controller
and adaptive linear feedback controller are designed to fit the features of the
memristor, rather than treating them as some constants.

(iii) We obtain two sufficient criteria to ensure the exponential lag function projec-
tive synchronization of the proposed model. Meanwhile, the scaling factor is a
variable instead of a constant, thus, our results can easily extend to the other
types of synchronization which depend on the scaling factor and lag factor.
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The rest of this paper is organized as follows. In Sec. 2, we introduced the math-
ematical model of MMAMNNS, the definition of exponential lag function projective
synchronization, two assumptions and two lemmas. In Sec. 3, the main results of
this paper, including two theorems and two corollaries, are presented. Two numer-
ical examples are presented in Sec. 4 while Sec. 5 concludes this paper with some
insights provided.

Notations: For r > 0, C([—r,0],R™*) denotes the Banach space of all continuous

functions mapping [—r, 0] into R™ with g-norm or co-norm by the following forms,

respectively. R™* denotes the ng-dimensional Euclidean space. The superscript T

represents matrix or vector transposition. We define the norm of the vector as ||z ;||
N

indicates the 2-norm of a vector xy;, i.e. |zl = (Q;%, xil)% cola, b] denotes the
closure of the convex hull generated by real numbers or matrices a and b.

2. Neural Networks Model and Preliminaries

In Sec. 2.1, the neural networks model will be presented step by step. In Secs. 2.2
and 2.3, the error systems and useful lemmas are provided.

2.1. Neural networks model

In order to better illustrate the MMAMNNS, first we describe a general class of
MAMNNS? as follows:

dx; (t UG .

%() = —dpizri(t) + Z Zapjkifpj(xki(t — ijki)) + 1y, 1€l keK. (1)
p=1,j=1
p#k

Based on the physical properties of the memristor and system (1), the pro-
posed MMAMNNSs with mixed time-varying delays is described by the following
differential equations:

d(Eki t o
S0 i)+ 3 D s () o )
T
30 bpjki (ki (t = T (6))gps (25 (t — Tpji(1)))
T
m Np t
+ Z Z Cpiki(Tri(t)) / i (zi(8))ds + I
p=1, j=1 t—pipjni(t)
p#k

t>0, 1€l, ke K, (2)

where m > 3 denotes the number of fields in system (2), thus we have k € K =
{1,2,...,m} and p € P = {1,2,...,m}. And z4;(t) is the state of the ith neuron
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in the field k at time ¢, n,, nj represent to the number of neurons in the field p and
k, then we define i € I £ {1,2,...,n} and j € J £ {1,2,...,n,}.

Then dy; is a positive constant which stands for an amplification function; f,;(-),
gp;(+) and hy,;(+) are the feedback functions. The 7,,;(t) denotes the discrete time-
varying delay which satisfy 0 < 7,;r;(t) < 7 and 7pki(t) < 70 < 1. And 0 <
Pk (B) < g, fipins(t) < po < 1 represents the distributed time-varying delay. The
I; is the external input on the ith unit of field k.

Due to digital computer applications demanding only two memory conditions,*>
a memristor requires to demonstrate only two sufficient distinct equilibrium states.
And a basic form of the memristor includes a junction, which can be switched from
a low to a high resistive state and vice versa.?® The switch starts at a threshold
voltage. According to the analysis in Ref. 45, Fig. 1 illustrates the simplification
current characteristic of a memristor, and we apply the following mathematical
model of the memristance.4” 4% We define the ap;ki(-), bpjki(*), cpjri(-) are the
memristive connection weights as followed:

w

i
Apiki (T (1)) = % XSG, s s
3

_ Wzgjki
bpjki(xki(t - ijki(t))) = T X SgNy, ik 5

I)Vh-k4

ol

Cpjki(Tri(t)) = TIZ X 88Ny ki
(2

where sgn, .., = sgny,,,; = 1 for pj # ki and sgn,,;;,; = sgny,;,; = —1 for pj = ki.
Then the Cy; is the capacitor, ngki, ngki and ngki are the memductances
RQ f

. f h . oy
of memristors Rpjki, ki and Ry, respectively. In addition, Rpjki presents

the memristor between the feedback function fy;(wki(t)) and xki(t); R,

Current
o

Voltage

Fig. 1. Typical current—voltage characteristic of a memristor.
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presents the memristor between the feedback function g,;(zp;(t — 7pjxi(t))) and
2pj(t — Tpjki(t)); Rl presents the memristor between the feedback function

ftt skt () hpj(zki(s))ds and zxi(t). The complex-valued memductance functions
Apjki (Thi(t))s bpjki(Thi(t — Tpjni(t))), and cpjri(2ri(t)) are given by

(
ay ikis xkz(t) S Tki )
apjki(Tri(t)) = { ~ )>T

ayipis Thi(t) > Thi,

Cpikir  Thi (t) < T,
cpjki(Tri(t) = ) —

cpjki’ xkl(t) > Tk}ia

Vpinis  Thi(t — Tpji(t)) < Thi,

bpikis Thi(t — Tpjri(t)) > Thi s

bpjki (Thi(t — Tpjki(t))) = {

** *
where o* pikis Opjkis b ki bpm, ki and c* ]kz are constant numbers.

Assume that ¢ > 1 is a positive integer and R™* be the space of ng-dimensional
real column vectors, for any z = (T, Thys- .-, Tk, )T € R™. |lzx| denotes a
vector norm defined by

1
Nk q
zkllg = il or |zkllec = max |zl
Trllq Lhq ) Lk ||oo o L -
K3
i=1

The initial conditions associated with system (2) are given by
zri(s) = pri(s), s € [-r0],

where r = max{r,u}, 7 = maxier jes Tpjki(t), 4 = Mmaxjer jes tpjki(t). Then
Pr(8) = (P (8), Pra(8), - -5 0k, ()T € C([=r, 0], R™).

lekllg = S lZ%I“] oor Jlgkllee = sup okl
se[—r,0]

In this paper, solutions of all systems are treated as the following are intended
in Fillpov’s sense.’® For a continuous function I(¢): R — R, D*l( ) is named the
upper right Dini derivative and defined as DVi(t) = limy,_,o+ + (I(t + k) — I(2)).

Now, we do the following assumptions for system (2):

(A1) The activation functions fp;(-), gp;(-) and hm() are Lipschitz conditions.

h
That is for any p € P,j € J, there exist real numbers Lp]7 Lm’ and Ly, such that

| fpi (W) — fpi ()] < L£j|u — v,

|9pi (1) = gps (V)] < Li;lu—v],

|hpj (1) — hp;(v)] < LZJ'W —vl,
for all u,v € R and u # v.
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(A2) The activation functions fp;(-), gpj( ) and hy,;(-) are bounded. That is for any

p € P,j € J, there exist real numbers Mm’ ng, and MZ)L], such that

| fpi ()] < ngv gps (w)] < M, pg? |hpj(u)| < M, p])
for all u € R.

In this paper, we consider the system (2) as the drive system and the response
system is as follows:

dyri(t
dt( ) = _dkiykz + Z Zapjkz ykz fp] (ykz( ))
p=1, j=1
p#K
m  Np
ZZ ik (Ui (E = Tighi (8))) 9 (Ups (= Tpgra(1)))
1 ':
Kk
t
+ 30D epmilyi(t) / P (Yri(8))ds + Ui (t) + i,
p=1, j=1 t—ppjni(t)
pF#k
t>o, i€l, ke K, (3)
where
a, jkis yki(t) <Ty, c ik yki(t) <T,,
apjiki (Yri(t)) = { v Cpri(yri(t) = 7
Opjikis Yki(t) > Ty Cpjki»  Yki (t) > Ty,

b*jki7 Yri(t — ijki(t)) <Ty,

Vpinis Uit — Tpjki(t)) > Ly s

for a.e. t > 0,5 € J,p € P, which initial conditions yx(s) = (¢, ($), Pk, (5), .- -,
Pk, ()T = ¢ro(s) € C([—r,0],R™). Then ¢y, (s) = ¢r(s+ o) for all s € [—7,0].
And Uy;(t) is the appropriate control input that will be designed.

Through the theories of differential inclusions and set-valued map,
(2) and (3) can be transformed as follows:

bpjki (Yni(t — Tpji(t))) = {

50-52 gystems

dxfii;(t) € —dpixii(t) + Z Z colapiki(Tri(t)] foj (ki (t))
e

+ > Z colbpjki (@i (t — Tpjki(t)))]19pi (Tp; (t — Tpjki(t)))
i

m Mp t
+0Y CO[ijki(xki(t))]/ hpj(zki(s))ds + Tei, >0, (4)
p=1, j=1 t—pipjki(t)

p#k
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and
dyyi (1) .
o € ~drayki(t) + D> colapgni(yri ()] s (wri (1))
p=1, j=1
p#k ’
+ > > colbyski Wni(t = Tpiki (6))ps (Wps (t — Tski (1))
p=1, j=1
pF#k
m Mp ¢
+ Z colepjki(Yri(t))] / i (Yri(8))ds + Upi(t) + I,
p=1, j=1 t—ppini(t)
p#k
where
a;jkw Lk (t) < Tki ,
colapjri(zki(t))] = { colay i ani), hi(t) = Thi,
Qi 2pi(t) > Thi,
a‘;;jk;i? ykz(t) < Iki )
colapjki(yri(t))] = § colagni apinil,  yri(t) =Ty,
a;;/ﬂ‘v Yki(t) > Ty,
b ks kit = Tpji(t) < Thi,
colbpjni (i (t = Tpjki(t))] = S colblipis Uinils  Thi(t — Tpjni(t)) = Tha s
by ki kit = Tpji(t) > T
b;jkiv Yri(t — Tpjki(t)) < Ly
co[bpjri (Yri(t — Tpji (1)))] = q colbpni> Upinls  Yki(t — Tpjwi(t)) = Ly,
bpikis Yri(t — Tpjki(t)) > Ly
Cpjkis i (t) < T,
colepjni(ri(t))] = CO[C;jki?c;;ki]’ i (t) = Thi,
Cpikis Tri(t) > T,
Cpjkis Yri(t) < Ty s
colepjri(yri(t))] = CO[C;jkﬂC;;ki]’ Yri(t) = Ly ,
C;;kiv Yri(t) > Ty

1850116-8
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It is clearly that the set-valued map

d:v;;(t) — —dpiTri(t) + Z Zco[apjki(xki(t))]fpj(xki(t))
(e
+ Z Z colbpji(Tri(t — Tpjki(t)))]Gps (Tpi (t — Tpjki(t)))
o

t

=30 colepsnilar(t)) / hoy(($))ds + T, €20, (9)

p=1, j=1 t—fipjki(t)
pF#k

which has non-empty compact convex values. Thus, it is upper-semi continuous.

2.1.1. Error systems

Then, we define the synchronization error ey;(t) as follows: eg;(t) = yri(t) —
a(t)zk;(t — o), and the scaling factor a(t) is bounded which satisfied |a(t)] < A.
By the theories of differential inclusion and set-valued map. Combining with the
systems (4) and (5), we get the following synchronization error system:

deyi(t) _ dyri(t)
dt dt

degi(t —o)  da(?)
dt dt

—alt)

rpi(t—o0), t>o. (10)
Remark 1. In the literature, the existing results concerning the error system®3>°
require the scaling factor a(t) as a constant. As mentioned in Sec. 1, in some
important applications, the scaling factor «(t) may be generated as a variable to
change with time. Thus, in such case, these results will lose efficacy. The error
system (10) is more rational in practical applications.

Thus, we have

de];;(t) € —{driyri(t) — drivri(t — o)a(t)xy(t — o)}
+ 2 D Aeolapui (ki () s (s (1))
7
— colapji(wri(t — 0)))]eu(t) fpj (p; (t — o))}
+ > > {colbpiri(yri (t = Tpjni ()] gps (Ups (t = Toji(t)))
=t

= colbpji(Tri(t — Tpjki(t — 0)))]a(t)gpj (2p; (¢ — Tpjki(t — 0)))}

1850116-9
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Z Z { olcpjki y;ﬂ(t))]/ hypj(yri(s))ds
=1, j=1 t—ppjni(t)
;élc

— colepjki(Tri(t — 0))]a(t) /t P (yni (s — U))dé’}

—Hpjki(t)
da(t
+ (1 — a(t) Ik — di)xm( o)+ Uk(t), t>o. (11)
Definition 1. A function z, = (Zp,,Thy,..., 2k, )] with initial conditions

ng
zi(t) = pr(t) € C([—r,0],R™) is the solution of system (2), which is evidently
continuous.?® Furthermore, based on the conditions (A1) and (A2), this local solu-
tion xx(t) can be extended to the interval [0, +oc] under the Filippov’s sense.?%:52

Definition 2. For V¢ > 0, systems (2) and (3) are said to achieve exponentially
lag function projective synchronization, if there exist M > 1 and € > 0 such that

lyni(t) — a(B)zwi(t — o) < Mexp{—e(s — 0)}|¢wi(t) — alt)pri(t —o)ll,  (12)

where ¢ is defined as the degree of exponential synchronization.

Remark 2. Enlightened by Refs. 57 and 58, we proposed the definition of the
exponential lag function projective synchronization. Based on the definition, the
type of synchronization can extend to exponential complete synchronization and
anti-synchronization with or without lag easily. Comparing with the existing results,
the results are more flexible and functional.

2.2. Some useful lemmas

Lemma 1. (see Ref. 50) Suppose that M(k): R" — R is C-regular, and that
k(t):[0,+00) — R is absolutely continuously on any compact interval of [0, +00).
Then, V(k(t)):[0,400) — R are differential for a.e. t € [0,+00), then we get

v (k(t)) dk(t)
D — o S () e oV k().

Lemma 2. Under Assumption (A1), the following estimations are true:
(i) lcolapsni(yni(t)] foj (Ups () — Apjni foj (a(t)2p;(t — o))
< ApjiiLLjlep; () + La ,
|—colapjki(zri(t — o))]a(t) fo;(2p; (t — o))
+ Apjrio(t) foj (2p;(t = 0))| < LA\,
(i) Jeolbpjri(Yri(t = Tpjki(£)))gp; (Ups (t = Tojri(t)))
— Byjkigp (t = Tpjki () p; (t = Tpjni(t) — o)
< ByjkiL;lep; (t — mpini(t))| + Ly,

1850116-10
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| =colbpjki(Tri(t — Tpjki(t) — 0))]a(t)gpj (Tps (t — Tpjni(t) —

+ Bpjri(t) fpj (@p; (t — Tpjri(t) — 0))] < LpA,

(iii) ’CO[ijki(yki(t))] /t hpj (Ups (5))ds

—pipjki(t)

t
s [ yslalohay(s - 0))ds
t—hpjni(t)

t
= ijkiLZj/t i lep; (s)ds + L,
“Hpjki

t
~eolepalani(t = Na(®) [ hyylays(s — o)ds
t—ppjki(t)
t
FCuia®) [ hyylagy(s - 0))ds| < Lo
t—pipjki(t)
where
Apjlci = maX{|a;;jki‘7 ‘a;;kzl} )
Bpjki = max{|b;jki|) |b;;kz|} )
Cpjri = max{|cypils [epiril} s
and

L, = maX(|a*jki - Ap]k}l‘ gjv ‘CL pjki — Apjki|M1{j) ’

Ly, = ma‘X(|bp]k’L ]kl| pjv b, pjk:i - Bpjki|M5j) )

L.= maX(|Cp]kz - ijkiWija |C;;ki - ijkiWM;;Lj) )
fort>o,iel,jeJ ke K,peP.
Proof. (i) For yxi(t) < Ty, v1i(t — 0) < Thy, then

|colapiri (Yki(0)] fpj (Ypi (8)) — Apjnifpj (V) p; (t — o)
|ap3kvfm(ym( ) = Apjki fpj(a(t)zp;(t — o))

= |a, jkifm( Ypi (1)) — jkifpj( a(t)ay;(t — o))
(

+ apni fpi (@) zp(t — 0)) = Apjri fpi(a(t)zp;(t — o))

= |ap;1i(fpi (Upj (1)) — fpj(a(t)wp;(t — o))
+ (a0 — Apji) foj (a(t)zp;(t — )]

< apini (fpi (Wpi (1) = fpj (a(t)zp;(t — o))
+ |(ap;ri — Apjni) foi (a(t)ap; (t — )]

1850116-11
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Due to Assumptions (A1) and (A2), we have
|colapji(Yni ()] fpi (Ypi (1) — Apjrifoj(a(t)zp;(t — 0))]
< APJIW pjkz|fp.7 (yP]( )) - fpj(a( )xpj (t - 0))' + Iap]kz - APﬂ“' pjkz

= Apjkinjki|ePJ( )l + |a’pgk:z Jkl| p]kl :

Then
| —colapjri(zri(t — 0))]a(t) foj(@p;(t — ) + Apjric(t) fpj(2p;(t — )]
= |=apkit(t) fpj (@p; (t — 0)) + Apjrice(t) fp; (wp; (t — 7))
= [(Apjri — a;jki)a(t)fpj(xpj(t —0))|

< [Apji — g AM (14)
(ii) For yr;(t) > T, if zxi(t — 0) > Thi, we get
|colap;ri (i ()] fpi (Yp; (1) — Apjki fpj ((t)@p;(t — o))
= lagjnifoi (Upi (1)) — Apji fpj (a(t)zp;(t — 0))]
= lagsni i Wpi (1) — apjpifpi(a(t)ap;(t — 0))
+ apipifpi (@(t)Tp; (t — 0)) = Apjri fpi (a(t)xp; (t — o))
= lagjni (fpiWpi (1)) — fpj(a(t)zp;(t — 0)))
+(apini = Apjni) foj (@(t) 2 (t — o))
< Apii LY s lens (O] + lans — Apjrs M - (15)
And
|—colapjri(@ri(t — 0))]a(t) fpj (2p; (t — 0)) + Apjrice(t) fpj (p; (t — 7))
= [=ap;pi(t) fpj (Tp; (t — 0)) + Apjricu(t) fpj (@, (t — o))
= |(Apjni — a;}k‘m)a(t)fm(xpj (t—o0))
< |Apjni — appil AMT (16)
If 2;(t — o) < Thi, we have
|—colapjri(@ri(t — 0))]a(t) fpj (2p; (t = 0)) + Apjric(t) fpj (p; (t — 7))
= [=ap;ri(t) fpj (Tp; (t — 0)) + Apjric(t) fpj (@, (t — o))
= |(Apjni — aij)a(t)fm(xm (t—o))l
< |Apjki — agjpi| AM, pjm~ (17)

Similarly, we can get the conclusion of (ii) and (iii) of Lemma 2. The proof is
completed. O
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3. Main Results

In this section, two kinds of hybrid controllers will be proposed corresponding to
the two kinds of MMAMNNSs models, that is, with and without distributed time-
varying delay.

3.1. Ezxponentially lag function projective synchronization via
hybrid linear control

In this section, we will derive some criteria to guarantee the exponentially lag
function projective synchronization of systems (2) and (3).

Treat the synchronization error eg;(t) as egi(t) = yri(t) — a(t)zr;(t — o) for
i € I,k € K. Then we design the controller Uy;(t) in response system (3) as
follows:

Uki(t) = Uiy (t) + Uiy (t) + Ukis (1) + Upiy (t) + Ukis (1) (18)

where

Uiy = 3 D [Apjkice(t) fp (i (t — 0) — (1+ A) L,
p=1,j=1
pF#k

— Apjkifpj(a(t)xp;(t — )],

Uiy = 3 O [Bpjki(t) fp; (i (t = Tpjni(t) — 0))
p=1,j=1
p#k

— Byjki fpj (et — Tpjwi(t)2p; (t — Tpji(t) — o)) — (1 + A)Ly])

m  Mp t
Ukiy = > 3 lejma(t)/ hpj(xp;(s — 0))ds
p=1, j=1 t—ppjni(t)
p#k

t

G [ hys(a(s)agi(s — o)ds — (1 AL
t—pipjki(t)

Uki4 = (a(t) — I)Iki + d(t)Iki(t — 0’) s

Ukis = —Mrieri(t)
which ny; is a positive constant determined in later.

Remark 3. Consider the error system (10) and the mathematical model of mem-
ristance (6)—(8), the switching rules of the drive system are employed in designing
the controller (18). Thus, the present design strategy is more favorable than those
neglecting the state transition of the drive-response systems. The design proce-
dure is partly stimulated by Ref. 57, where the lag synchronization for MNNs was
addressed.
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For convenience, we denote

m  Mp

- dk‘l Z ZAkaz pj >

p=1, j=1
pF#k

=D Apnily;, (19)

p=1, j=1
p#k

p=1, j=1
p#k

Based on the above discussions, we give the following assumption for system
parameters and control strength.
(A3) Aki + Mii — Bri — Eki > 0, forany i € Ik € K.
Foreachi e 1,j € J,k € K,p € P, consider the following function:
Gri(eri) = Mri + i — ki — Brie™ " — Epie™ ', e > 0. (20)
It is clearly to see that Gki(eki) < 0, G(0) > 0. Since G;(eg;) is continuous and
Gri(eri) = —o0 as ex; — +oo. Thus, there exists a positive number €}, such that
Gri(e};) > 0. Let ¢ = mines ke i €5, then we have
ki + ki — €ki — Prie®” — Erie™ >0, (21)

forany i € I,k € K.
Based on the controller (18), the following results can be obtained.

Theorem 1. Suppose that Assumptions (A1l)—(A3) hold, the MMAMNNSs systems
(2) and (3) are exponentially lag function projective synchronized under the hybrid
linear controller (18).

Proof. Calculating the Clarke’s generalized gradient of absolute function |eg;(t)]
by Lemma 1. It is clearly that Oy;er;(t) = |er:(t)], so
dlexi(t)] deri(t)
= O (t
dt )=

= O (t) {[dkzykz( ) — dpizri(t — o)a(t)rr(t — o))

+ D > leolapni (i ()i (Ups (1) — Apjki s (s (t — o))

(1+A)La] + ) Z —colapii (hi(t — 0))]aE) oy (09 (t — 7))
o

+ Apjice(t) fpj(p;(t — 0))]
1850116-14
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+> i[CO[bpjm(ym(t = Tpiki ()] 9pi (Yps (t — Tpjni(t)))
p=1,j=1
pF#k

— Bpjkigpj (a(t — Tpjki(t))p; (t — Tpjki(t) — )]

+ > Z[—CO[bmki(fEki(t — Tpjki(t) — 0))]a(?)
=

X Gpj (Tpj (t — Tpjki(t) — ) + Bpjrice(t) fp

X (wpi(t — Tpjri(t) — o)) — (1 4+ A) Ly

+ Z zp: [CO[ijki(yki(t))]/ b (Yp; (s))ds

p=1, j=1 t—ipjki(t)
pF#k

t
G [ hugla(s)n(s -~ a))ds = (14 A)L.
t—ppji(t)

—ppjki(t)

Z Z [_CO cpjki(Thi(t — 0))]e(t) / hpj(@pj(s — 0))ds
it t
k

t
+ijk‘i0‘(t)/ © by (xpj( ))dS] - ﬁkieki(t)}7 t>o.
Ppjki(l

(22)
According to Lemma 2, we can derive
dlexi(t)| deyi(t)
— 2 =9 i t < —(d i i i t
il ki(t) = < —(dii + i) leni ()]
m  Mp
+ Z ZA jki pg|em )+ Z ZB jki pg‘em — Tpiki(t))]
p=1, j=1 p=1, j=1
p#k: p;ﬁk
+ Y ZCW m/ lepi(s)|ds, t>o. (23)
p=1, j=1 t—pipjni(t)
p#k
Denote
w= max {l6u(s) - als)pus — o)}
Then we design the Lyapunov function such that
Vii(t) = e eri(t)] . (24)
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Case 1. For t € [0 — r,0).
Duetot>oc—r,andie I,k € K. Let

Pri(t) = Vi (t) — hw, (25)

where h > 1 is a constant.
From the definitions of Vj;(t) and w. It is easy to check that

Pp;i(t) <0, (26)
forallt € [o —r,0).
Case 2. For t € [0, +00).
In the following, we will testify that
Pri(t) <0, (27)

for all t € [0, +00) and i € [,k € K.
Otherwise, there exist [ € I,d € K, and t* € [0, +00) such that

Pyu(t*) =0, Pn,(t") <0, nel\{l}, meK\{d} drslit(*t*) >0, (28)
and forany i € I,k € K
P(t) <0, (29)
for ¢t € [o,t*].
Combining with Egs. (26) and (29), we obtain
Pu(t) <0, (30)

for t € [o —r,t*).

Calculating the time derivation of Pg(t*). In line with the solution of system
(22), by the chain rule in Lemma 2 and using Eqs. (28)—(30), we have

del (t*) ) d|edl (t*)|

—a e Deg ()| + =77 dat*

< €es(t*—¢7)|edl(t*)| + es(t*_g) _(ddl + ndl)‘edl(t*)l

m  Mp m  Mp
+ YD ApjarLdlen; () + YD BpjaLdlen; (8 — mpjri(t7))]
p=1, j=1 p=1, j=1
p#k p#k
m Np +*
35 Cpally / ey (s)ds | (31)
p=1, j=1 T — ki (t*)
p#k
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During the definition of Vi;(t), we get the following inequation:

« x d t*
e =D e (t7)] + et _U)7|elet(* )

—(dar +nar — €)Var (t*) + Z ZAmdlej Vi ()

p=1, j=1
pF#k

m  Mp
+ )Y Byl e IV (8 — 1k (t7))
p=1, j=1
p#k

+ Z Z C:DjdleJ / ij(S + t*)e_asds

p=1, j=1 —ppiki(t*)
p#k

—(dar +nar — e)Var (t*) + Z ZAdesz Vi (7)

p=1, j=1
pF#k

m P
+ Z BpjdlL;g;jeaTij (t" — mpjki(t))
p=1, j=1
pF#k

+ Z Cp]dle]/ ij S—‘y—t e °ds

p=1, j=1
p#k
m  Mp
—(dar + a1 — €)hw + Z ZAdelLI{jhw
p=1, j=1
p7k
. p €Hhw
Y Bty + 30 Gt
p=1,j=1 p=1, j=1
p#k p#k

< (&= Aat — Nar + Bare®” + Eue ) hw
<0, (32)

which leads to a contradiction with Eq. (28). Hence, the inequation Eq. (27) holds.
Let h — 1, then from Eq. (27) and the definition of Vj;(t), we have

leri(t)| < we™s(t=) | (33)
for any t > o and 7 € I, k € K, which demonstrates that
lyks(t) — a()zri(t — o) < we™* =7 = ||gri(s) — als)pri(s — o)==
(34)
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Hence, according to the Definition 1, systems (2) and (3) can achieve expo-
nentially function lag synchronization under the hybrid linear controller (18). The
proof of Theorem 1 is completed. O

Remark 4. In this paper, the essence of projective function lag synchronization is
that the delayed system converges to the stable. At present, the research on projec-
tive function lay exponentially synchronization of the MM AMNNSs with mixed time-
varying delays is few. A lot of models about projective function lag synchronization
of NNs are special cases of our proposed model.5962 Here, we give a corollary as
the special case.

If 0 = 0 in system (8), that is to say the error system becomes the form such
as ex;(t) = yri(t) — a(t)zk;(t), then we have the following corollary.

Corollary 1. Based on the Assumptions (Al) and (A2), we define the synchro-
nization error ey;(t) as follows: e;(t) = yri(t) — a(t)xri(t). By the theories of dif-
ferential inclusion and associate with the systems (2) and (3), we have the following
synchronization error system
deg;(t) _ dyki(t) ) dugi(t)  da(t)
dt dt dt dt

Based on the synchronization error system (35), we design the hybrid linear

Tri(t), t>0. (35)

controller as follows:

Uki (t) = Ukil (t) + Uki2 (t) + Ukis (t) =+ Uki4 (t) + Uk’is (t) ) (36)
where
Ui, = Z Z piki0(t) fpj (Tp; (t)) — (1 + A)La — Apji fpj(u(t)zp;(1))],
p=1, j=1
p#k

m

Uki, = Z Z piki () fpj (2ps (£ — Tpjki(t)))
p=1, j=1
pik

Byjki fpj (@t — Tpjni(8))2p; (t — Tpjki(t)) — (1 + A) Ly,

m t
Ukis = Z Z [ piki® / hp; (p;(s))ds
—1, j=1 t—pipjki(t)
;ﬁk

t
Coomi | yglals)ays(sa))ds = (1+ )L,
t—ppjki(t)

Uki, = (Oé(t) — I)Iki + d(t)mki(t) ,

Ukis = —Mkieri(t)
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and ny; satisfies
Aki + Mki — €ki — Brie”” — e >0, (37)

foranyie I, ke K.

Proof. This proof can be derived directly by taking ¢ = 0 in Theorem 1. Thus, it
is omitted here. 0O

Remark 5. There is a drawback of the linear feedback controller, that is the
strength of linear feedback must be maximal. In some ways, it will cause a kind
of waste in practice. Comparing with linear control, the control gains of adaptive
control increase based on the adaptive law.?? Therefore, the adaptive control is
more practical and that is the reason we choose adaptive control in the following.

3.2. Exponentially lag function projective synchronization via
hybrid adaptive linear control

In this section, we consider the exponentially lag function projective synchronization
of MMAMNNSs with discrete time-varying delay via a hybrid adaptive controller.
By constructing a novel Lyapunov function and designing an appropriate adaptive
controller, a useful criterion for lag function projective synchronization is proposed.
First, we define the drive-response systems as follows:

dzr i t mol
Zt( ) _ —driwri(t) + Y > apini(@hi (1) foj (i (1)
=t
+ > bpgki (ki (= T (8)) s (25 (¢ = Tpjii (D)) + T
[
t>0,1€l, ke K, (38)
and
dyri(t &
yflt( ) = —diiyri(t) + Z Z ki (Yri(t)) g (Yri(t)) + i
p=1, j=1
pFk

m  Mp
30 by (Wki (E = i (£)) s (Ui (t = Tpjni () + Uki(1),
(e,
t>o,i€l, ke K. (39)
Then, the error system eg;(t) is given as eg;(t) = yri(t) — a(t)xki(t — o). By
the theories of differential inclusion and set-valued map, we get the following
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synchronization error system:

dey;(t) _ dyri(t) ; dogi(t —o)  da(t)

. _ > .
dt dt O — g tmlt=o), tzo (40)
Combining with the systems (38) and (39), we obtain
deki(t)

i c _{dkiyki(t) — dkixki(t — J)Oé(t)xki(t — CT)}

S ol (s ()] o (o (1))

— colap;i(Tri(t — 0)))]u(t) fpj (2p; (t — o))}

S by (it — gk ()] (¢ — g (£))

T
— colbpjki(zri(t — Tpjki(t — 0)))]a(t)gpj (@p; (t — Tpjni(t — 0)))}
+(1— a(t) I — d(zgt) ot — o) + Uni(t), t>o0. (41)

Due to Assumptions (Al) and (A2), the system (40) can reach exponentially
lag function projective stable under the following adaptive controller:

Uki(t) = Ui, (t) + Uiy (t) + Uiy (t) + Ugiy (1) 5 (42)
where
Ui, = Z [Apjric(t) fpj(2pj(t — 0)) — (1 + A)La — Apjrifrj(a(t)zp;(t — )],
=
Uiz = > > [Bujrac(t) fj (@ (t = Tpjra(t) — o))
p=1, j=1

3
*
>

— Bpjki fpj (@t — Tpjni(t))2p;i (t — Tpjri(t) — o)) — (L + A)Ls],
Ukis = (a(t) = DI + &(t)zgi(t — o),  Ukiy = —nri(t)eri(t),

where 7y (t) is the update controlling strength. Based on the hybrid adaptive con-
troller (43), the following results can be derived.

Theorem 2. According to Assumptions (A1) and (A2), the systems (38) and (39)
are exponentially lag function projective synchronized with control inputs (43) and
updated by the following law:

ki (t) = wWrilens ()75t <o, (43)

where wy; > 0.
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According to the hybrid adaptive controller and the updated law, we draw the
conclusion that ensure the synchronization between systems (38) and (39)

m  Mp
e —dri + ) + > {(q — 1)(Apjki + Bpjki)
p=1, j=1
pF#k
A (L )+ B (LE, )| <0, (44)
Thi PJ pjki rki(l _ 7_0) pJ pjki

which r,; > 0, r; > 0, and my; < 0.
Now we consider a Lyapunov function as

m  ng
Vii ( _T’”ZZ leri (t)]|? exp{qe(t — o)}
k=1, i=1
p#k
exp{qer} L
T} S S B [ 1D
70 p=1,j=1 t—Tpjki(t)
pF#k

x exp{ge(s — o) }ds + — (ﬂkz( ) +mi)? | (45)

2w

which Gpj(€p;(t)) = gpj (Yp; () — gpj(u(t)zp; (t — 7).
According to Assumptions (A1), (A2) and Lemma 1, by calculating the upper
right derivation DTV (t) of V(t) along with the solution to Eq. (40), we obtain

- d
sz Z Zﬁm qlexi(t) eXp{qa(t -0 }sz e;“(t)

k=1, i=1

p#k

+ leri(t)|7qe exp{qe(t — o)}

ol 3 5 B G ens DI explaclt - )
p=1, j=1

Gpil(epi(t — Tpjri(t)))|? exp{ae(t — Tpjri(t) — o)}t — Tpjri(t))]

+q(i(t) + mui)|eri(t)|? exp{qe(t — o)} o . (46)
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Calculating the Clarkes generalized gradient of absolute value of function |eg;(t)]
by Lemmas 1 and 2, we conclude that Ox;ex;(t) = |exi(t)|. Then we have

d d‘ekz( )|
ekzdt eri(t) = gt

= (—dri — ki (t))|eri (t)| + Z ZApjkiL;{ﬂem (t)]
p=1,j=1
pF#k

+ Z Z pjki pj|epJ ijki(t))‘~ (47)

1 :
Z#k
)

Due to Assumption (Al), we deduce that

exp{qET} Z ZBkaz pj ep]( ))lq exp{qs(t - 0)}

1— 7
O p=1,j=1
p#k

Gpjl(ep;(t — Tpjri(t)))|? exp{ge(t — mpjni(t) — o)}t — Tpini(t))]

_ oxpleT) < 3 ZB kil (L) ey ()] exp{ge(t — o)}

1= 1, =1
(T
—(Ly;)lep; (t — Tpjki(t)|? exp{ge(t — 7 — o) }(1 — 70)] - (48)

Based on the above discussion

m  ng
DVt < 303 rwi { alews )1 expa=(t — o)} | (s — mea(t)lews (1)
k=1, i=1
p#k
m  Mp
+ ZZAPJM pJ|€pJ )|+ ZZBmkz p3|€m — Tpjki(t))]
p=1, j=1 p=1, j=1
P?ﬁk p#k:

+oplat -0} Y D By [(ng)qlem(tﬂqem{m

1—7
p=1, j=1 0
p#k

(L8 e (£ — rpjki<t>>|q] T geler (D] explae(t — o))

+ (i (8) + mi)eri (8)| " exp{ge(t — o)} o - (49)
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Combining with Eqs. (46)—(49), we have

d m N

@Vki(t) < Z Zrm qgexp{qe(t — o)} | (—dri — wi(t) + €)lexi(t)|?
k=1, i=1
p#k

+ 0 ApiniLL ey ()lleri(£)|77!

p=1, j=1
p#k

m  Mp

+ 0N Byri L leps (t — mpjra(t))llexs (8)] 7
p=1, j=1
p#k

exp{qsr}
+ exp{qs t— o) Z ZBp]kZ pj |€p1( )| 1

=1, =1 1—7’0
K
m np
- ZZB ki (L p_y ) eps (¢ — Tpjwi(t))]?
p=1,j=1
p#k
+ q(Mrs (t) + mpq)|eri (t)|? exp{qe(t — o)} ¢ . (50)

According to Young inequality ab < B—llaﬁl + ébﬁ% in which a > 0,b > 0,3 >
1,%—1—?12 =1, we have

_ 1 q—1
Lislens @l @I < = (L3, leps O + £ lens (O,

-1
e (8]

(51)

_ 1 q
LY lep; (t = pmi(t)) lleri(t)|7 < §<ng)q|epj<t — Tpjki ()| +
Then we conclude

—sz <y § rri 4 exp{qe(t — o)} | q(—dri — mri(t) + €)leri(t)|?
k=1, i=1
p#k

ZZ piki (L) en; (B)]7 + Apjri(q — 1)|eri(£)]7]
ror
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Z Z piki pg|em = Tpiki(t)|* + Bpjri(q — 1)lexi(t)|7]

; —

m  Mp
cexp{get}
+ exp{qe(t — o)} ZZBPJM i) lepi ()] _
p=1, j=1 0
p#k
m  Np
ZZ piki (L) €pj (t — Tpjki(t))[?
p=1,j=1
p#K
+q(mi () + mui)|eri(t)|? exp{qe(t — o)} o . (52)

Due to the above discussion, we get

sz Z Zrm exp{qe(t — o) }ewri(t)|? < q(e + mpi — dii)

k=1, i=1
pik
m  Mp m  Mp ros
+ 30 (4= D) (Bpji + Apii) + |:p]AijZ(L£i)
=1, j=1 p=1, j—1 LTk
p#k p#£k
L i .(Lgl)qw (53)
Tri piki\ M, 1—7 :
Then we can choose a small € > 0 such that
m Np
e = dpi +mp) + > {(q — 1)(Apjki + Bpjki)
p=1, j=1
pF£k
y iy P g (L9 <0, (54)
rri TP (1= gp) PR
Thus we have
Vii(t) <0, (55)
and together with Eq. (45) we obtain

fort>o.
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Based on Eq. (45), we obtain that

Vi) 2 32 S ras expas(t — o))"

k=1, i=1
K
m Nk
> lerln]inK T exp{qe(t — o)} ZZ ler: (£)]7 . (57)
k=1,i=1
p#k
Then we have
m Nk
— )| < < Vi
161111]111 riiexp{qe(t — o }kz;; ler:(t)] Viei(t) < Vii(o) s (58)
p;tk
where
m Nk
Vk}l(a) = Tki Z Z |€]“(O')|q 9 (nkz( ) + mkz)
k=1, i=1
p#k

T S S i [ Gus(entolesplasts - o))

1—m19 =1, 1 o—Tpjki(0)

Pk

m  ng

exp{qu}
S 2D [t ) T > Soris

i€l —

k=1, i=1 L

Pk Ak

sup_[|éki(t) = a(t)pri(t = )| + 5 — (i) + mus)® o 2 N*.

t—o<t<o 2wk1
(59)
Thus for ¢t > o, there exists a positive constant M™* satisfy
N* < M*[l6nat) — al)prilt — o). (60)
Together with the above discussion, we obtain the following inequality:
m N
DD lersl < M*exp{—e(s — o)} dwi(t) — a()pmi(t — o). (61)
k=1, i=1
p#k

By Definition 2, we get

1y (t) — a(t)zri(t — o)[| < M exp{—e™(s — 0)}|pri(t) — alt)pri(t — )|, (62)
where M = (M*)% and ¢* =¢\g. The proof is completed. |
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Remark 6. The results of Theorem 2 can be easily extended to the MMAMNNSs
without delay as shown below. Here, we give a corollary as the special case.

If o0 = 0 in system (41), that is to say the error system becomes the form such
as ek (t) = yri(t) — a(t)rk;(t), then we have the following corollary:

Corollary 2. We define the synchronization error ep;(t) as follows: ey;(t) =
yri(t) — a(t)zki(t). According to the theories of set-valued map and differential
inclusion, we get the synchronization error system fort > 0
deri(t)  dyri(t) dzg(t)  da(t)
i~ a O a0
Combining with the systems (38) and (39) with ¢ = 0, we design the hybrid
adaptive controller as follows:

(63)

Uki(t) = Ui, (t) + Upiy () + Uiy (t) + Upay (1), (64)
where
Ui, = Z Z pikiQ(t) fpj (@pj (t)) — (1 + A) Lo — Apjii fpj (a(t)zp;(2))]
p=1, j=1

p#k

Uki, = Z z piki (1) fpj (Xps (E — Tpjki(t)))
(e
Bypjkifpj (et = Tpjri(t))2p; (= i) — (1 + A)La],
Ukis = (a(t) — 1) 15 + a(t)zwi(t),
Uiy = —Nki(t)eri(t) -
Under the following updated law
i (1) = walers (£)|7e", £ <0, (65)

where wy; > 0.
We can derive the following synchronization criterion which guarantee the error
system (63) get exponentially function projective stable

p
.
qle —dri +mp) + > > [(q — 1)(Apjki + Bpjki) + %;Apjki(Lijki)q

p=1, j=1
pFk
T'pj g
B, (L7, )] < 0, 66
+ rki(l . 7_0) ik ( p]kz) :| ( )

which r,;, 7r; are positive constants, and my; < 0.

Proof. This proof can be derived directly by taking ¢ = 0 in Theorem 2. Thus it
is omitted here. O
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Remark 7. In many practical systems, it is generally fulfilling to treat the lag
factor o as a variable o(t). Consequently, how to extend the approaches in this
paper to time-varying lag synchronization will be our next research.

4. Numerical Simulation

In this section, several numerical examples are given to illustrate the efficiency of
our theoretical results.

Example 1. Consider the following MMAMNNS system with three nodes as the
driven system, for i = 1,5 =1, nkzl npzl k=1,2,3.

dﬂfki (t)
7 = 7dk‘i'rk‘l + Z Zap_]kl xkl fpj (xkz(t))
p=1, j=1
p#k
3
+ 3 bpgki (ki (t = T (1)) gps (25 (¢ — Tpjni (1))
=1, j=1
bk
3 Np t
+ 0 cpilni(t)) / hpj(zri(s))ds + Ik; - (67)
p=1, j=1 t—ppjki(t)
p#k
The corresponding response system is given by
dypi(t
# = _dkiykz + Z Zapjk}l ykz fp] (ykz( ))
p=1, j=1
p#k

3 Np
TS b (i (t — Ti0i (6))) 903 s (8 — T (1))
p=1, j=1
pF#k

3 Np

t
+§:Zhwwmm/ P (ki (8))ds + Upi(t) + I . (68)
t—pipini(t)

p=1, j=1
p#k

We design the parameters of the drive system (67) and the response system
(68) as follows: I; = (0,0,0)7, 24;(0) = (—0.15,0.35, —0.55)7, yx;(0) = (0.1,1.71,
0117, 700 = 0.540.5sin(t), ppjr; = 0.5+0.5cos(t), f(z) = h(x) = sin(|z|), g(z) =
tanh(|z|).

Then, according to the achievements of Theorem 1 and Corollary 1, we design
the suitable parameters as following:

dii(z11(t)) =1, dar(z21(t)) =2, dzi(xsi(t)) =3,

_0927 zll(t) < 07 _1457 xll(t) < 07
asii1(x11(t)) =

a z11(t)) =
2111(z11(t)) {_0.747 211 (t) >0, —1.57, x11(t) >0,
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—2,
co111(z11(t)) = {_1.5
~1,
a1121(x21(t)) = {—1.6
—1.2,
cr121(x21(2)) = {_2.4
1,
ar131(xs1(t)) = 1.6,
1) = L
C1131($31( )) = 12,

bai21 (221 (t — T3121(t))) =

biisi(xa1(t — T1131(t))) =

bo131(231(t — m2131(1))) =

Figure 2 shows that the drive system (67) has a limit cycle in the case of the
above-mentioned parameters. Taking the control gain 777 = 1532, 197 = 1320,
731 = 1500, in the controller (18), Lipschitz constants ng =L, = L
e=2718, 7 = p=1,e = 1. a(t) is scaling factor of projective synchronization.
Get together the above mentioned parameters with the condition (21), we calculate

that

x11(t) <0,
a x11(t)) =
oa(®) > 0. 3111 (211(%))
x21(t) <0,
a x91(t)) =
o (8) > 0, 3121 (221 (%))
x21(t) <0,
c x91(t)) =
o (8) > 0. 3121 (221 (%))
x31(t) <0,
a x31(t)) =
pa(t) > 0. 2131(731(t))
x31(t) S 07
Co14 T4 t =
21(t) > 0. 2131 (231 (%))
L, x1(t—72111(t) <0,
2, zu(t—"7an(t) >0,
—4.2, zu({t—min(t) <0,
—4, 1‘11(t — 7'3111(t)) >0
—1.8, wo1(t —m121(t)) <O,
—14, x91(t —71121(¢)) >0,
—1.6, xo1(t — 13121(t)) <O,
—1, x21(t — 13121 (¢)) > 0,
-4, w3t —mz(t)) <0,
—1.4, x31(t —m131(t)) >0,

x31(t — m1131(1)) <0,
1‘31(t — T1131(t)) >0.

—1.9,
-1,

(i) T+4my—1—(0.92+157) 4 (2+4.2) x 2.718 + (2 + 1.2) x 2.718 > 0

M1 > 28.0392
(i)
Mot > 31.4544

1850116-28
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%,,() 8 Xt

Fig. 2. Limit cycle of system (67) with initial value x;(0) = (—0.15,0.35, —0.55)T.
5 'V\ V/ \ T 7 \ T 7 \ T 7 7\ Vl \ T 7 \ T v \
£ fN LA L LA LRI ‘o A 1
< 0 4 1 I} 1
>
2
= -5
% Xy = = = Y0
_10 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
Time-t
5 T T T T T T T
N
v = - - - s o~

N /RN RS oS g N (AN

T T T T T T T
Ko = = = ¥y, ()
N 7\ - ~ N

=3 N
im R AR LN P AN . 2 4
5
_5 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
Time-t
Fig. 3. The state trajectories of xx;(t), Yk (t) when a(t) = sin(t), o = 0.6.

(i) 3+4ms1—1—(1.6+0.9)+ (4+1.9) x 2718 + (24 1.2) x 2.718 > 0
131 > 25.2338 .

Figures 3-6 show the state trajectories when «(t) is chosen different values.
It can be seen that Figs. 3-5 illustrate the lag functional projective synchroniza-
tion, lag complete synchronization, and lag anti-synchronization, respectively. And
Fig. 6 demonstrates the lag functional projective synchronization error. It says that
the scaling factor a(t) is crucial to the types of the synchronization. In order to
demonstrate the reasonableness of Corollary 1, we let a(¢) = sin(t), o = 0. Figure 7
illustrates the normal function projective synchronization between the systems (67)
and (68).
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10 T T T T T T T
s - X4t = = = y,,0
§ 0 P /" ~\~\ a”'
e = \\_—’, ~\\ ’_,’
< S S ————

-10 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10
Time-t

X, (08,,(1

20 T T T T T T T
- R Xgy®) = = = y3(0)
>r.‘; .- b RS ~ -7
3 0 ol PR b < s - .
;; S -- ~o ="

_20 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
Time~t
Fig. 4. The state trajectories of xy;(t), yx;(t) when a(t) =1, o = 0.6.
10 T T T T T T T T T

- - - -
-~ S e SN mn T ~

-_—- _———- -——— -

5 10 15 20 25 30 35 40 45 50

X = = = ¥3,

Fig. 5.

5 10 15 20 25 30 35 40 45 50
Time-t

The state trajectories of x;(t), yii(¢t) when a(t) = —1, o = 0.6.

In this example, we also represent the phase diagrams of the drive-response

systems when a(t) = sin(¢), 1, —1 as shown in Figs. 8-10.

Example 2. Consider the following MMAMNNSs system with three nodes as the
driven system for, i =1, =1,n, =1,n, =1,k =1,2,3.
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0.1
- e,
= 0.05f f
[v]
0 i i i
0 0.002 0.004 0.006 0.008 0.01
Time-t
2
_ e21(t)
0 i i i
0 0.002 0.004 0.006 0.008 0.01
Time-t
0.2 T
= ¥ 631(t)
0.2 i i i i
0 0.002 0.004 0.006 0.008 0.01
Time-t

Fig. 6. The synchronization error curves of zy;(t), yi;(t) when a(t) = sin(t), o = 0.6.

10 T T T T T T T
X0 == = y,0

-
z“ N VARRN V2R A

X, 8y, ()

Fig. 7. The state trajectories of zy;(t), yxi(t) when «(t) = sin(t), o = 0.

3 np
dxfii;(t) = —dkixki<t) + Z Zapjki(xki(t))fpj(xki(t))
p=1, =1
pF#k

3 Np
YD ki (ki (= Togi(6)) s (25 (¢ = Tpjii (D) + Tk »
p=1,j=1
p#k
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6 T T T T T T T
the phase diagram ofxﬂ(() and y”(t)
— — the phase diagram of x21(t) and y21(t)
4r the phase diagram of x31(t) and y31(t) i

Response system
o
T

2F

4t

6 1 1 1 1 1 1 1
-7 -6 -5 -4 -3 -2 -1 0 1

Drive system

Fig. 8. (Color online) The phase diagram of the drive-response systems (67), (68) when «(¢t) =
sin(t), o = 0.6.

2 T T T T T T T
the phase diagram of x”(t) and yﬁ(t) 4

1| |—= — the phase diagram of x,, () and y,, (t) / 1

the phase diagram of x31(t) and y31(t) /

3k

Response system

4+

7 -6 5 -4 3 2 -1 0 1

Drive system

Fig. 9. (Color online) The phase diagram of the drive-response systems (67), (68) when a(t) = 1,
o =0.6.

and the corresponding response system is presented by

3
dyfiiit(t) = —drivki(t) + DD apjni (ki (8)) Foj (Ui (t))
p=1, j=1
pF£k

3 Np
+ Z > i Uit = ki ()93 (U (¢ = Tpjii (D) + Uki(t) + T -
1,5=1
v (70)
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7 T T T T T T T
the phase diagram ofx11(t) and y11(t)
6 — — the phase diagram ofx21(t) and y21(t) 1
the phase diagram ofx31(t) and y31(t)
5 |- -

Response system
w
:

Drive system

Fig. 10. (Color online) The phase diagram of the drive-response systems (67), (68) when «a(t) =
—1, 0 =0.6.

All parameters of the drive system (69) and the response system (70) are selected
as I; = [0;0;0]7, z4;(0) = (—0.46,—0.25,0.54)T, v;;(0) = (0.31,—0.33,0.58)T,
Tpiki = 0.5 + 0.5sin(t), ppjki = 0.5 + 0.5cos(t), f(z) = h(zx) = sin(|z|), g(z) =
tanh(|z|).

And we define the parameters of the systems are demonstrated as

di1(z11(t)) = d21(x21(t)) = ds1(x31(2)) =1,
—3, .Tll(t) S 0, 2, Zl?n(t) S O7

azin(z11(t)) = { azii1(r11(t)) = {

1, xll(t) >0, —4, xu(t) >0,

_17 $21(t) < 07 _87 J]Ql(t) < 07
ar121(w21(t)) = azi21(w21(t)) =

757 'T21(t) > 07 *8, Igl(t) > O7

-5, z31(t) <0, -6, x31(t) <0,
a1131(w31(t)) = az131(x31(t)) =

=9, w3i(t) >0, -8, x31(t) >0,

ba111(z11(t — 12111(2))) =

2, 1t —ma11(¢) <0,
5, xn(t—man(t)) >0,

-8, zu(t—min(t) <0,

bs111(z11(t — 13111(2))) =
—10, .Z'u(t — T3111(t)) > 0,
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=5, xo1(t — m121(¢)) <0,

bi121(x21(t — T1121(2))) =
3,  xo(t—Tn21(t)) >0,

{—6; T21(t — 73121 (1

. (t = e (8)) <0,

bsi21(z21(t — 73121 (1)) = 4, w21(t — 73121(t)) > 0
B —9, .’Egl(t — TllSl(t)) S 0’

buisi (231 (t — 11131(2))) = —4, x31(t —11131(t)) > 0,

b2131(1’31(t _ 7_2131(t))) _ {77 $31(t — Tll31(t)) < 0,

8, .’l?gl(t — T1131(t)) > 0.

Taking the control gain wy; = 1, we; = 2, and w3y = 3. In the controller (43),
Lipschitz constants ng =Lj, = Lh=1,7=p=1e=2718¢c=1,7 =05 aft)
is scaling factor of projective synchronization. Get together the above-mentioned
parameters with the condition (45), we calculate that

i) 2x(I4+mu—-1)+(B+3)+(10+4)+(3+4)
+ 2718 x 2.718 = 0.5 x (5+10) < 0
my; < —125.31,

(i) 2x(14+ma1—1)+(B+5)+(6+8) +(6+5)
+ 2.718 x 2.718 - 0.5 x (5+6) <0
mo; < —98.76,

(i) 2x(Q+m31—1)4+O9+9)+(8+8) +(9+38)
+ 2.718 x 2.718 + 0.5 x (9 +8) < 0
mg1 < —151.09.

Figures 11-13 show the state trajectories when a(t) is chosen different values.
Under the adaptive hybrid controller (64), the synchronous error of the systems
(69) and (70) can converge to zero, which is shown in Fig. 14.

During the process of proving Corollary 2, we redefine the initial values such that
71 (0) = (—0.15,-0.35,—0.55)T, y;(0) = (0.1,1.71,0.11)T. With the parameters
mentioned above, Fig. 15 demonstrates that Corollary 2 is reasonable under the
controller (64).

Remark 8. By contrast, we can get that during the process of synchronization,
the gain of the feedback controller in Example 1 is so large that will cause some
waste in the practical, but the control gains of the adaptive controller in Example 2
is more flexible and general.
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Fig. 11. The state trajectories of zy;(¢), yri(t) when «(t) = sin(t), o = 0.6.
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The state trajectories of z;(t), yg;(t) when a(t) =1, o = 0.6.
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The state trajectories of x;(t), Yk (t) when a(t) = —1, o = 0.6.
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Fig. 14. The synchronization error curves of x;(t), yg;(t) when «a(t) = sin(t), o = 0.6.
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Fig. 15. The state trajectories of xy;(t), yxi(t) when a(t) = sin(t), o = 0.

5. Conclusion

This paper mainly considered the exponential lag function projective synchro-
nization of MMAMNNSs with mixed time-varying delays. With the assistance of
the theories of the set-valued mapping, the mathematical model of memristor,
differential inclusions, we proposed the definition of exponential lag function pro-
jective synchronization. In addition, according to the characteristic of the mem-
ristor, we also discussed the effect of parameter mismatched between the drive
and response systems. Based on the results, we designed two kinds of hybrid con-
trollers, they are more suitable and practicable than the traditional controllers to
the MMAMNNSs. The effectiveness of the proposed approach had been illustrated
by numerical simulation.

The future work mainly includes the following aspects: (i) MMAMNNS is a new
and challenging topic, looking for more complex and practical memristive associa-
tive memory model is our further work. Since the MMAMNNS can be treated as a
discontinuous switched system, it is necessary to employ a more preferable math-
ematical method to study. (ii) How to apply the results in practice, such as the
associative memory of brain-like, mass storage,53 machine learning, and so on. In
summary, the memristive associative memory neural networks still have a lot of
problems worthy of further study.
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