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Constructing a reliable and stable emotion recognition system is a critical but challenging issue for
realizing an intelligent human-machine interaction. In this study, we contribute a novel channel-
frequency convolutional neural network (CFCNN), combined with recurrence quantification analysis
(RQA), for the robust recognition of electroencephalogram (EEG) signals collected from different
emotion states. We employ movie clips as the stimuli to induce happiness, sadness, and fear emotions
and simultaneously measure the corresponding EEG signals. Then the entropy measures, obtained
from the RQA operation on EEG signals of different frequency bands, are fed into the novel CFCNN.
The results indicate that our system can provide a high emotion recognition accuracy of 92.24% and
a relatively excellent stability as well as a satisfactory Kappa value of 0.884, rendering our system
particularly useful for the emotion recognition task. Meanwhile, we compare the performance of the
entropy measures, extracted from each frequency band, in distinguishing the three emotion states. We
mainly find that emotional features extracted from the gamma band present a considerably higher
classification accuracy of 90.51% and a Kappa value of 0.858, proving the high relation between
emotional process and gamma frequency band. Published by AIP Publishing. https://doi.org/10.1063/
1.5023857

Incorporating emotion interaction into the human-
machine interaction (HMI) process is of vital importance
for building a much more intelligent HMI system. To
realize intelligent emotion interaction, one of the most pri-
mary requisites is to design a reliable emotion recognition
system with high accuracy and robustness. Electroen-
cephalogram (EEG)-based emotion classification systems
have been widely used on account of their high accuracy
and objective evaluation. We here propose a novel emotion
recognition system which combines recurrence quantifica-
tion analysis (RQA) with channel-frequency convolutional
neural network (CFCNN), based on the successful appli-
cations of RQA in analyzing nonlinear EEG signals and
the remarkable identification ability of convolutional neu-
ral network (CNN). The results suggest that our system
has a reliable and stable emotion identification capabil-
ity. In addition, we feed the RQA-based features extracted
from each of the five frequency bands into CFCNN to
discuss their respective effectiveness and find the criti-
cal frequency band which is closely linked to emotional
process. The result indicates that emotional arousal is in
particular relevant to gamma frequency band activities.

I. INTRODUCTION

As a kind of human psychological and physical state,
emotion is caused by a complex comprehensive action of
feelings, thoughts, and behaviors and plays a critical role
in our daily life especially in human-human interactions.

a)Electronic mail: zhongkegao@tju.edu.cn

Further, incorporating emotion interaction into the human-
machine interaction (HMI) process is of vital importance for
building a much more intelligent HMI system, which trig-
gers the appearance of affective computing.1 The field of
affective computing focuses on endowing the machines with
the capability of reading and responding to human emotions
and further implementing a vivid communication between
emotionally abundant and emotionally absent machines.

In order to realize an intelligent emotion interaction, one
of the most primary requisites is to design a reliable emo-
tion recognition system with high accuracy and robustness as
well as fairly strong applicability. Various approaches based
on physical or physiological features, extracted from humans,
have been devoted to modeling human emotions including
facial,2–4 vocal,5–7 body expressions,8,9 touch behaviors,10

and physiological changes;11 of these, methods based on
electroencephalogram (EEG) signals are widely used12–17 on
account of their objective evaluation18 and high temporal res-
olution. However, the acquired EEG signals are unavoidably
contaminated by much noise due to the low signal-to-noise
ratio of EEG and high levels of cross-talk from different
areas of the brain. Besides, the EEG is affected by the vol-
ume conductor effect, and signals from distant sources are
distorted while emotions are emanated from the limbic sys-
tem located far deep in the brain. These result in a challenge
for researchers to seek advanced data analysis methods capa-
ble of detecting more effective and detailed emotion-related
information from the polluted and mixed signals.

A variety of classification models, proposed for auto-
mated emotion recognition, employed linear time-domain or
frequency-domain features from EEG signals to differentiate
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emotion states. Considering that EEG signals are complex,
nonlinear, and dynamic, recently several nonlinear analy-
sis methods have gained much concern as effective tools
for detecting inherent dynamical properties of physiological
phenomena.19–24 In this paper, we introduce the nonlinear
technique named recurrence plot (RP)25,26 to study its effec-
tiveness in distinguishing different emotional states. RP is a
widely used tool for visualizing the recurrences of dynami-
cal systems in phase space. A RP is a square with several
black dots, one of them represents that a phase space vec-
tor is close to another one. A RP exhibits typical large-scale
and small-scale structures resulted from dynamical behaviors
including single drift, dots, as well as diagonal lines, verti-
cal and horizontal lines.25,27 In order to quantify a RP, Zbilut
and Webber28 provided a method called recurrence quantifi-
cation analysis (RQA), which actually depicts the number
and duration of the appearance of recurrences in a dynamical
system and further measures the complexity and nonlinearity
of a system.25,26,28,29 Therefore, RQA is a quite decent tool
for characterizing complex dynamics of EEG signals. RQA
measure-based EEG analysis has gained a great popularity in
diverse research areas, including epileptic identification,30,31

sleep apnea syndrome analysis,32 depression diagnosis,33

memory retrieval research,34 and anaesthesia monitoring.35

Those successful applications inspire us to extract typical
RQA measures from EEG signals, and feed them into clas-
sifiers to distinguish different emotion states and improve the
accuracy of our emotion recognition system.

Traditionally, researchers mostly chose shallow models,
e.g., support vector machine (SVM), as classifiers to rec-
ognize emotion states and have acquired certain achieve-
ments.36,37 However, those shallow models have limitations in
learning the inherent characteristics of training samples when
encountering complicated classification problems. In 2006,
Hinton and Salakhutdinov38 overcame the explaining-away
effects encountered in densely connected belief nets using a
greedy algorithm based on complementary priors, which suc-
cessfully ignites the enthusiasm of researchers to the study
of deep learning and deep neural networks. Subsequently,
a series of deep network structures with high accuracy and
generalization ability have been presented, including convo-
lutional neural network (CNN)39 and long-short term memory
(LSTM) network.40,41 The great superiority of deep neural
networks in learning the intrinsic characteristics, motivated
the affective computing researchers to study the possibility of
deep network structures settling emotion classification issues
and several achievements have been fulfilled.42–44

The combination of emotion classification and deep neu-
ral network methods can be a promising research topic for
improving the accuracy and practicability of emotion recog-
nition systems. In this paper, we first design a movie-induced
emotion experiment to obtain EEG signals corresponding to
three basic emotion states, namely, happiness, sadness, and
fear. Then a RP procedure is employed to each channel
of pre-processed EEG signals under five frequency bands.
A typical entropy measure is extracted by RQA from each
RP, and further, a series of feature vectors is formed by
the entropy measure obtained from different channels and
frequency bands. Numerous traditional methods simply and

directly concatenate those features from different channels
and frequency bands to feed the classifier, ignoring the inher-
ent characteristics among channels and leading to dimension
disaster which needs to be solved by some complicated algo-
rithms. Therefore, we here propose a novel channel-frequency
CNN (CFCNN) to fully utilize the multi-dimensional infor-
mation and further facilitate emotion recognition task. The
results indicate that our RQA-based CFCNN emotion recog-
nition system possesses excellent and stable emotion identifi-
cation ability and its performance is superior to two traditional
combination methods. In addition, we also find that entropy
measure from high frequency band activities in EEG is highly
indicative of emotional activations.

II. EXPERIMENTAL DESIGN AND DATA ACQUISITION

The experiments were conducted in the Laboratory of
Complex Networks and Intelligent Systems at Tianjin Uni-
versity, China. The experimental process was approved by
the ethics committee of General Hospital Affiliated to Tianjin
Medical University in China. We focused on identifying three
specified emotion states, namely, happiness, sadness, and fear.
In this work, we chose movie clips to induce subjects’ emo-
tions owing to the fact that movies contain vivid visual and
auditory stimuli, making them appear to be one of the most
effective ways to arouse emotions.36 We invited 20 volunteers
(not the subjects) to assess and grade a series of movie clips,
and then eight top-rated emotional movies clips were selected.
The concrete names of the eight well-chosen movie clips and
their corresponding emotion states and duration time are given
in Table I. Five healthy and right-handed students from Tian-
jin University were chosen as the subjects and all of them
have no vision and hearing problems. All the subjects were
given written consent prior to the recording and information
about the design and purpose of the experiment. We conducted
the experiment in the morning, and only the examined sub-
ject and one researcher, being responsible for recording the
performance of the subject and providing help for the sub-
ject, stayed in the quiet laboratory during the recording time.
Figure 1 presents the experiment scene.

All the subjects were required to have a good sleep the
night before the experiment. In the preparation stage of each
experiment, each examined subject was explained the record-
ing procedure and the points for attention such as averting
body and facial movements as fully as possible while watch-
ing movie clips. The EEG recording device was equipped by

TABLE I. The sources of the selected movie clips and their corresponding
emotional labels.

Number Film clip source Emotional label Duration of the clip

1 Find miracle in cell No. 7 Sadness 3 min 25 s
2 Dearest Sadness 4 min 30 s
3 A hero or not Happiness 5 min 30 s
4 Mr. Bean Happiness 7 min 20 s
5 Mr. Bean Happiness 5 min 52 s
6 Dead silence Fear 8 min 24 s
7 The Conjuring 2 Fear 4 min
8 Lights out Fear 3 min 25 s
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FIG. 1. The real experiment scene.

ESI NeuroScan System with 40 electrodes, arranged accord-
ing to international 10–20 electrode placement system, and
the sampling rate was 1000 Hz. Particularly, A1 and A2
linked at mastoids were chosen as the reference electrodes,
and four electrodes (vertically and horizontally placed around
eyes) were used to record electrooculogram (EOG) signals.
Meanwhile, we applied a smart camera to record the facial
expression of subjects during the whole recording stage.

The recording stage was proceeded by the help of the
guiding words appearing in the middle of the screen. Each
recording stage consisted of eight sections (movie clips). In
each section, the guiding words first appeared on the screen
for 5 s to remind the start of this section and then, the stage
entered the movie screening process during which subjects
were informed to concentrate on current movie clip which
appeared randomly. After the screening, a series of questions
would pop up to help the subject to report their true emotion
states and rate the intensity of emotion in 10 point scale with
regard to current movie clip. Finally, the subject was directed
to have a 30-s break to prepare for the next section.

After the recording stage, the EEG data collected by
the ESI NeuroScan System were first preprocessed by the
EEGLAB toolbox on Matlab where signals were filtered with
a bandpass of 1–50 Hz, and Independent Component Analysis
(ICA) was performed for removing eye movement and blink
artifacts. After eliminating EOG components, we obtained
a series of signals in 30 channels. Then we down-sampled
the preprocessed data from 1000 Hz to 200 Hz and divided
the data into a series of same-length epochs of 5 s without
overlapping. Eventually, there were 171, 222, and 188 clean
epochs for the sadness, happiness, and fear category, respec-
tively, and totally, 551 clean epochs for one subject can be
obtained.

III. RQA-BASED CFCNN EMOTION RECOGNITION
SYSTEM

In this work, we conduct RQA on RPs, obtained
from movie-induced EEG signals, to extract measures for
characterizing the complexity and characterize dynamics of

EEG signals. First of all, a RP is obtained by the following
steps. Considering a phase space trajectory xi, RP is capable
of visualizing the recurrence of xi and can be obtained from
calculating the following matrix:

Ri,j = � (ε − ||xi − xj||), i, j = 1, 2, . . . , N , (1)

where �(·) is the Heaviside function, ε is a predefined thresh-
old, || · || represents the maximum norm, and N is the number
of vector points of the phase space trajectory. In contrast to
many other works, we use the scalar time series instead of
the higher-dimensional phase space vectors (embedded time
series) in consideration of the possible spurious correlations
caused by embedding and the great complexity of choos-
ing appropriate embedding parameters for a set of extremely
non-stationary EEG signals.45–47 A fixed ε = 0.3 is selected
according to the work and the discussion in Refs. 47–49, and
each time series is normalized to zero mean and unit standard
deviation. In order to characterize and quantify the obtained
RPs, we perform RQA to extract different measures, includ-
ing recurrence rate, determinism, entropy, averaged diagonal
length, length of the longest diagonal line, laminarity, trap-
ping time, length of longest vertical line, recurrence time
of 1st type, and recurrence time of 2nd type.26 Our test
results indicate that the entropy measure provides a remark-
able classification accuracy among these measures. So, the
remaining parts of the work focus only on the entropy mea-
sure. Specifically, the entropy (ENTR) measure is proposed
for quantifying the complexity of the RP in terms of diagonal
lines26 and can be defined by

ENTR = −
N∑

l=lmin

p(l) ln p(l), (2)

where

p(l) = P(l)/
N∑

l=lmin

P(l),

where lmin is the length of the shortest diagonal line which is
set as 2 in this work, P(l) indicates the histogram of diagonal
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lines of length l, and p(l) refers to the probability of finding a
diagonal line of exactly length l in the RP.

In this paper, channel-wise RQA is operated on each
epoch. As specific frequency ranges are more prominent in
certain states of mind,42 we filter the signals into five spe-
cific frequency bands (delta: 1–3 Hz, theta: 4–7 Hz, alpha:
8–13 Hz, beta: 14–30 Hz, and gamma: 31–50 Hz) and dis-
cuss the characteristics of EEG signals in these five frequency
bands. Thus, for each epoch, we obtain an entropy-based fea-
ture vector of 30 × 5 = 150 (number of channel × number
of frequency bands), respectively. In order to avoid a class-
imbalance issue, we randomly selected 170 epochs from each
category and their corresponding feature matrixes can form a
dataset with 510 samples.

The generated feature vectors corresponding to the three
emotion categories are fed into the novel CFCNN, respec-
tively, which has high computational efficiency and low
model complexity and has been widely used in solving clas-
sification issues. Commonly, a CNN is stacked with sev-
eral network layers, which generally include the convolution
stage, detector stage, and pooling stage.43 Specifically, the
convolution stage focuses on employing different kinds of
convolutional filters on original data to extract multiple fea-
tures and then a series of feature maps with different weight
vectors are formed. In this stage, two important architectural
ideas, which make CNNs superior to traditional neural net-
works, are applied to help decrease the amount of weight
parameters: (1) local receptive fields and (2) shared weights
(among all the units in a feature map). Subsequently, in the
detector stage, a nonlinear transformation (e.g., rectified lin-
ear activation function)50 is executed on the feature maps
acquired from the convolution stage, which is the key point
for the generalization ability. The last pooling operation (e.g.,
max pooling, average pooling, or stochastic pooling) is chosen
to reduce the resolution of the input to the next convolutional
layer or the fully connected layer.

Considering the high dimensionality and high resolu-
tion of EEG signals, we design a novel CFCNN to refrain
from dimension disaster and more importantly, to make full
use of the information from multiple channels and differ-
ent frequency bands to benefit the emotion recognition task.
In this paper, the constructed and trained CFCNN model
consists of four convolutional layers, two fully connected

layers, and a softmax layer, implemented by the deep learn-
ing library Keras.51 Figure 2 shows the detailed architecture
of the novel CFCNN. The model inputs each sample in the
form of a matrix X ∈ RE·F formed by E electrodes and F
frequency bands and outputs a probability of each category.
Thus, the predicted label is the category which corresponds to
the maximum probability. The number of filters in the con-
volutional layers are 16, 32, 64, and 64, respectively. The
first three convolutional layers only move forward in channel
dimension and the kernel sizes are set as 3 × 1 with default
stride 1. The last convolutional layer is designed to fuse dif-
ferent frequency bands information by extracting high level
information with kernel size 1 × 5. Additionally, each convo-
lutional layer is followed by an activation block consisting
of a rectified linear activation50 and a batch normalization
layer.52 A flatten operation is subsequently conducted after
four convolution operations to transform the feature maps
into a one-dimensional vector. Then two fully connected lay-
ers with size 64 and 3, respectively, are connected to the
model following the flatten operation and meanwhile, a soft-
max layer equipped with the cross-entropy objective function
is applied to produce a distribution for each emotion category.

During the model training process, the Glorot_normal
initializer53 is applied to initialize the weights of the convo-
lutional layers. The model optimization process is realized
by the stochastic gradient descent (SGD)54 optimizer with the
learning rate of 0.001, decay of 10−6, and momentum of 0.9.
Besides, the number of learning iterations is 300 and the batch
size is set as 32. A neuron at the position (m, n) of a fea-
ture map k in the layer l is denoted by xl,k,(m,n). Similarly, we
define σl,k,(m,n) as the scalar product between a set of input
neurons and the neurons in the same maps share the same sets
of weights

xl,k,(m,n) = f (σl,k,(m,n)), (3)

where f is a rectified linear function50 for all the network
layers in this paper. We denote the four convolutional lay-
ers as L1, L2, L3, and L4, respectively. For those layers, each
neuron of one map shares the same sets of weights and is con-
nected to a subset of neurons from the previous layer. The
Appendix provides the detailed information transmission pro-
cess of CFCNN. We tune up the network weights and biases
through the traditional back propagation strategy55 to achieve

FIG. 2. The framework of the novel emotion recognition system including the architecture of CFCNN.
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a better model accuracy for the validation set, and cross-
entropy objective function is used as a loss function here to
estimate the model performance.

Furthermore, in order to contrast the classification effect
of our system, we also extract two traditional features, namely,
power spectral density (PSD) and differential entropy (DE)
in each frequency band, respectively, and combine them with
the classifier SVM, respectively, as the baselines. PSD is
defined by

Px(f ) = lim
T→∞

1

2T

∫ T

−T
|s(t)e−j2π ftdt|2, (4)

where s(t) is the time series, T is a time interval, and f is the
frequency. And according to the deduction provided by Zheng
and Lu,42 DE in a certain frequency band can be obtained by
calculating the logarithm energy spectrum:

h(X ) = 1

2
log 2πeσ 2, (5)

where X is the time series obeying the Gauss distribution
N(μ, σ 2).

IV. RESULTS

We use 5-fold cross validation method to evaluate the
performance of our system and two baselines. Specifically,
for each subject, 80% of 510 samples are selected randomly
as the training set and the remaining 20% as the test set.
Then, we can obtain five confusion matrices for each sub-
ject. The average confusion matrix across five folds from the
RQA + CFCNN system of each subject is shown in Fig. 3.
The main diagonal entries represent the average number of
correct classification samples, and the off-diagonal entries

denote the average number of misclassification samples. As
can be seen, the results vary among different subjects, result-
ing from many reasons, including subjects’ individuality,
body state, and concentration degree during the experiments.
However, in general, the three emotions can be recognized
with almost the same accuracies for most of the subjects.

In order to better present and compare the performance
of the three systems, we calculate the accuracy and Kappa
value56,57 based on each confusion matrix, and the detailed
results are shown in Tables II and III. For a confusion matrix
A, the Kappa value can be obtained from

Kappa = po − pe

1 − pe
, (6)

where po =
∑k

i=1 aii
N is the accuracy (N is the number of

samples, k is the number of category, and aii is the value
of row i column i on a confusion matrix) and pe =∑k

i=1

(∑k
j=1 aij × ∑k

j=1 aji

)
N × N is the result of random classification (aij

is the value of row i column j on a confusion matrix and aji is
the value of row j column i).

From Table II, we can find that each of the results
obtained by our system exceeds both the two baselines. Fur-
ther, the average performance of our system is 92.24%, which
is 19.65% and 6.83% higher than that of PSD + SVM and
DE + SVM, respectively. In addition, the with-subject stan-
dard deviation for our system is 2.11% which is 0.35% and
1.33% lower than that for two baselines. Besides, the inter-
subject standard deviation for our system is 3.71% which is
also lower than that for the two baselines, which shows that
our system is relatively more robust to subject dependent dif-
ferences than the two baselines. As can be seen from Table III,

FIG. 3. The average confusion matrix across five folds from the RQA + CFCNN system: (a) subject 1, (b) subject 2, (c) subject 3, (d) subject 4, (e) subject 5.
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TABLE II. Accuracy (%) and standard deviation (std.) results of
RQA + CFCNN compared with DE + SVM and PSD + SVM systems.

Accuracy
(%) (mean ± std.)

Subject RQA + CFCNN DE + SVM PSD + SVM

1 96.27 ± 1.44 93.53 ± 3.07 94.90 ± 1.61
2 95.29 ± 2.27 92.94 ± 1.28 80.98 ± 1.49
3 91.76 ± 2.81 76.08 ± 3.64 68.63 ± 3.73
4 92.16 ± 1.75 81.76 ± 2.26 67.25 ± 3.83
5 85.69 ± 2.29 82.75 ± 2.03 51.18 ± 6.55
Average 92.24 ± 2.11 85.41 ± 2.46 72.59 ± 3.44
Inter-subject std. 3.71 6.78 14.64

we can find that all the subjects have a higher Kappa value
than two baselines. On the average, RQA + CFCNN system
obtains a Kappa value of 0.884, whereas the average Kappa
values are 0.781 and 0.589 for PSD + SVM and DE + SVM,
respectively. This shows that our method gives a remark-
able increase of 13% with respect to DE + SVM and 50%
improvement with respect to PSD + SVM in terms of average
Kappa value. Correspondingly, our system can substantially
facilitate the development of an outstanding HMI system
which requires the machine possesses a strong identification
capability and a satisfactory stability.

Besides, finding the critical frequency band which is
highly associated with emotion process is also very useful
for emotion recognition. Consequently, we remove the last
convolutional layer of the CFCNN to compare the perfor-
mance of each frequency band in distinguishing the three
emotion states. We find that the entropy measure from gamma
frequency band has a far more prominent emotion identi-
fication capability compared with the other four frequency
bands, and its average accuracy of 90.51% is almost equiv-
alent to the result obtained by total frequency bands (detailed
results are shown in Table IV). From the perspective of Kappa
value, average Kappa value from gamma frequency band
quite approaches to that from total frequency bands, and the
with-subject standard deviation is nearly the same for the
two inputs. All these results indicate that emotional arousal
is closely linked to gamma frequency band activities which
is compatible with other studies reporting that high frequency

TABLE III. Kappa value and standard deviation (std.) results of
RQA + CFCNN system compared with DE + SVM and PSD + SVM
systems.

Kappa
(mean ± std.)

Subject RQA + CFCNN DE + SVM PSD + SVM

1 0.944 ± 0.022 0.903 ± 0.041 0.924 ± 0.022
2 0.929 ± 0.034 0.894 ± 0.017 0.715 ± 0.020
3 0.876 ± 0.042 0.641 ± 0.049 0.529 ± 0.050
4 0.882 ± 0.026 0.726 ± 0.030 0.509 ± 0.051
5 0.785 ± 0.034 0.741 ± 0.027 0.268 ± 0.088
Average 0.884 ± 0.032 0.781 ± 0.033 0.589 ± 0.046
Inter-subject std. 0.056 0.102 0.220

TABLE IV. Accuracy (%) and Kappa value results [with standard deviation
(std.)] of entropy feature from total frequency bands and gamma frequency
band, respectively.

Accuracy Kappa
(%) (mean ± std.) (mean ± std.)

Subject Total Gamma Total Gamma

1 96.27 ± 1.44 95.69 ± 1.47 0.944 ± 0.022 0.935 ± 0.022
2 95.29 ± 2.27 95.10 ± 0.88 0.929 ± 0.034 0.926 ± 0.013
3 91.76 ± 2.81 88.04 ± 3.58 0.876 ± 0.042 0.821 ± 0.054
4 92.16 ± 1.75 90.20 ± 2.84 0.882 ± 0.026 0.853 ± 0.043
5 85.69 ± 2.29 83.53 ± 1.80 0.785 ± 0.034 0.753 ± 0.027
Average 92.24 ± 2.11 90.51 ± 2.11 0.884 ± 0.032 0.858 ± 0.032
Inter-subject
std.

3.71 4.53 0.056 0.068

band activities (higher than 30 Hz) are related to emotional
process.58–60

V. CONCLUSIONS

The design of a reliable and stable emotion classifica-
tion system is one of the most primary requisites in the
affective computing field which concentrates on implement-
ing a vivid communication between humans and machines.
We have designed an emotional arousal experiment to induce
three specific emotions, namely, happiness, sadness, and fear
and measure corresponding EEG signals of each subject. Then
we offer a peculiar but vigorous RQA-based CFCNN recogni-
tion system for distinguishing the emotion states. Our results
based on this application suggest that our method can get
access to effectual emotion classification with high accuracy
as well as good stability and clearly outperforms two tra-
ditional methods. In addition, the distinct performance of
the gamma frequency band in classifying emotions shows a
strong correlation between emotional process and gamma fre-
quency band activities. As a further work, we will increase
the number of subjects to build a larger dataset for studying
the ability of our method in eliminating the inter-subjective
differences. The excellent performance of the proposed RQA-
based CFCNN recognition system gives itself a great prospect
in the research of an affective HMI system and is quite likely
to be generalized to the identification task of EEG signals in
other areas.

ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-
ence Foundation of China under Grant Nos. 61473203 and
61873181, and the Natural Science Foundation of Tianjin,
China, under Grant No. 16JCYBJC18200.

APPENDIX: THE INFORMATION TRANSMISSION
PROCESS OF CFCNN

The detailed information transmission process between
two layers is as follows:
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(1) For layer L1

σ1,k,(m,n) = ω1,k,0 +
Nch∑
j=1

Im,n+j−1 · ω1,k,j, (A1)

where ω1,k,0 is a bias and ω1,k,j denotes a set of weights
with 1 ≤ j ≤ Nch. Each map contains Nch weights in layer
L1, and the convolution kernels are a series of spatial
filters each of which has a size of Nch × 1. This layer
concentrates on mining spatial information within each
frequency band. Layers L2 and L3 follow the same rules
except for the different numbers of filters and can be
induced from L1.

(2) For layer L4

σ4,k,n = ω4,k,0 +
N3∑
i=1

Nf∑
j=1

x3,i,(j,n)ω4,(i,k), (A2)

where ω4,k,0 is a bias, ω4,(i,k) is a set of weights, and
1 ≤ j ≤ Nf , 1 ≤ i ≤ N3 (N3 is the number of filters in
layer L3). Each map contains Nf × N3 weights in layer
L4 and the size of filter is 1 × Nf . This layer is used
to extract high level information underlying different
frequency bands.

(3) For layer L5

σ5,n = ω5,0,n +
N4∑
t=1

Nc4∑
l=1

x4,t,lω5,n, (A3)

where ω5,0,n is a bias. L4 consists of N4 feature maps, each
of which has Nc4 neurons. L5 is fully connected to each
neuron of L4.

(4) For layer L6

σ6,n = ω6,0,n +
N5∑

q=1

x5,qω6,n, (A4)

where ω6,0,n is a bias. Each neuron of L6 is connected to
each neuron of L5 which has N5 neurons.

1R. Picard, Affective Computing (MIT Press, 2000).
2M. Pantic and L. J. M. Rothkrantz, “Automatic analysis of facial expres-
sions: The state of the art,” IEEE Trans. Pattern Anal. Mach. Intell. 22(12),
1424–1445 (2000).

3Z. Zeng, M. Pantic, G. I. Roisman, and T. S. Huang, “A survey of affect
recognition methods: Audio, visual, and spontaneous expressions,” IEEE
Trans. Pattern Anal. Mach. Intell. 31(1), 39–58 (2009).

4K. Mistry, L. Zhang, S. C. Neoh, C. P. Lim, and B. Fielding, “A micro-
GA embedded PSO feature selection approach to intelligent facial emotion
recognition,” IEEE Trans. Cybern. 47(6), 1496–1509 (2017).

5M. E. Ayadi, M. S. Kamel, and F. Karray, “Survey on speech emo-
tion recognition: Features, classification schemes, and databases,” Pattern
Recognit. 44(3), 572–587 (2011).

6B. Schuller, A. Batliner, S. Steidl, and D. Seppi, “Recognising realistic
emotions and affect in speech: State of the art and lessons learnt from the
first challenge,” Speech Commun. 53(9–10), 1062–1087 (2011).

7H. Y. Meng and N. Bianchi-Berthouze, “Affective state level recognition
in naturalistic facial and vocal expressions,” IEEE Trans. Cybern. 44(3),
315–328 (2014).

8H. Gunes and M. Piccardi, “Automatic temporal segment detection and
affect recognition from face and body display,” IEEE Trans. Syst. Man
Cybern. B 39(1), 64–84 (2009).

9A. Kleinsmith and N. Bianchi-Berthouze, “Affective body expression per-
ception and recognition: A survey,” IEEE Trans. Affect. Comput. 4(1),
15–33 (2013).

10Y. Gao, N. Bianchi-Berthouze, and H. Meng, “What does touch tell us
about emotions in touchscreen-based gameplay?,” ACM Trans. Comput.
Hum. Interact. 19(4), 31 (2012).

11H. P. Martinez, Y. Bengio, and G. N. Yannakakis, “Learning deep phys-
iological models of affect,” IEEE Comput. Intell. Mag. 8(2), 20–33
(2013).

12Y. P. Lin, C. H. Wang, T. P. Jung, T. L. Wu, S. K. Jeng, J. R. Duann, and
J. H. Chen, “EEG based emotion recognition in music listening,” IEEE
Trans. Biomed. Eng. 57(7), 1798–1806 (2010).

13P. C. Petrantonakis and L. J. Hadjileontiadis, “Emotion recognition from
brain signals using hybrid adaptive filtering and higher order crossings
analysis,” IEEE Trans. Affect. Comput. 1(2), 81–97 (2010).

14G. Chanel, C. Rebetez, M. Btrancourt, and T. Pun, “Emotion assessment
from physiological signals for adaptation of game difficulty,” IEEE Trans.
Syst. Man Cybern. A 41(6), 1052–1063 (2011).

15H. Xu and K. N. Plataniotis, “Affect recognition using EEG signal,” in
Proceedings of 14th IEEE International Workshop on Multimedia Signal
Processing (MMSP) (IEEE, 2012), pp. 299–304.

16S. K. Hadjidimitriou and L. J. Hadjileontiadis, “EEG-based classification
of music appraisal responses using time-frequency analysis and familiarity
ratings,” IEEE Trans. Affect. Comput. 4(2), 161–172 (2013).

17X. Chai, Q. S. Wang, Y. P. Zhao, Y. Q. Li, D. Liu, X. Liu, and O. Bai,
“A fast, efficient domain adaptation technique for cross-domain electroen-
cephalography (EEG)-based emotion recognition,” Sensors 17(5), 1014
(2017).

18G. L. Ahern and G. E. Schwartz, “Differential lateralization for posi-
tive and negative emotion in the human brain: EEG spectral analysis,”
Neuropsychologia 23(6), 745–755 (1985).

19U. R. Acharya, O. Faust, N. Kannathal, T. J. Chua, and S. Laxminarayan,
“Non-linear analysis of EEG signals at various sleep stages,” Comput.
Methods Programs Biomed. 80(1), 37–45 (2005).

20K. C. Chua, V. Chandran, U. R. Acharya, and C. M. Lim, “Analysis of
epileptic EEG signals using higher order spectra,” J. Med. Eng. Technol.
33(1), 42–50 (2009).

21Z. D. Mu, J. F. Hu, J. L. Min, and J. H. Yin, “Comparison of different
entropies as features for person authentication based on EEG signals,” IET
Biom. 6(6), 409–417 (2017).

22O. De Wel, M. Lavanga, A. C. Dorado, K. Jansen, A. Dereymaeker,
G. Naulaers, and S. Van Huffel, “Complexity analysis of neonatal EEG
using multiscale entropy: Applications in brain maturation and sleep stage
classification,” Entropy 19(10), 516 (2017).

23Z. K. Gao, Q. Cai, Y. X. Yang, W. D. Dang, and S. S. Zhang, “Multiscale
limited penetrable horizontal visibility graph for analyzing nonlinear time
series,” Sci. Rep. 6, 35662 (2016).

24Z. K. Gao, Q. Cai, Y. X. Yang, N. Dong, and S. S. Zhang, “Visibil-
ity graph from adaptive optimal kernel time-frequency representation for
classification of epileptic from EEG,” Int. J. Neural Syst. 27(4), 1750005
(2017).

25J.-P. Eckmann, S. O. Kamphorst, and D. Ruelle, “Recurrence plots of
dynamical systems,” Europhys. Lett. 4(9), 973–977 (1987).

26N. Marwan, M. C. Romano, M. Thiel, and J. Kurths, “Recurrence plots for
the analysis of complex systems,” Phys. Rep. 438(5–6), 237–329 (2007).

27L. L. Trulla, A. Giuliani, J. P. Zbilut, and C. L. Webber, “Recurrence quan-
tification analysis of the logistic equation with transients,” Phys. Lett. A
223(4), 255–260 (1996).

28J. P. Zbilut and C. L. Webber, Jr., “Embeddings and delays as derived
from quantification of recurrence plots,” Phys. Lett. A 171(3–4), 199–203
(1992).

29H. Yang, “Multiscale recurrence quantification analysis of spatial cardiac
vector cardiogram signals,” IEEE Trans. Biomed. Eng. 58(2), 339–347
(2011).

30X. L. Li, G. X. Ouyang, X. Yao, and X. P. Guan, “Dynamical characteristics
of pre-epileptic seizures in rats with recurrence quantification analysis,”
Phys. Lett. A 333(1–2), 164–171 (2004).

31U. R. Acharya, V. S. Sree, S. Chattopadhyay, W. W. Yu, and A. P. C. Alvin,
“Application of recurrence quantification analysis for the automated iden-
tification of epileptic EEG signals,” Int. J. Neural Syst. 21(3), 199–211
(2011).

32L. H. Song, D. S. Lee, and S. I. Kim, “Recurrence quantification analy-
sis of sleep electroencephalogram in sleep apnea syndrome in humans,”
Neurosci. Lett. 366(2), 148–153 (2004).

33U. R. Acharya, V. K. Sudarshan, H. Adeli, J. Santhosh, J. E. W. Koh,
S. D. Puthankatti, and A. Adeli, “A novel depression diagnosis index using
nonlinear features in EEG signals,” Eur. Neurol. 74(1–2), 79–83 (2015).

https://doi.org/10.1109/34.895976
https://doi.org/10.1109/TPAMI.2008.52
https://doi.org/10.1109/TCYB.2016.2549639
https://doi.org/10.1016/j.patcog.2010.09.020
https://doi.org/10.1016/j.specom.2011.01.011
https://doi.org/10.1109/TCYB.2013.2253768
https://doi.org/10.1109/TSMCB.2008.927269
https://doi.org/10.1109/T-AFFC.2012.16
https://doi.org/10.1145/2395131.2395138
https://doi.org/10.1109/MCI.2013.2247823
https://doi.org/10.1109/TBME.2010.2048568
https://doi.org/10.1109/T-AFFC.2010.7
https://doi.org/10.1109/TSMCA.2011.2116000
https://doi.org/10.1109/T-AFFC.2013.6
https://doi.org/10.3390/s17051014
https://doi.org/10.1016/0028-3932(85)90081-8
https://doi.org/10.1016/j.cmpb.2005.06.011
https://doi.org/10.1080/03091900701559408
https://doi.org/10.1049/iet-bmt.2016.0144
https://doi.org/10.3390/e19100516
https://doi.org/10.1038/srep35662
https://doi.org/10.1142/S0129065717500058
https://doi.org/10.1209/0295-5075/4/9/004
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1016/S0375-9601(96)00741-4
https://doi.org/10.1016/0375-9601(92)90426-M
https://doi.org/10.1109/TBME.2010.2063704
https://doi.org/10.1016/j.physleta.2004.10.028
https://doi.org/10.1142/S0129065711002808
https://doi.org/10.1016/j.neulet.2004.05.025
https://doi.org/10.1159/000438457


085724-8 Yang et al. Chaos 28, 085724 (2018)

34N. Talebi, A. M. Nasrabadi, and T. Curran, “Investigation of changes
in EEG complexity during memory retrieval: The effect of midazolam,”
Cogn. Neurodyn. 6(6), 537–546 (2012).

35K. Becker, G. Schneider, M. Eder, A. Ranft, E. F. Kochs, W. Ziegl-
gansberger, and H. U. Dodt, “Anaesthesia monitoring by recurrence
quantification analysis of EEG data,” PLoS One 5(1), e8876 (2010).

36X. W. Wang, D. Nie, and B. L. Lu, “Emotional state classification
from EEG data using machine learning approach,” Neurocomputing 129,
94–106 (2014).

37H. Shahabi and S. Moghimi, “Toward automatic detection of brain
responses to emotional music through analysis of EEG effective connec-
tivity,” Comput. Hum. Behav. 58, 231–239 (2016).

38G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science 313(5786), 504–507 (2006).

39Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and
time series,” in The Handbook of Brain Theory and Neural Networks (MIT
Press, 1995), pp. 255–258.

40S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput. 9(8), 1735–1780 (1997).

41F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise tim-
ing with LSTM recurrent networks,” J. Mach. Learn. Res. 3(1), 115–143
(2003).

42W. L. Zheng and B. L. Lu, “Investigating critical frequency bands and
channels for EEG-based emotion recognition with deep neural networks,”
IEEE Trans. Auton. Ment. Dev. 7(3), 162–175 (2015).

43X. Li, D. W. Song, P. Zhang, G. L. Yu, Y. X. Hou, and B. Hu, “Emotion
recognition from multi-channel EEG data through convolutional recur-
rent neural network,” in Proceedings of IEEE International Conference on
Bioinformatics and Biomedicine (BIBM) (IEEE COMPUTER SOC, 2016),
pp. 352–359.

44G. L. Yu, X. Li, D. W. Song, X. Z. Zhao, P. Zhang, Y. X. Hou, and B. Hu,
“Encoding physiological signals as images for affective state recognition
using convolutional neural networks,” in Proceedings of 38th International
Conference on IEEE Engineering Medicine and Biology Society (EMBC)
(IEEE, 2016), pp. 812–815.

45T. K. Marcha, S. C. Chapman, and R. O. Dendy, “Recurrence plot statistics
and the effect of embedding,” Physica D 200, 171–184 (2005).

46B. Goswami, N. Marwan, G. Feulner, and J. Kurths, “How do global
temperature drivers influence each other? A network perspective using
recurrences,” Eur. Phys. J. Spec. Top. 222, 861–873 (2013).

47E. J. Ngamga, S. Bialonski, N. Marwan, J. Kurths, C. Geier, and K.
Lehnertz, “Evaluation of selected recurrence measures in discriminating
pre-ictal and inter-ictal periods from epileptic EEG data,” Phys. Lett. A
380(16), 1419–1425 (2016).

48N. Marwan, “How to avoid potential pitfalls in recurrence plot based data
analysis,” Int. J. Bifurcat. Chaos 21(4), 1003–1017 (2011).

49S. Schinkel, O. Dimigen, and N. Marwan, “Selection of recurrence thresh-
old for signal detection,” Eur. Phys. J. Spec. Top. 164, 45–53 (2008).

50V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltz-
mann machines,” in Proceedings of 27th International Conference on
Machine Learning (Omnipress, USA, 2010), pp. 807–814.

51F. Chollet, see https://github.com/fchollet/keras for “Keras: Deep Learning
Library for Theano and TensorFlow” (2015).

52S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” Proceedings of
Machine Learning Research (PMLR) 37, 448–456 (2015).

53X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” Proceedings of Machine Learning Research
(PMLR) 9, 249–256 (2010).

54L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proceedings of 19th International Conference on Computa-
tional Statistics (Physica-Verlag, Springer, 2010), pp. 177–186.

55D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-
tions by back-propagating errors,” Nature 323(6088), 533–536 (1986).

56J. Cohen, “A coefficient of agreement for nominal scales,” Educ. Psychol.
Meas. 20(1), 37–46 (1960).

57Y. R. Tabar and U. Halici, “A novel deep learning approach for clas-
sification of EEG motor imagery signals,” J. Neural Eng. 14, 016003
(2017).

58S. Aydin, S. Demirtas, K. Ates, and M. A. Tunga, “Emotion recogni-
tion with eigen features of frequency band activities embedded in induced
brain oscillations mediated by affective pictures,” Int. J. Neural Syst. 26(3),
1650013 (2016).

59M. M. Muller, A. Keil, T. Gruber, and T. Elbert, “Processing of affective
pictures modulates right hemispheric gamma band EEG activity,” Clin.
Neurophysiol. 110(11), 1913–1920 (1999).

60M. A. Kisley and Z. M. Cornwell, “Gamma and beta neural activity evoked
during a sensory gating paradigm: Effects of auditory, somatosensory
and cross-modal stimulation,” Clin. Neurophysiol. 117(11), 2549–2563
(2006).

https://doi.org/10.1007/s11571-012-9214-0
https://doi.org/10.1371/journal.pone.0008876
https://doi.org/10.1016/j.neucom.2013.06.046
https://doi.org/10.1016/j.chb.2016.01.005
https://doi.org/10.1126/science.1127647
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/153244303768966139
https://doi.org/10.1109/TAMD.2015.2431497
https://doi.org/10.1016/j.physd.2004.11.002
https://doi.org/10.1140/epjst/e2013-01889-8
https://doi.org/10.1016/j.physleta.2016.02.024
https://doi.org/10.1142/S0218127411029008
https://doi.org/10.1140/epjst/e2008-00833-5
https://github.com/fchollet/keras
https://doi.org/10.1038/323533a0
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1088/1741-2560/14/1/016003
https://doi.org/10.1142/S0129065716500131
https://doi.org/10.1016/S1388-2457(99)00151-0
https://doi.org/10.1016/j.clinph.2006.08.003

	I. INTRODUCTION
	II. EXPERIMENTAL DESIGN AND DATA ACQUISITION
	III. RQA-BASED CFCNN EMOTION RECOGNITION SYSTEM
	IV. RESULTS
	V. CONCLUSIONS
	ACKNOWLEDGMENTS
	A. APPENDIX: THE INFORMATION TRANSMISSION PROCESS OF CFCNN

