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Big data transmission in wireless sensor network (WSN) consumes energy while the node in WSN is energy-limited, and the data
transmitted needs to be encrypted resulting from the ease of being eavesdropped in WSN links. Compressive sensing (CS) can
encrypt data and reduce the data volume to solve these two problems. However, the nodes in WSNs are not only energy-limited,
but also storage and calculation resource-constrained. The traditional CS uses the measurement matrix as the secret key, which
consumes a huge storage space. Moreover, the calculation cost of the traditional CS is large. In this paper, semitensor product
compressive sensing (STP-CS) is proposed, which reduces the size of the secret key to save the storage space by breaking through
the dimensionmatch restriction of the matrix multiplication and decreases the calculation amount to save the calculation resource.
Simulation results show that STP-CS encryption can achieve better performances of saving storage and calculation resources
compared with the traditional CS encryption.

1. Introduction

For its ease of deployment and cost effectiveness, wire-
less sensor network (WSN) is widely used in environment
monitoring, disaster relief, military, and so on [1–3]. For
example, with WSN for forest fire monitoring, numerous
sensors are deployed in the monitor area, and big data
should be gathered and transmitted in real-time. Big data
transmission consumes vast energy, but the node in WSNs
is energy-limited. If the battery of the node is drained, the
node is useless. Moreover, since the nodes in WSNs use
wireless communication technologies, the link is easy to
be eavesdropped, and the data transmission needs to be
encrypted. So big data transmission inWSNs should solve the
energy-efficiency and encryption problems. CS can decrease
the volume of the data transmitted, which can save the energy
to prolong the life of the node [4, 5]. CS is also a kind of
encryption method resulting from the randomness of the
measurement matrix [6]. So CS can be used to encrypt data
and save energy simultaneously.

However, the CS encryption uses the measurement
matrix as the secret key, while themeasurementmatrix needs
a huge storage space which is not suitable for WSNs. In
WSNs, nodes are not only energy-limited, but also storage
and calculation resources-constrained. Many optimization
methods for the measurement matrix have been proposed
[7, 8]. However, most of these existing methods focused on
how to improve the recovery accuracy, decrease the iteration
number, and accelerate the calculation. For reducing the size
of the measurement matrix, most works focused on reducing
the row number of the measurement matrix [9, 10], because
the column number must be equal to the signal length
according to the rule of matrix multiplication. Another kind
of method to reduce the matrix size is dividing the signal into
blocks, but this needs extra data processing overhead.

Another kind of CS encryption can save storage space
by storing matrix generation parameters as the secret key
rather than the whole matrix [11, 12]. This kind of CS
encryption generatesmatrices by deterministicmethods such
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as algebraic curves [13], coding (LDPC, BCH) [14], and cha-
otic systems (Chebyshev, Logistic, and Tent) [15, 16]; it can
save huge storage space compared with keeping the whole
matrix. However, using this method, users have to generate
thematrix before encryption for each transmission. Although
the deterministic method can decrease the key storage space
by storing parameters, it needs to calculate the measurement
matrix in real-time, which is at the expense of the calculation
resource.

In this paper, semitensor product compressive sensing
(STP-CS) is proposed to solve the problems above. STP-CS
can save the storage space by introducing the semitensor
product [17–19] into compressive sensing, which can break
through the dimension restriction of matrix multiplication
and reduce the row and columnnumbers of themeasurement
matrix simultaneously. Compared with deterministic meth-
ods, the calculation resource of STP-CS is saved, because STP-
CS does not need to generate the matrix in real-time before
data encryption. An algorithm for STP-CS is also proposed,
which saves the calculation resource compared with the
traditional CS in theory and under simulation. Contributions
of this paper are as follows:

(i) STP-CS reduces the row and column numbers of
the measurement matrix simultaneously to save the
storage space.

(ii) An algorithm of STP-CS is proposed to save the
computing resources.

(iii) The recovery performance of STP-CS is similar to
those of the traditional CS andCCS, and the compres-
sion ratio performance of STP-CS is not affected.

The rest of this paper is organized as follows. Section 2
introduces the details of STP-CS encryption.The storage and
calculation resources of STP-CS are analyzed in Section 3.
Simulation results are discussed in Section 4.The last section
concludes this paper.

Notation. The following notation is used throughout the
paper. WSN denotes the wireless sensor network. CS denotes
compressive sensing. CCS denotes the chaotic compressive
sensing. STP-CS denotes the semitensor product compressive
sensing. 𝑥, 𝑦 denote the plain message and cipher message,
respectively.𝑃,𝐾 are the length and sparsity of𝑥, respectively.Φ denotes the measurement matrix, and 𝑀, 𝑁 are the row
and columnnumber of themeasurementmatrix, respectively.

2. Related Works

In this section, some works about how to decrease the storage
space of the CS secret key are introduced.There are two kinds
ofmethods to decrease the storage space; one kind is reducing
the size of the measurement matrix. Another is using the
deterministicmeasurementmatrix, andwith thismethod, the
matrix generation parameters are saved rather than the whole
matrix.

A method for designing the measurement matrix is
proposed in [10]. This method can reduce the row number of
the measurement matrix, but the side information is needed

for the design of the measurement matrix. Model based
compressive sensing is proposed in [9]. Using this model
based CS, the signal can be recovered by less number of
measurements by leveraging more realistic signal models;
less number of measurements means the row number of
measurement matrix is reduced. But the recovery algorithm
has to be improved; the traditional recovery algorithm cannot
be used. Compared with these methods, STP-CS can reduce
not only the row number of themeasurementmatrix, but also
the column number by breaking through the restriction of
matrix multiplication.

There are many kinds of deterministic measurement
matrices. The chaotic sequence has the property of pseudo-
random, so it can be used for constructing the measurement
matrix [15]. The possibility of constructing measurement
matrix with different kinds of chaotic systems is investigated,
including Chen system, Chua system, and Lorenz system
[16]. Algebraic curves like elliptic curves can also be used
to construct the deterministic measurement matrices [13].
LDPC code is another kind of method for constructing the
deterministic measurement matrices [14]. All these methods
only need to store some parameters rather than the whole
matrix, but the measurement matrix has to be generated in
real-time. Compared with these methods, STP-CS can save
huge computing resource.

In addition, there are many other matrices which can
be used as deterministic measurement matrix, such as cyclic
matrix [20], Toeplitz matrix [21], chirp matrix [22], and
polynomial matrix [23]. However, these matrices have other
restrictions. Cyclic matrix and Toeplitz matrix still need to
store lots of test data, and the construction of polynomial
matrix is limited by the signal length [20].

3. STP-CS Data Communication

In this section, the details of our proposed STP-CS encryption
are introduced. Before this, CS encryption is introduced.

3.1. CS Encryption. Based on CS theory [24, 25], suppose 𝑥 ∈
𝑅𝑁 is a plain message; project 𝑥 to 𝑦 ∈ 𝑅𝑀 using the matrix
Φ ∈ 𝑅𝑀×𝑁, 𝑦 = Φ𝑥, where Φ is called the measurement
matrix and𝑀 < 𝑁. Because 𝑦 is very different from 𝑥, 𝑦 is
regarded as the cipher message, andΦ is the secret key. At the
receiver, 𝑥 can be recovered with 𝑦 and Φ by utilizing some
algorithms such as BP, OMP, and ROMP [24, 26, 27]. For the
recovery, 𝑥 should be sparse or sparse on some orthogonal
basis Ψ ∈ 𝑅𝑁×𝑁; that is, 𝑥 = Ψ𝑠. The sparsity here means 𝐾
values of 𝑠 are nonzero, while the other𝑁−𝐾 values are zero,
where𝐾 ≪ 𝑁. Though𝑀 < 𝑁, for the accuracy recovery,𝑀
cannot be arbitrarily small; it has to be satisfied with

𝑀 ≥ c𝐾 log2 (𝑁𝐾) , (1)

where 𝑐 is a small constant [24]. Resulting from the dimension
restriction of the matrix multiplication, the column number𝑁 of the measurement matrix has to be equal to the dimen-
sion of the signal 𝑥. For storing a CS secret key,𝑀𝑁 elements
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need to be stored. So, to decrease the size of themeasurement
matrix, this restriction has to be broken through.

3.2. Semitensor Product. The semitensor product (STP) was
proposed by Cheng and Zhang in [17]. STP is the gener-
alization of the conventional matrix multiplication, and it
can break through the dimension match restriction of the
conventional matrix multiplication.

Suppose 𝑢 is a row vector of dimension 𝑛𝑝; V is a column
vector of dimension 𝑝; dividing 𝑢 to 𝑝 equal parts, that is,
𝑢1, . . . , 𝑢𝑝, each part 𝑢𝑖 is a row vector of dimension 𝑛. The
definition of STP, denoted by ⋉, is

𝑢 ⋉ V = 𝑝∑
𝑖=1

𝑢𝑖V𝑖 ∈ 𝑅1×𝑛. (2)

Similarly, V𝑇 ⋉ 𝑢𝑇 = ∑𝑝𝑖=1 V𝑖(𝑢𝑖)𝑇 ∈ 𝑅𝑛×1. Generalized to a
matrix, suppose 𝐴 ∈ 𝑅𝑚×𝑛, 𝐵 ∈ 𝑅𝑝×𝑞; if 𝑛 is the factor of 𝑝 or𝑝 is the factor of 𝑛, the definition of the semitensor product
of 𝐴 and 𝐵 is as follows:

𝐴 ⋉ 𝐵 = [[[[
[

𝐴1 ⋉ 𝐵1 ⋅ ⋅ ⋅ 𝐴1 ⋉ 𝐵𝑞
... d

...
𝐴𝑚 ⋉ 𝐵1 ⋅ ⋅ ⋅ 𝐴𝑚 ⋉ 𝐵𝑞

]]]]
]
, (3)

where 𝐴 𝑖 denotes the 𝑖th row of 𝐴 and 𝐵𝑗 denotes the 𝑗th
column of 𝐵.
3.3. STP-CS Encryption. Now, introduce STP into CS encryp-
tion [28]. The definition of STP-CS is as follows:

𝑦 = 𝐴 ⋉ 𝑥, (4)

where 𝐴 ∈ 𝑅𝑀×𝑁,𝑀 < 𝑁, 𝑥 ∈ 𝑅𝑃. To decrease the size of
the measurement matrix𝐴,𝑁 should be as small as possible.
For meeting the requirement of STP, we choose 𝑁 with the
condition𝑁 | 𝑃. According to [17],

𝑦 = 𝐴 ⋉ 𝑥 = (𝐴 ⊗ 𝐼𝑃/𝑁) 𝑥, (5)

where 𝑦 ∈ 𝑅𝑀𝑃/𝑁 and ⊗ denotes the Kronecker product
[17]. When 𝑁 = 𝑃, (5) translates to 𝑦 = 𝐴𝑥, which is
the traditional CS. From (5), STP-CS with the measurement
matrix 𝐴 is equivalent to the traditional CS with the mea-
surement matrix (𝐴 ⊗ 𝐼𝑃/𝑁). The RIP, spark, and coherence
of the measurement matrix are introduced in [28], 𝐴 needs
to meet these conditions. Based on the definition of STP-
CS, for a signal 𝑥 ∈ 𝑅𝑃, the column number of the
measurement matrix 𝐴 only needs to be satisfied with the
condition 𝑁 | 𝑃, while the traditional CS should meet the
dimension match, and the column number must be equal to𝑃. So compared with the traditional CS, the column number
of the measurement matrix can be decreased. As for the row
number of the measurement matrix in STP-CS, it can be also
decreased which will be introduced in next section, while the
row number of the measurement matrix in the traditional CS
cannot break through the restriction in (1). So, although the

STP-CS encryption also keeps themeasurementmatrix as the
secret key, it can save a huge storage space by decreasing the
size of the measurement matrix.

Compared with deterministic methods [15], like chaotic
compressive sensing (CCS), the storage space of themeasure-
ment matrix in STP-CS is not decreased, because CCS stores
matrix generation parameters such as chaotic parameter or
chaos sequence initial value. But calculation resource of STP-
CS is saved. The measurement matrix in CCS has to be
generated in real-time, which will need much calculation
resource. So STP-CS can save storage space compared with
the traditional CS and save calculation resource compared
with CCS. In fact, STP-CS can also save calculation resource
compared with the traditional CS, which will be introduced
in the next section. So STP-CS can bewidely used in resource-
limited scenarios likeWSNs. STP-CS encryption can not only
solve the security and energy-efficiency problems but also
save storage and calculation resources.

3.4. An Algorithm for STP-CS. In this part, an algorithm for
STP-CS is proposed, which can implement STP-CS using less
calculation resource than the traditional CS.

From (3), computing 𝐴 ⋉ 𝑥 needs to compute 𝐴 𝑖 ⋉ 𝑥,𝑖 = 1, 2, . . . ,𝑀. To compute 𝐴 𝑖 ⋉ 𝑥, split 𝑥 to 𝑃/𝑁, and use
each element of 𝐴 𝑖 to multiply the corresponding block of 𝑥,
which means that every element of 𝐴 needs to be multiplied
by several numbers. As for matrix multiplication, suppose
𝐶 = 𝐴𝐵; an arbitrary element 𝑎𝑖𝑗 of 𝐴 needs to be multiplied
by every element of the 𝑗th row of 𝐵. Based on the above
analysis, an algorithm for STP-CSusingmatrixmultiplication
is proposed.

(1) Project 𝑥 to an𝑁 × (𝑃/𝑁)matrix as follows:

𝑥matrix =
[[[[[
[

𝑥1 𝑥2 ⋅ ⋅ ⋅ 𝑥𝑃/𝑁𝑥1+𝑃/𝑁 𝑥2+𝑃/𝑁 ⋅ ⋅ ⋅ 𝑥2𝑃/𝑁... ... d
...

𝑥1+𝑃(𝑁−1)/𝑁 𝑥2+𝑃(𝑁−1)/𝑁 ⋅ ⋅ ⋅ 𝑥𝑁×𝑃/𝑁

]]]]]
]
. (6)

(2) Left multiply the above matrix 𝑥matrix using the STP-
CS measurement matrix 𝐴:

𝑦matrix = 𝐴𝑥matrix. (7)

(3) Transform each row of 𝑦matrix into a column vector,
and construct a new column vector using these
vectors. This new column vector is equal to 𝑦.

Next is the brief proof for step (3). Based on the second
step of the algorithm, we have

𝑦matrix (𝑖𝑗) =
𝑁∑
𝑙=1

𝑎𝑖𝑙𝑥𝑗+(𝑙−1)𝑃/𝑁. (8)

And 𝑦 can be split into𝑀 blocks with 𝑃/𝑁 elements; the 𝑗th
element of the 𝑖th block of 𝑦 is

𝑦𝑗𝑖 =
𝑁∑
𝑙=1

𝑎𝑖𝑙𝑥𝑗+(𝑙−1)𝑃/𝑁. (9)

So 𝑦𝑗𝑖 = 𝑦matrix(𝑖𝑗), and 𝑦matrix can be transformed to 𝑦.



4 Mathematical Problems in Engineering

The diagram of the STP-CS algorithm above is shown in
Figure 1. 𝑥 is the plain message and 𝑦 is the cipher message.𝐴 is the secret key of STP-CS encryption.

4. Performance Analysis

In this section, the performance of STP-CS is analyzed,
including storage resource, calculation resource, and com-
pression ratio.

Based on (5), STP-CS with the measurement matrix 𝐴 ∈𝑅𝑀×𝑁 is equivalent to the traditional CS with the meas-
urement matrix (𝐴 ⊗ 𝐼𝑃/𝑁) ∈ 𝑅(𝑀𝑃/𝑁)×𝑃. According to (1),
we have

𝑀𝑃
𝑁 ⩾ 𝑐𝐾 log2 ( 𝑃𝐾) . (10)

And then

𝑀 ⩾ 𝑐𝑁𝐾 log2 (𝑃/𝐾)𝑃 , (11)

where 𝑐 is a small constant. In order to compress the signal,
the dimension of 𝑦 should be satisfied with𝑀𝑃/𝑁 < 𝑃; that
is,𝑀 < 𝑁, so the range of the row number of 𝐴 is

𝑐𝑁𝐾 log2 (𝑃/𝐾)𝑃 ⩽ 𝑀 < 𝑁. (12)

Because storing a measurement matrix needs to keep 𝑀𝑁
elements, the range of the storage space for one STP-CS key
is

𝑐𝑁2𝐾 log2 (𝑃/𝐾)𝑃 ⩽ 𝑀𝑁 < 𝑁2. (13)

Based on𝑁 | 𝑃, set 𝑃 = 𝑘𝑁, 𝑘 ∈ 𝑍+, and 𝑘 is the factor of 𝑃;
(13) can be transformed to

𝑐𝑃𝐾 log2 (𝑃/𝐾)𝑘2 ⩽ 𝑀𝑁 < 𝑃2𝑘2 . (14)

Equation (14) is the relationship between the key storage
space and the dimension and sparsity of the signal 𝑥. For
comparison, suppose 𝐴󸀠 ∈ 𝑅𝑀󸀠×𝑁󸀠 is the measurement
matrix for the traditional CS. To encrypt the same signal, the
condition𝑁󸀠 = 𝑃,𝑀󸀠 ≥ 𝑐𝐾 log2(𝑃/𝐾) should be satisfied, so
the storage space for one traditional CS key is

𝑐𝑃𝐾 log2 ( 𝑃𝐾) ⩽ 𝑀󸀠𝑁󸀠 < 𝑃2. (15)

From (14) and (15), the low bound of one STP-CS key storage
space is smaller than that of one traditional CS key storage
space, when 𝑘 ̸= 1.

According to (4) and (5), 𝑦 is a column vector of
dimension 𝑀𝑃/𝑁. According to (3), 𝑦 includes 𝑀 column
vectors with dimension 𝑃/𝑁; that is,

𝑦 = [𝑦1 𝑦2 ⋅ ⋅ ⋅ 𝑦𝑀]𝑇 , (16)

where 𝑦𝑖 = 𝑎𝑖 ⋉ 𝑥 = ∑𝑁𝑗=1 𝑎𝑖𝑗𝑥𝑗, in which 𝑎𝑖 is the 𝑖th
row of 𝐴, and 𝑥𝑗 is 𝑗th block of 𝑥. The dimension of 𝑥𝑗
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Figure 1: STP-CS algorithm diagram.

is 𝑃/𝑁. From (2), computing each 𝑦𝑖 needs (𝑃/𝑁) × 𝑁
multiplications, that is,𝑃multiplications, and (𝑁−1)×(𝑃/𝑁)
additions. 𝑦 includes𝑀 𝑦𝑖. So computing the whole 𝑦 needs𝑀𝑃 multiplications and (𝑁 − 1)𝑀𝑃/𝑁 additions. However,
using the traditional CS needs the measurement matrix 𝐴󸀠 ∈
𝑅(𝑀𝑃/𝑁)×𝑃 in order to get the same data volume of STP-
CS. Computing each measurement needs 𝑃 multiplications
and 𝑃 − 1 additions. Computing the whole 𝑦 needs𝑀𝑃2/𝑁
multiplications and𝑀𝑃(𝑃 − 1)/𝑁 additions. To get the same
number of measurements, the multiplication resources of the
traditional CS are 𝑃/𝑁 times that of STP-CS; the addition
resources of traditional CS are (𝑃 − 1)/(𝑁 − 1) times that
of STP-CS. Resulting from 𝑁 | 𝑃, 𝑃/𝑁 ⩾ 1, the traditional
CS needs more resources than STP-CS. When 𝑃 = 𝑁, the
resources needed are the same for both methods. In fact, if𝑃 = 𝑁, STP-CS degenerates to the traditional CS.

Now analyze the computing resource of the algorithm
proposed in Section 2. Computing each element of 𝑦matrix
needs 𝑁 multiplications and 𝑁 − 1 additions, and 𝑦matrix
has 𝑀𝑃/𝑁 elements, so the whole resources needed for
computing 𝑦matrix are 𝑀𝑃 multiplications and 𝑀𝑃((𝑁 −1)/𝑁) additions. Compared with the definition of STP-CS,
the calculation quantity is the same.

Next, we analyze the compression ratio of STP-CS. From
(5), the dimension of 𝑦 is𝑀𝑃/𝑁, so the compression ratio is𝑅 = (𝑀𝑃/𝑁)/𝑃 = 𝑀/𝑁, where𝑀 and𝑁 are the rownumber
and column number of the STP-CS measurement matrix,
respectively. From (12), the range of compression ratio 𝑅 of
STP-CS is 𝑐𝐾 log(𝑃/𝐾)/𝑃 ⩽ 𝑀/𝑁 < 1. And the compression
ratio of the traditional CS is 𝑅󸀠 = 𝑀󸀠/𝑃, where𝑀󸀠 is the row
number of the traditional CS measurement matrix, and 𝑃 is
the dimension of the signal. From the rownumber restriction,
the range of 𝑅󸀠 of traditional CS is (𝑐𝐾 log(𝑃/𝐾))/𝑃 ⩽𝑀󸀠/𝑃 < 1. So the range of STP-CS is the same as that of the
traditionalCS. STP-CS can obtain the same compression ratio
as the traditional CS.
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Figure 2: Recovery results.The range of SNR is from−5 dB to 30 dB.
The traditional CS uses a Gaussian matrix, CCS uses a Chebyshev
matrix, and STP-CS uses a Gaussian matrix. The simulation time is
200; the relative errors are the average values of the 200 simulation
results.

5. Simulation Results

In this section, simulations of STP-CS encryption and
decryption are discussed. In the experiment, the length of the
original signal 𝑥 is 256, and the sparsity𝐾 is 7. The signal is a
frequency domain sparse signal, which is combined by some
discrete sine signals. The recovery algorithm is OMP, and the
recovery performance is measured by the relative error,

𝛿 = ‖𝑥 − 𝑥‖2‖𝑥‖2 , (17)

which is the 2-norm of the recovery error 𝑥−𝑥 relative to the
2-norm of the original signal 𝑥, and 𝑥 is the recovered signal.
The simulation time is 200, and the relative errors in Figures
2, 5, and 6 are the average values of the 200 simulation results.

Figure 2 shows the recovery performance of STP-CS com-
pared with the traditional CS and CCS [16].The compression
ratio is 0.25, and two groups of the STP-CS matrix𝑀,𝑁 are
processed.The sizes of two STP-CSmatrices are𝑀 = 1, 𝑁 =4 and𝑀 = 2, 𝑁 = 8, respectively.The sizes of the traditional
CS and CCS are both 64 × 256. From Figure 2, four curves
coincide with each other after 20 dB. For example, At 20 dB,
the relative error of the traditional CS is 0.0788, the relative
error of CCS is 0.0769, the relative error of STP-CS with 1× 4
matrix is 0.0644, the relative error of STP-CSwith 2×8matrix
is 0.0579, and the relative errors of three kinds of matrices
tend to be zero at 30 dB. Figure 3 shows the variance of the
relative errors of the 200 simulation results. From Figure 3,
the variance is small, after 10 dB, all variances are less than
0.01. The variance of STP-CS is smaller than the traditional
CS and CCS. So the relative error of STP-CS is stable. This
implies that the recovery performance of STP-CS is similar to
those of the traditional CS and CCS. The size of the STP-CS
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Figure 3: Variance of the relative errors of 200 simulation results.
The range of SNR is from −5 dB to 30 dB. The traditional CS uses a
Gaussian matrix, CCS uses a Chebyshev matrix, and STP-CS uses a
Gaussian matrix.

matrix is extremely small, which implies that the small-size
measurement matrix of STP-CS achieves a similar recovery
performance as that of the traditional CS, so STP-CS can save
storage space.

Not only the above signal but also STP-CS can be
used for other kinds of signals. Table 1 shows the recovery
results of four kinds of signals. These signals are generated
by MATLAB, including Bernoulli, Gaussian, Uniform, and
Power distributions. The recovery algorithm is OMP, and the
measurement matrix is a 16 × 32 Gaussian matrix for three
kinds of length signals. From Table 1, the relative errors are
small for these four kinds of signals. STP-CS can encrypt
the signals with different length, but the dimension of the
measurement matrix of the traditional CS should be adjusted
to match the signal length.

STP-CS can be also used for the image. Figure 4 shows the
recovery results for a Lena image.The image size is 512×512,
the size of the measurement matrix is 64×128, and the PSNR
(Peak Signal to Noise Ratio) is 33.64 dB. The compression
ratio of STP-CS is 0.5. For the traditional CS, the size of the
measurementmatrix should be 256×512 for the compression
ratio 0.5, so STP-CS can save huge storage space for the
measurement matrix.

The computing resources are measured by computing
time. In this part, the encryption time is recorded by
MATLAB system time, and the unit is millisecond. The
compression ratio is also 0.25. The size of the STP-CS matrix
is 1 × 4, the size of the traditional CS matrix is 64 × 256, and
the size of the chaotic matrix is 64 × 256. The encryption
time of the above three methods is 0.161ms, 0.254ms, and
1.953 s, respectively. Because the CCS needs to generate the
matrix, the time of CCS is very long. Table 1 shows the
computing time for different groups of𝑀,𝑁 for the STP-CS
matrix. From Table 2, the computing time increases with the
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Table 1: Relative error of the recovery results for different signals. The encryption method is STP-CS.

Length Signal
Bernoulli Gaussian Power Uniform

256 2.33 × 10−16 1.06 × 10−16 3.10 × 10−16 9.77 × 10−16

512 2.42 × 10−16 1.01 × 10−16 3.20 × 10−16 1.53 × 10−16

1024 1.64 × 10−16 2.49 × 10−16 1.56 × 10−16 6.31 × 10−17

(a) (b)

Figure 4: STP-CS for image. (a) is the original image. (b) is the recovery image. The measurement matrix is a Gaussian matrix, and the
recovery algorithm is OMP.

Table 2: Encryption times for different groups of 𝑀, 𝑁. The
encryption method is STP-CS, unit ms.

Signal length Matrix
1 × 4 1 × 8 4 × 16 4 × 32

256 0.161 0.163 0.172 0.175
512 0.163 0.163 0.171 0.172
1024 0.165 0.168 0.174 0.177
2048 0.166 0.171 0.187 0.195

increments of𝑀,𝑁, and𝑃. So, to reduce the computing time,𝑀 and 𝑁 should be small. Along with the increment of the
signal length, the traditional CS should increase the row of
the measurement matrix which will increase the calculation
quantity, while the STP-CS does not need to increase the
row number. So the STP-CS also has the advantage on the
decrement of computing resources.

In Figure 5, the compression ratio performance of STP-CS
is shown. The compression ratio of STP-CS is 𝑀/𝑁; to get
the small-size matrix, we choose 𝑀,𝑁 as small as possible.
At 20 dB, the relative error of the 1 × 8 matrix is 0.0840,
the relative error of the 1 × 4 matrix is 0.0655, the relative
error of the 2 × 4 matrix is 0.0461, and the relative error of
the 3 × 4 matrix is 0.0374. The recovery errors of these four
matrices tend to be zero after 20 dB.This implies that the STP-
CS can also achieve low compression ratio without affecting
the recovery accuracy. Even the compression ratio is 0.125; at
30 dB, the relative error is 0.0261, similar to that of the ratio
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Figure 5: Performance of compression ratio. Four kinds of ratios,
that is, 0.125, 0.25, 0.5, and 0.75, are tested. The simulation time is
200; the relative errors are the average values of the 200 simulation
results.

of 0.25, 0.0207. So the relative error can also tend to be zero at
high SNR.

From Figure 6, only the original matrix can decrypt the
data correctly, and the recovery errors of the other three
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Figure 6: Security of STP-CS encryption. The data are encrypted
by a 2 × 8matrix. Four matrices are used to decrypt the encryption
data, including the original matrix, 12.5% of the elements the same
as the original matrix, 25% of the elements the same as the original
matrix, and 50%of the elements the same as the original matrix.The
left unknown elements are generated randomly.

matrices are larger than 20% from −5 dB to 30 dB. The
elements of other three matrices are only partly the same as
those of the originalmatrix, and the encrypted data cannot be
decrypted by a different key. Even if there is an eavesdropper
who has 50% of the elements of the key, the encrypted data
still cannot be decrypted. At 30 dB, the relative errors of these
three matrices are larger than 40%, which implies that, even
at high SNR, the eavesdropper still cannot recover the data
accurately.

For comparison, Figure 7 shows the security of the
traditional CS. Similar to the encryption of STP-CS, only the
original matrix can decrypt the data correctly, and the other
three matrices cannot decrypt the data; the recovery errors
of the other three matrices are larger than 80% from −5 dB
to 30 dB. Based on this relative error, the performance of the
traditional CS is better than STP-CS. But the dimension of
the measurement matrix is 64 × 256, while the dimension of
the measurement matrix is 2×8, so the security performance
of STP-CS can be improved by increasing the size of the
measurement matrix.

6. Conclusions

CS can fulfill the energy-efficiency and the encryption for
big data transmission simultaneously. But the measurement
matrix needs huge storage space, and the calculation cost of
CS is large. In this paper, we propose STP-CS encryption
to decrease the storage space for the secret key to save
storage resource and reduce the calculation amount to save
calculation resource. The simulation results show that the
performance of saving resource is better compared with the
traditional CS and CCS.
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Figure 7: Security of the traditional CS encryption. The data are
encrypted by a 64 × 256 matrix. Four matrices are used to decrypt
the encryption data, including the original matrix, 12.5% of the
elements the same as the original matrix, 25% of the elements the
same as the original matrix, and 50%of the elements the same as the
original matrix.The left unknown elements are generated randomly.
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