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First-order phase transition in a majority-vote model with inertia
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We generalize the original majority-vote model by incorporating inertia into the microscopic dynamics of the
spin flipping, where the spin-flip probability of any individual depends not only on the states of its neighbors,
but also on its own state. Surprisingly, the order-disorder phase transition is changed from a usual continuous
or second-order type to a discontinuous or first-order one when the inertia is above an appropriate level. A
central feature of such an explosive transition is a strong hysteresis behavior as noise intensity goes forward and
backward. Within the hysteresis region, a disordered phase and two symmetric ordered phases are coexisting and
transition rates between these phases are numerically calculated by a rare-event sampling method. A mean-field
theory is developed to analytically reveal the property of this phase transition.
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I. INTRODUCTION

Phase transitions in ensembles of complex networked
systems have been a subject of intense research in statistical
physics and many other disciplines [1]. These results are of
fundamental importance for understanding various dynamical
processes in the real world, such as percolation [2,3], epidemic
spreading [4], synchronization [5,6], and collective phenom-
ena in social networks [7].

Discontinuous or explosive transitions in complex networks
have received growing attention since the discovery of an
abrupt percolation transition in random networks [8,9] and
scale-free networks [10,11]. Later studies affirmed that this
transition is actually continuous but with an unusual finite-
size scaling [12–14], yet many related models show truly
discontinuous and anomalous transitions (see [15] for a
recent review). Strikingly different from continuous phase
transitions, in an explosive (or a first-order) phase transition an
infinitesimal increase of the control parameter can give rise to
a considerable macroscopic effect. Subsequently, an explosive
phenomenon was found in the dynamics of cascading failures
in interdependent networks [16–18], in contrast to the second-
order continuous phase transition found in isolated networks.
More recently, such explosive phase transitions have been
reported in various systems, such as explosive synchronization
due to a positive correlation between the degrees of nodes and
the natural frequencies of the oscillators [19–21] or an adaptive
mechanism [22], discontinuous percolation transition due to an
inducing effect [23], spontaneous recovery [24], and explosive
epidemic outbreak due to cooperative coinfections of multiple
diseases [25–27].
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In this paper we report a first-order order-disorder phase
transition in a generalized majority-vote (MV) model by in-
corporating the effect of individuals’ inertia (called the inertial
MV model). The MV model is one of the simplest nonequi-
librium generalizations of the Ising model that displays a
continuous order-disorder phase transition at a critical value
of noise [28]. It has been extensively studied in the context of
complex networks, including random graphs [29,30], small-
world networks [31–33], and scale-free networks [34,35].
However, the continuous nature of the order-disorder phase
transition is not affected by the topology of the underlying
networks [36]. In our model we have included a substantial
change to make it more realistic, namely, the state update of
each node depends not only on the states of its neighboring
nodes, but also on its own state. In fact, in a social or biological
context individuals have a tendency for beliefs to endure once
formed. In a recent experimental study, behavioral inertia
was found to be essential for collective turning of starling
flocks [37]. We refer this modification as the inertial effect.
Surprisingly, we find that as the level of the inertia increases,
the nature of the order-disorder phase transition is changed
from a continuous second-order transition to a discontinuous,
or an explosive first-order one. For the latter case, a clear
hysteresis region appears in which the order and disordered
phases are coexisting. In particular, a relevant phenomenon
of inertia-induced first-order synchronization transition was
found in a second-order Kuramoto model [38,39]. A coun-
terintuitive “slower is faster” effect of the inertia on ordering
dynamics of the voter model was reported in Ref. [40].

II. MODEL

We first describe the original MV model defined on
underlying networks. Each node is assigned to a binary
spin variable σi ∈ {+1, − 1} (i = 1, . . . ,N). In each step, a
node i is randomly chosen and tends to align with the local
neighborhood majority but with a noise parameter f giving the
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probability of misalignment. In this way, the single spin-flip
probability from σi to −σi can be written as

w(σi) = 1
2 [1 − (1 − 2f )σiS(�i)], (1)

with

�i =
N∑

j=1

aijσj , (2)

where S(x) = sgn(x) if x �= 0 and S(0) = 0. The elements of
the adjacency matrix of the underlying network are defined as
aij = 1 if nodes i and j are connected and aij = 0 otherwise.

In the original MV model, the state update of each node
depends exclusively on the states of its neighboring nodes,
regardless of its own state. Here we incorporate the inertial
effect into the original model by replacing Eq. (2) with

�i = (1 − θ )
N∑

j=1

aijσj /ki + θσi, (3)

where ki = ∑N
j=1 aij is the degree of node i and θ ∈ [0,0.5] is

a parameter controlling the weight of the inertia. The larger the
value of θ is, the larger the inertia of the system is. For θ = 0,
we recover the original MV model where no inertia exists.
For θ = 0.5, our model is dominated by inertia other than the
random spin flip with probability f . In this case, there is no
spontaneous magnetization to appear. We should note that the
generalization of the inertial MV model from two states to
multiple states is straightforward, which is discussed in the
Appendix.

III. RESULTS

The phase behavior of the system can be characterized by
the average magnetization per node m = ∑N

i=1 σi/N ; m = 0
for the disordered phase and m �= 0 for the ordered phase.
By Monte Carlo (MC) simulations, Fig. 1 shows the absolute

FIG. 1. Absolute magnetization |m| as a function of noise
intensity f on ER random networks with different inertia parameter θ :
(a) θ = 0, (b) θ = 0.2, (c) θ = 0.3, and (d) θ = 0.35. The squares and
circles correspond to forward and backward simulations, respectively.
The network parameters are N = 10 000 and 〈k〉 = 20.

value of m as a function of f for several different values
of θ on Erdős-Rényi (ER) random networks (RNs) with
the size N = 10 000 and the average degree 〈k〉 = 20. The
simulation results are obtained by performing forward and
backward simulations, respectively. The former is done by
calculating the stationary value of m as f increases from 0
to 0.5 in steps of 0.01 and using the final configuration of
the last simulation run as the initial condition of the next
run, while the latter is performed by decreasing f from
0.5 to 0 with the same step. For θ = 0, the results on the
forward and backward simulations coincide, implying that
the order-disorder transition is a continuous second-order
phase transition that is the main feature of the original MV
model. For θ = 0.2, although the transition becomes sharper
and the transition point shifts to a smaller value of f , the
forward and backward simulations still coincide. Strikingly,
for θ = 0.3, one can see that as f increases, |m| abruptly
jumps from nonzero to zero at f = fcF

, which shows that a
sharp transition takes place for the order-disorder transition
[Fig. 1(c)]. On the other hand, the curve corresponding to the
backward simulations also shows a sharp transition from the
disordered phase to the ordered phase at f = fcB

. These two
sharp transitions occur at different values of f , leading to a
clear hysteresis loop with respect to the dependence of |m|
on f . Such a feature indicates that a discontinuous first-order
order-disorder transition arises due to the effect of inertia. By
further increasing θ to θ = 0.35, fcF

shifts to a smaller value
and fcB

decreases to zero, but the nature of a discontinuous
phase transition is still present.

Within the hysteresis region, we observe phase flips
between the ordered phase and the disordered one for a rather
small network size N , as shown in Fig. 2(a) by a long time
series of m in an ER network of N = 500. We show in
Figs. 2(b)–2(d) the probability density function (PDF) of m

for three distinct f chosen from the hysteresis region. On
the one hand, all of them are multimodal distributions with a
peak at m = 0 and two other peaks symmetrically located at
both sides of it. On the other hand, with the increase of f the
peak at m = 0 becomes higher, implying that the disordered
phase becomes more stable. To calculate the transition rates
between the ordered and disordered phases, a long-time
simulation is necessary. However, for a larger network size the

FIG. 2. (a) Time series of magnetization m show the transition
events between ordered and disordered phases within the hysteresis
region. Also shown is the PDF of m for (b) f = 0.136, (c) f = 0.138,
and (d) f = 0.14. The other parameters are θ = 0.3, N = 500, and
〈k〉 = 20.
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FIG. 3. (a) Logarithm of transition rates ln R as a function of
f for different N . Closed symbols correspond to the transition rate
from the disordered state to the ordered state and open symbols to
the transition rate from the ordered state to the disordered state. (b)
Logarithm of transition rates ln R as a function of N for f = 0.144.
The lines indicate the linear fitting ln R1 (2) ∼ −ν1 (2)N . The inset
shows the fitting exponents ν1 (2) as a function of f .

transition rates are extremely low and brute-force simulation is
prohibitively expensive. To overcome this difficulty, we have
used a rare-event simulation method: forward flux sampling
(FFS) [41]. The FFS method uses a series of interfaces in
phase space between the initial and final states to force the
system from the initial state to the final state in a ratchetlike
manner, which has been widely used to calculate rate constants
and transition paths for rare events in various equilibrium
and nonequilibrium systems [42]. In Fig. 3(a) we show the
transition rate R1 from disordered to ordered phases and the
inverse transition rate R2 as a function of f for several different
N . Here R1 is a deceasing function of f and R2 is an increasing
function of f . The intersection point of both curves determines
the location at which the ordered and disordered phases are
equally stable. As N increases, the intersection point slightly
shifts to a smaller value. In Fig. 3(b) we show the transition
rates as a function of N at f = 0.144. Obviously, both R1 and
R2 decrease exponentially with N , R1 (2) ∼ exp(−ν1 (2)N ) with
the exponents ν1(2), implying that the disordered and ordered
phases are coexisting in the thermodynamic limit. In the inset
of Fig. 3(b) we give the fitting exponents ν1 (2) as a function
of f and they clearly exhibit the different variation trends
with f .

In the following we will present a mean-field theory to
understand the simulation results. We first define mk as the
average magnetization of a node of degree k and m̃ as
the average magnetization of a randomly chosen nearest-
neighbor node. For uncorrelated networks, the probability
that a randomly chosen nearest-neighbor node has degree k

is kP (k)/〈k〉, where P (k) is the degree distribution defined
as the probability that a node chosen at random has degree k

and 〈k〉 is the average degree [1]. Thus, mk and m̃ satisfy the
relation

m̃ =
∑

k

kP (k)mk/〈k〉. (4)

For an up-spin node i of degree k, the probability that its
local field is positive can be written as the cumulative binomial
distribution

P +
> =

k∑
n=�n+

k �

(
1 − 1

2δn,n+
k

)
Cn

k pn
↑pk−n

↓ . (5)

Here p↑ (↓) = (1 ± m̃)/2 is the probability that a randomly
chosen nearest-neighbor node has a +1 (−1) state, �·� is the
ceiling function, δ is the Kronecker symbol, Cn

k = k!/n!(k −
n)! are the binomial coefficients, and n+

k = (1 − 2θ )k/2(1 −
θ ) is the number of up-spin neighbors of node i satisfying
�i = 0. Similarly, we can write the probability that the local
field of a down-spin node of degree k is positive as

P −
> =

k∑
n=�n−

k �

(
1 − 1

2
δn,n−

k

)
Cn

k pn
↑pk−n

↓ , (6)

where n−
k = k − n+

k = k/2(1 − θ ).
Furthermore, the spin-flip probability ω+

k of an up-spin node
of degree k can be expressed as the sum of two parts

ω+
k = f P +

> + (1 − f )(1 − P +
> ), (7)

where the first part is that the local field of the node is positive
and the minority rule is applied and the other one is that the
local field of the node is negative and the majority rule is
applied. Likewise, we can write the spin-flip probability of a
down-spin node of degree k as

ω−
k = f (1 − P −

> ) + (1 − f )P −
> . (8)

Thus, the rate equations for mk are

ṁk = −
(

1 + mk

2

)
ω+

k +
(

1 − mk

2

)
ω−

k . (9)

In the steady state ṁk = 0, we have

mk = ω−
k − ω+

k

ω+
k + ω−

k

. (10)

Inserting Eq. (10) into Eq. (4), we get a self-consistent equation
of m̃,

m̃ = �(m̃), (11)

with

�(m̃) =
∑

k

kP (k)

〈k〉
ω−

k − ω+
k

ω+
k + ω−

k

.

Since P +
> + P −

> = 1 and ω+
k = ω−

k at m̃ = 0, one can easily
check that m̃ = 0 is always a stationary solution of Eq. (11).
This solution corresponds to a disordered phase. The other
possible solutions can be obtained by numerically iterating
Eq. (11). Once m̃ is found, we can immediately calculate mk

by Eq. (10) and the average magnetization per node by m =∑
k P (k)mk .
By a detailed numerical calculation for Eq. (11) on the ER

RN with the Poisson degree distribution P (k) = 〈k〉ke−〈k〉/k!
and the average degree 〈k〉 = 20, we find that the critical
value of θ is θc = 0.23. In Fig. 4 we show the theoretical
results on |m| as a function of f for three typical values of θ :
θ = 0.15, 0.23, and 0.3. For θ < θc, the ordered-disordered
phase transition is of continuous second-order type. For
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FIG. 4. Theoretical result of |m| as a function of f for three
typical values of θ : (a) θ = 0.15, (b) θ = 0.23, and (c) θ = 0.3. In
(c) circles within the hysteresis region indicate the unstable solution.

θ > θc, the phase transition is of discontinuous first-order type
and a clear hysteresis loop appears. As θ decreases from above,
the hysteresis loop shrinks until it vanishes at θ = θc.

At the critical noises fcF
and fcB

, the susceptibilities χ̃ =
∂m̃/∂f are diverging. According to Eq. (11), the condition is
equivalent to

∂�

∂m̃
= (1 − 2f )

∑
k

kP (k)

〈k〉
[

(ω−
k + ω+

k )−1

(
∂P +

>

∂m̃
+ ∂P −

>

∂m̃

)

+ (ω−
k − ω+

k )(ω−
k + ω+

k )−2

(
∂P +

>

∂m̃
− ∂P −

>

∂m̃

)]
= 1.

(12)

Here ∂P ±
> /∂m̃ can be derived from Eqs. (5) and (6),

∂P ±
>

∂m̃
=

(
1 − 1

2
δn±

k ,�n±
k �

)
P(�n±

k �; k)

+ 1

2
δn±

k ,�n±
k �P(�n±

k � + 1; k), (13)

where the function P(n; k) is defined as

P(n; k) = 1
2kCn−1

k−1 pn−1
↑ pk−n

↓ . (14)

For any given θ , fcF
and fcB

are determined by numerically
solving Eqs. (11) and (12). In fact, fcB

can be obtained more
conveniently, since fcB

corresponds to the point at which
the trivial solution m̃ = 0 loses its stability. Therefore, fcB

is determined solely by Eq. (12). At m̃ = 0, Eq. (12) can be
reduced to

∂�

∂m̃

∣∣∣∣
m̃=0

= (1 − 2fcB
)
∑

k

kP (k)

〈k〉

[
∂P +

>

∂m̃
+ ∂P −

>

∂m̃

ω−
k + ω+

k

]
m̃=0

= 1.

(15)

In Fig. 5 we plot the phase diagram in the θ -f plane for
three types of networks [from left to right, random degree (RD)
RNs, ER RNs, and Barabási-Albert (BA) scale-free networks
(SFNs)] with two different average degrees: 〈k〉 = 20 (top
panels) and 〈k〉 = 40 (bottom panels). The lines and symbols
indicate the theoretical and simulation results, respectively.
For RD RNs, each node has the same degree k, which is a
typical representation of degree homogeneous networks. For
BA SFNs, its degree distribution follows a power-law function
with the exponent −3, which is typical for degree heteroge-
neous networks. Clearly, there is no essential difference in the
phase diagrams for different network types and average degree.
The phase diagram is divided into three regions by fcF

and fcB
.

In the region below fcB
, the system is ordered. In the region

FIG. 5. Phase diagram in the θ -f plane for three types of networks with two different average degrees, 〈k〉 = 20 (top panels) and 〈k〉 = 40
(bottom panels) (from left to right): RD RNs, ER RNs, and BA SFNs. Lines and symbols correspond to the theoretical and simulation results,
respectively. The fcF

are indicated by solid lines and squares and fcB
by dashed lines and circles. The sizes of all the networks are the same:

N = 10 000.
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above fcF
, the system is disordered. Between fcF

and fcB
, the

region is of hysteresis with a disordered phase and two ordered
phases of up-down symmetry. As expected, for networks with
a larger average degree the mean-field theory provides a better
prediction for the simulation results. Although there exist
obvious differences for a smaller network connectivity, the
theory and simulations are qualitatively consistent.

IV. CONCLUSION

We have investigated the order-disorder phase transition in a
MV model with inertia, where the inertia is introduced into the
state-updating dynamics of nodes by considering the state of
each node itself besides the states of its neighboring nodes. We
mainly find that in contrast to a continuous second-order phase
transition in the original MV model, the inertial MV model
undergoes a discontinuous first-order phase transition when
the inertia is large enough. In the hysteresis region of the first-
order phase transition, a disordered phase and two symmetric
ordered phases are coexisting. The transition rates between the
disordered and ordered phases have been calculated by a highly
efficient rare-event sampling method, forward flux sampling.
A mean-field theory provides an analytical understanding for
this interesting phenomenon. Since behavioral inertia is an
essential characteristic of human beings and animal groups,
our work may provide insight into the transition phenomena
from disorder to order, such as the emergence of a consensus
and decision making [43,44], as well as the spontaneous
formation of a common language or culture [7,45]. Finally,
we expect further investigations of the inertial effect in other
dynamical systems.
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APPENDIX: INERTIAL MV MODEL WITH
MULTIPLE STATES

The original two-state MV model has been previously
extended to three states [46,47] and to an arbitrary number
of states [48]. Here we describe the MV model with arbitrary
multiple states. Each node i can be in any of p states:
σi ∈ {1, . . . ,q}. The proportion of neighboring nodes of node
i in any state α ∈ {1, . . . ,q} can be calculated as wα =∑N

j=1 aij δα,σj
/ki , where aij are the elements of adjacency

matrix of the underlying network, ki is the degree of node i, and
δα,β = 1 if α = β and δα,β = 0 otherwise. With probability
1 − f , node i takes the same value as the majority spin,
i.e., σi = α|wα=max{w1,...,wq }. With supplementary probability
f , node i takes the same value as the minority spin, i.e.,
σi = α|wα=min{w1,...,wq }. If there are more than two possible
states in the majority spin or in the minority spin, we randomly
choose one of them. The inertial MV (IMV) model with
arbitrary multiple states is immediately defined by replacing

FIG. 6. The q = 3 state IMV model. The order parameter m is
plotted as a function of noise intensity f on ER random networks with
different inertia factor θ : (a) θ = 0, (b) θ = 0.1, (c) θ = 0.2, and (d)
θ = 0.3. The squares and circles correspond to forward and backward
simulations, respectively. The network parameters are N = 10 000
and 〈k〉 = 20.

the above wα with wα = (1 − θ )
∑N

j=1 aij δα,σj
/ki + θδα,σi

,
where θ is the inertial factor. If q = 2, we recover the two-state
inertial MV model discussed in the main text. To characterize
the collective behavior of the model, we define the order
parameter as m = |N−1 ∑N

j=1 eI2πσi/q |, with the imaginary
unit I ; m > 0 corresponds to an ordered state and m = 0 to a
disordered state.

In Fig. 6 we plot the order parameter m as a function of
noise intensity f on ER random networks with different θ for
q = 3. Qualitatively, the main conclusion for q = 3 is the same

FIG. 7. The q = 5 state IMV model. The order parameter m is
plotted as a function of noise intensity f on ER random networks with
different inertia factor θ : (a) θ = 0, (b) θ = 0.1, (c) θ = 0.2, and (d)
θ = 0.3. The squares and circles correspond to forward and backward
simulations, respectively. The network parameters are N = 10 000
and 〈k〉 = 20.
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as the case of q = 2 shown in the main text. In the absence of
the inertia, although m has a slight jump at the order-disorder
phase transition, the two curves corresponding to forward and
backward simulations almost coincide. If the inertia is large
enough, the transition becomes a discontinuous or an explosive

type [Figs. 6(c) and 6(d)]. In Fig. 7 we show the results of the
q = 5 state IMV model. The model exhibits a discontinuous
order-disorder transition even if the inertia is absent. When the
inertia is added, the hysteresis region is enlarged [Figs. 7(c)
and 7(d)].
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