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Efficient Training of Supervised Spiking Neural
Network via Accurate Synaptic-Efficiency
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Abstract— The spiking neural network (SNN) is the third
generation of neural networks and performs remarkably well in
cognitive tasks, such as pattern recognition. The temporal neural
encode mechanism found in biological hippocampus enables SNN
to possess more powerful computation capability than networks
with other encoding schemes. However, this temporal encoding
approach requires neurons to process information serially on
time, which reduces learning efficiency significantly. To keep
the powerful computation capability of the temporal encoding
mechanism and to overcome its low efficiency in the training
of SNNs, a new training algorithm, the accurate synaptic-
efficiency adjustment method is proposed in this paper. Inspired
by the selective attention mechanism of the primate visual system,
our algorithm selects only the target spike time as attention
areas, and ignores voltage states of the untarget ones, resulting
in a significant reduction of training time. Besides, our algorithm
employs a cost function based on the voltage difference between
the potential of the output neuron and the firing threshold
of the SNN, instead of the traditional precise firing time dis-
tance. A normalized spike-timing-dependent-plasticity learning
window is applied to assigning this error to different synapses
for instructing their training. Comprehensive simulations are
conducted to investigate the learning properties of our algorithm,
with input neurons emitting both single spike and multiple
spikes. Simulation results indicate that our algorithm possesses
higher learning performance than the existing other methods and
achieves the state-of-the-art efficiency in the training of SNN.

Index Terms— Pattern recognition, selective attention
mechanism, spiking neural network (SNN), supervised learning.

I. INTRODUCTION

ARTIFICIAL neural networks process information in a
biomimetic way, and different generations of neural

networks have different bionic extents. Most traditional neural
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networks belonging to the second generation represent real-
valued analog data by the average firing rate of neurons.
However, there is substantial evidence that in biological neural
systems there exist fast computations that are very likely
based on spike firing events [1]–[3]. Motivated by the spike
emitting mechanism found in hippocampus electrophysiology
experiments, spiking neural network (SNN) with temporal
coding is proposed to simulate this mechanism of biological
neurons, which has been proved computationally more power-
ful than the networks with rate coding [4], [5]. It gives a high
biomimetic model of biologic neural activity [6], [7], and has
been successfully simulated and applied to various artificial
intelligence tasks [8]–[12].

Supervised learning is an important biomimetic concept
in recognizing processing of neural networks. Compared
with other learning mechanism, a supervised learning
rule could potentially improve learning speed with
the help of an instructor signal. However, the existing
supervised training methods employing temporal coding are
extremely inefficient. How to train the network efficiently
has become the critical problem in the development of
SNN [13].

According to the measures of error reduction, the existing
supervised learning algorithms for spiking neurons can be
classified into two types. The first type reduces errors by
defining a cost function and minimizes it by the gradient
descent rule. This is a typical mathematical method but it
is often inefficient. The second type instructs training by
learning windows. Weight changes for some learning windows
are usually realized according to the biomimetic mechanism,
such as the Hebbian rule [14] and its derivant spike-timing-
dependent plasticity (STDP) rule [15], where a synaptic weight
is strengthened if the presynaptic neuron emits spikes before
the postsynaptic neuron and weakened conversely. Some typ-
ical algorithms of these two types are introduced in the
following.

A lot of supervised algorithms for SNNs have been proposed
recently [13], [16]. SpikeProp is the best well known one [17].
It defines the cost function by the distance of the actual
firing time and the target ones, and minimizes it by the
gradient descent rule. It is then improved in [18] and [19] to
emit multispikes. Tempotron [20] is another gradient descent
training algorithm. Employing the distance of the output
neuron’s voltage and the firing threshold as the cost function,
the Tempotron can complete training more efficient than
the other algorithms, but it can only be applied to binary
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classification problems. These algorithms can simulate the
spiking learning processes availably, but they are too inefficient
to be applied to real-world applications, since voltage state for
every time step has to be detected.

Algorithms instructing training by learning windows, such
as the STDP window, have been proposed recently [15]. In this
respect, the remote supervised learning method (ReSuMe)
is a typical one. Motivated by the Widrow–Hoff rule, it
applies both the STDP and anti-STDP learning windows
to drive training [21]. The perceptron-based spiking neuron
learning rule (PBSNLR) using a learning window is based
on the presynaptic voltage function to instruct training, which
improves training efficiency [22]. The synaptic weight asso-
ciation training (SWAT) utilizes STDP learning window and
the Bienenstock–Cooper–Munro learning rule [23] to direct
learning and achieves success. Some other algorithms using
learning windows are also introduced in [13] and [24]. These
training algorithms employing learning windows are often
more efficient than these with the gradient descent rule.
Besides these supervised learning algorithms, some effective
classifiers are also introduced recently, such as the efficient
self-regulating evolving spiking neural (SRESN) classifier [25]
and the robust classifier proposed in [26] for image
recognition.

Compared with the human brain, these methods are
far from reaching comparable recognition performance.
Thorpe and Imbert [3] found that humans can analyze and clas-
sify visual patterns in 100 ms, although at least ten synaptic
stages are involved, whereas the SNN often consumes several
seconds or minutes to learn a pattern. Studies on the mecha-
nisms of visual processing in monkeys [27] have revealed that
the neurons in areas V4, TEO, and temporal cortex of the ven-
tral stream show response selectivities for stimulus attributes
that are important for object vision, such as shape, color, and
texture. Multiple objects presented at the same time in the
visual field compete for neural representation [28]. The selec-
tive attention mechanism of the primate visual system guar-
antees the information validity and the processing efficiency.

Motivated by the selective attention mechanism of the pri-
mate visual system [27], [28], an efficient learning algorithm,
the accurate synaptic-efficiency adjustment (ASA) method
is proposed in this paper to improve the efficiency of
training SNN. Our algorithm only selects target spike time as
attention areas and ignores the states of other time. Besides,
it employs voltage difference to evaluate training errors, and
uncovers the relationship between weight variation and voltage
distance. This approach enables the ASA to calculate weight
adjustment of each synaptic efficacy accurately. Experimental
results show that our method achieves the state-of-the-art
efficiency and extends the application of SNN, since its firing
time can be set to an arbitrary real number without affecting
the learning efficiency.

The rest of this paper is organized as follows. Section II
introduces the related work briefly, and Section III elaborates
our algorithm and its theoretical analysis. In Section IV, the
properties of the ASA are investigated. Section V tests the
classification capability of our algorithm on the UCI data set.
Section VI gives conclusions and future works.

II. SPIKING NEURAL MODEL

In this paper, the simple version of the spike response model
(SRM0 for short) is adopted because of its simplicity and
effectiveness [6]. In the SRM0, each neuron integrates the
voltage sum of all the presynaptic spikes, and emits a spike
when its voltage reaches the threshold. Once a spike j is
generated at t j

i , it inspires a voltage ε j which is transmitted
by its synapse to a postsynaptic neuron. The voltage of a
postsynaptic neuron is described as

u(t) = η(t − t̂o) +
∑

j∈� j

w jε j
(
t − t j

i

) + uext (1)

with

ε j (s j ) =
[

exp

(
− s j

τ1

)
− exp

(
− s j

τ2

)]
H (s j ) (2)

where H (·) is a Heaviside step function which is set to 1 when
s j ≥ 0 and otherwise 0. s j = t − t j

i , t is the current time,

t̂o is the most recent output spike time of the postsynaptic
neuron, w j is the weight of the presynaptic neuron emitting
the j th input spike, and η(t−t̂i ) is the function of the refractory
period. � j is a set containing input spikes emitted by all the
presynaptic neurons. t j

i is the j th firing time of the input spike
train. uext is the external voltage to the neuron i , and τ1 and τ2
are constant parameters. In order to simplify the derivation of
our algorithm, we set τ1 = 2τ2 in this paper.

The STDP learning window [15] is adopted in this paper,
which is based on the STDP learning rule [6] and represented
in (3). It gives the relationship of the weight adjustment
magnitude and the spike time deviations

Wind(s2) =
{

Apre exp(−s2/τ), if s2 ≥ 0

−Apost exp(s2/τpost), if s2 < 0
(3)

with s2 = t − ti denoting the time distance from the input
time ti and the current time t . Since the input spikes fired
after t have no contribution to the current voltage states, we
set Apost = 0 in this paper. It indicates that only synapses with
input spikes emitted before the current time are adjusted, and
for simplicity, Apre is set to 1.

III. ASA LEARNING ALGORITHM

A. Algorithm Description

The supervised learning in SNN aims at finding the relation-
ship between the input and target output spikes. For traditional
algorithms, whether they are based on the time distance
between the output spike time to and the target time td with
�w = F(to, td), such as the SpikeProp, ReSuMe, and so on,
or based on the voltage distance between the voltage u(t) and
the threshold ϑ with �w = F(u(t), ϑ), such as the Tempotron
and so on, they all require detecting voltage states at all
time intervals no matter if they contain useful information.
However, studies in [27] and [28] state the existence of com-
petition among multiple stimulus in primate visual systems.
Only the stimulus winning the competition for representation
in visual cortex will gain further access to the memory systems
but not all stimuli. The selective attention mechanism shows
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the attention-enhanced information and filters out irrelevant
information.

Motivated by this mechanism, not all spike times but
only the target ones are selected as the attention enhanced
information and be detected both in the training and testing
phases in our algorithm. The neuron states at untarget spike
times are filtered out. Besides, a cost function based on the
voltage difference at the attention point is employed instead of
the traditional time difference. A learning process is completed
when the voltage of the output neuron is equal to the threshold
at all target time points, and after training, the output neuron
is fired when its voltage is equal to the threshold at a target
time point. The refractory period is added after each target
spike and output spike in training and testing, respectively.

Given n presynaptic neurons and one postsynaptic neuron,

the input spike train is denoted by Ti = {t1
i , t2

i , t3
i . . . t M

i },
where t j

i denotes the j th input spike, and the desired out-
put spike train is Td = {t1

d , t2
d , . . . , t N

d } in our algorithm.
Ti contains all input spikes emitted by all input neurons, and
without limiting the number of spikes, one input neuron can
generate. Different patterns are denoted by different target
spike trains. Consequently, our algorithm can be applicable
to multiple spikes networks and multiple pattern recognition.

Employing the SRM0 model, weight adjustment of our
algorithm at the detected target spike time td for an input j is
calculated as follows:

�w j = γ j
(
ϑ − uout

td

)

ε j (s j )
(4)

with

γ j = Wind(s j )∑m2
k=m1

Wind(sk)
(5)

where �w j represents the weight variation of the synapse
emitting the j th input spike, ϑ is the firing threshold, and uout

td
is the voltage of the output neuron at td . s j = td − t j

i denotes
the time distance from the input time t j

i to the target time td ,
and similarly, sk = td − tk

i . ε j (s j ) is the potential function
illustrated in (2). γ j is the normalized STDP parameter with
Wind(s j ) calculated by (3), and m1 and m2 are the input
index boundaries satisfying td − t j

i ∈ [t1, t2] for the input
spike time sequence.

In order to improve the learning efficiency and avoid
the ε j (s j ) calculated by (2) going to infinitesimal or zero
when s j is too large, the proper values of t1 and t2 are obtained
by setting a voltage threshold ϑv . The voltage inspired by
the input t j

i is set to 0 at time t if this t − t j
i is not in

the interval [t1, t2], which are shown in Fig. 1. The values
of t1 and t2 are derived in Theorem 2 in Section III.B.

In summary, the detailed pseudocode of our ASA algorithm
is shown in Algorithm 1.

Supposing that there are M input spikes and N target spikes.
The maximum learning epoch is defined to E po, and the
time length is T. Since our algorithm only trains at the target
time Td , the time complexity of our algorithm is O(M N E po).
For the traditional algorithms, such as the ReSuMe [21] and
the PBSNLR [22], weights are modified at all time intervals

Fig. 1. Voltage ε j (s j ) caused by the input spike t j
i is above ϑv when

t − t j
i ∈ [t1, t2].

Algorithm 1 ASA Learning Algorithm
Definition:
Ti : the set of input spikes, which contains spikes emitted all

presynaptic neurons {t1
i , t2

i , t3
i , . . . , t M

i }.
Td : the set contains target spikes {t1

d , t2
d , . . . , t N

d } of the
postsynaptic neuron.

ϑ : firing threshold of the spiking neurons.

Initialization:
The weight matrix W is initialized randomly.
Training:

For each target time tk
d :

If the voltage of the postsynaptic neuron at tk
d is not

equal to ϑ :
Step 1: Find all input spikes in Ti satisfying the

condition tk
d − t j

i ∈ [t1, t2], and save them to
the set Tm .

Step 2: Modify the corresponding weight of each
spike in Tm according to (4)-(5).

Else
Stop training of this target time tk

d .
EndIf

EndFor
Testing:
Test the voltage at all target time points. If there is voltage
at a target time not equal to ϑ , continue training until the
voltage at all target time points is equal to ϑ or it achieves
the maximum learning epochs.

with the length T. Obviously, our algorithm has less time
complexity than that of the ReSuMe and the PBSNLR, because
the length of Td is shorter than that of T .

In the spatial complexity, the ASA and the ReSuMe need
space of the same size to storage the target spike train,
the input spike train, and the weight matrix, whereas the
PBSNLR requires relatively large storage space, because all
the postsynaptic potentials induced by every synapse at the
time of all samples need to be calculated and stored before
training [22].

B. Theoretical Derivation

In this section, we give a theoretical derivation of our
algorithm.
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Lemma 1: In the SRM0 model, we provide that uout(td)
denotes the voltage function of the output neuron at the target
time td , and w j expresses the weight of the synapse emitting
the j th input spike t j

i . Assuming that in the training process,
the refractory period is added at each target time, then

∂uout(td )

∂w j
= ε j

(
td − t j

i

)
. (6)

Proof: Suppose that the output neuron only detects input
spikes with the index range j ∈ [m1, m2]. According to
the SRM0 model described in (1), the voltage of the output
neuron is

u(t) =
m2∑

j=m1

w j ε j
(
t − t j

i

) + uext + η(t − t̂o). (7)

Clearly, at an arbitrary target time td with the refractory period
added to the most recent target time t̂d , we do not need to
detect the output spike. Then, the voltage at td is

uout(td ) =
m2∑

j=m1

w jε j
(
td − t j

i

) + uext + η(td − t̂d ). (8)

Since the ε j (td − t j
i ) and η(td − t̂d ) are constants at a fixed

target time td , then

∂uout(td )

∂w j
= ε j

(
td − t j

i

)
. (9)

The result follows.
Theorem 1: For any given neurons of SNN, assume that

only input spikes with index j ∈ [m1, m2] are detected and
trained at a target spike time td , the refractory period is added
at each target time in the training, and �u j is the variation of
postsynaptic voltage inspired by the input spike t j

i , and γ j is
the proportion of �u j in postsynaptic voltage variations �u.
When

∑m2
j=m1

γ j = 1 holds, then

�w j = γ j
(
ϑ − uout

td

)

ε j
(
td − t j

i

) (10)

makes the output voltage to reach the firing threshold ϑ at
time td .

Proof: Suppose that before training, the voltage of the
output neuron at time td is denoted by uout

td , and uout2
td after

training one epoch. Clearly

�u j = ∂uout(td )

∂w j
�w j . (11)

Then, the postsynaptic voltage after training is

uout2
td = uout

td +
m2∑

j=m1

∂uout(td)

∂w j
�w j . (12)

According to Lemma 1 and (10), we get

�u =
m2∑

j=m1

ε j
(
td − t j

i

)
�w j

=
m2∑

j=m1

ε j
(
td − t j

i

)γ j
(
ϑ − uout

td

)

ε j
(
td − t j

i

) . (13)

Since
m2∑

j=m1

γ j = 1 (14)

clearly

�u = ϑ − uout
td (15)

and then

uout2
td = uout

td + ϑ − uout
td = ϑ. (16)

The result follows.
Theorem 1 indicates that all approaches for finding γ j

satisfying
∑m2

j=m1
γ j = 1 are available. The normalized

STDP rule expressed in (5) is employed in our algorithm
because of its high bionics and application performance.

To choose proper values for the parameters m1 and m2,
Lemma 2 and Theorem 2 are derived and illustrated as follows.

Lemma 2: For an arbitrary input spike t j
i , supposing that

τ1 = 2τ2, then its potential function ε j (t−t j
i ) has its maximum

value at t = t j
i + 2τ2 ln 2, and

⎧
⎪⎪⎨

⎪⎪⎩

∂ε j
(
t − t j

i

)

∂ t
> 0, if t j

i ≤ t < t j
i + 2τ2 ln 2

∂ε j
(
t − t j

i

)

∂ t
< 0, if t > t j

i + 2τ2 ln 2.

(17)

Proof: When t < t j
i , ε j (t − t j

i ) = 0. When t ≥ t j
i , by (2)

ε j
(
t − t j

i

) = exp

(
− t − t j

i

τ1

)
− exp

(
− t − t j

i

τ2

)

= exp

(
t j
i

τ1

)
exp

(
− t

τ1

)
−exp

(
t j
i

τ2

)
exp

(
− t

τ2

)
.

(18)

Taking the partial derivatives

∂ε j
(
t − t j

i

)

∂ t
= − 1

τ1
exp

(
t j
i

τ1

)
exp

(
− t

τ1

)

+ 1

τ2
exp

(
t j
i

τ2

)
exp

(
− t

τ2

)
(19)

and considering (∂ε j (t − t j
i )/∂ t) > 0, we get

− 1

τ1
exp

(
t j
i

τ1

)
exp

(
− t

τ1

)
+ 1

τ2
exp

(
t j
i

τ2

)
exp

(
− t

τ2

)
> 0

(20)

exp

(
t j
i

τ2

)
exp

(
− t

τ2

)
>

τ2

τ1
exp

(
t j
i

τ1

)
exp

(
− t

τ1

)
(21)

exp

(
t

τ1
− t

τ2

)
>

τ2

τ1
exp

(
t j
i

τ1
− t j

i

τ2

)
. (22)

According to τ1 = 2τ2
(

τ2 − τ1

τ1τ2

)
t > − ln 2 +

(
τ2 − τ1

τ1τ2

)
t j
i (23)

t < t j
i + 2τ2 ln 2. (24)
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In the same way, we can derive that if the derivative
(∂ε j (t − t j

i )/∂ t) < 0, then t > t j
i + 2τ2 ln 2. Consequently,

we obtain the maximum value at t = t j
i + 2τ2 ln 2.

Theorem 2: Supposing that there is a voltage thresh-
old ϑv < 1/4, τ1 = 2τ2, and all input spikes with
ε j (t − t j

i ) < ϑv are not detected at time t . Then, an
input t j

i is detected and trained at td only if td − t j
i ∈

[−τ1 ln(1 + √
1 − 4ϑv/2),−τ1 ln(1 − √

1 − 4ϑv/2)].
Proof: According to the function properties of

the ε j (t − t j
i ) derived from Lemma 2, the boundary

values of t that satisfy the condition ε j (t − t j
i ) ≥ ϑv are the

solutions of ε j (t − t j
i ) = ϑv

exp

(
− t − t j

i

τ1

)
− exp

(
− t − t j

i

τ2

)
= ϑv (25)

since τ1 = 2τ2

exp

(
− t − t j

i

τ1

)
−

[
exp

(
− t − t j

i

τ1

)]2

− ϑv = 0. (26)

According to the condition, ϑv < (1/4)

� = 1 − 4ϑv > 0. (27)

Therefore, this quadratic equation has two solutions

exp

(
− t − t j

i

τ1

)
= 1 ± √

1 − 4ϑv

2
(28)

then

t − t j
i = −τ1 ln

(
1 ± √

1 − 4ϑv

2

)
. (29)

According to the curvilinear properties of the quadratic
function, ε j (t − t j

i ) ≥ ϑv when

−τ1 ln

(
1+√

1−4ϑv

2

)
≤ t−t j

i ≤ −τ1 ln

(
1−√

1−4ϑv

2

)
.

(30)

Then, to each target time td , an input t j
i is detected when

td − t j
i ∈ [t1, t2], with

t1 = −τ1 ln

(
1 + √

1 − 4ϑv

2

)
(31)

t2 = −τ1 ln

(
1 − √

1 − 4ϑv

2

)
. (32)

The result follows.
Since only spikes satisfying t − t j

i ∈ [t1, t2] are detected
and trained, this mechanism avoids the emergence of infinite-
simal or zero values calculated by (2) when s j is too large.
Ignoring the presynaptic spikes exerting minor influence over
postsynaptic neurons, the conclusion of Theorem 2 improves
the training efficiency. It is applied to all the spiking neural
algorithms in our simulations for fair comparison.

In the derivation of the ASA algorithm, the interferences of
other spikes are ignored. However, in most practical appli-
cations especially when recognizing multiple patterns, the
interferences between different target spikes in training cannot
be neglected. In this case, our algorithm requires more epochs
to offset these interferences and gets convergent.

Fig. 2. Some images of the data set LabelMe. The original 256 × 256 color
images are converted into 8-bit grayscale images.

IV. SIMULATION RESULTS ON LEARNING PROPERTIES

In this section, different learning properties of our algorithm
are explored through some simulations. First, the grayscale
images of the LabelMe data set are employed to demonstrate
the classification capability and the robustness of our algo-
rithm. Then, the synthetic data on various cases are applied
to investigate the learning efficiency of our algorithm compre-
hensively. Simulation parameters are listed in the Appendix.

A. Encoding Method and Network Structure

Images from the urban and natural scene categories of the
LabelMe data set [29] shown in Fig. 2 are used here to explore
some learning properties of our method.

How to encode these images is an important problem of
image recognition. Combining the temporal encoding and
phase encoding, a feature-dependent phase encoding algo-
rithm proposed in [30] is applied to our simulations. By this
encoding algorithm, each encoding neuron is associated with
a receptive field (RF), and the intensity value of each pixel in
the RF is converted into a precisely timed action potential by
a logarithmic intensity transformation

ti = tmax − ln(axi + 1) (33)

where xi is the intensity value of pixel i , tmax is the maximum
value of the encoding window, a is a scaling factor, and ti is
the firing time of neuron i . After which, a periodic oscillation
is employed which is described as a cosine function [31]

iosc = A1 cos(wt + ϕi ) (34)

where A1 is the magnitude of the membrane oscillations,
w is the phase angular velocity, and ϕi is the phase shift of
the i th neuron in the RF defined by

ϕi = ϕ0 + (i − 1)�ϕ (35)

where ϕ0 is the initial phase and �ϕ is the constant phase
difference between nearby photoreceptor cells.

The encoding process is shown in Fig. 3. With an RF of size
n × m, the intensity value of each pixel in this RF is applied
to calculate a firing time ti of a encoding neuron by (33), and
then one obtains its periodic oscillation value iosc using (34).
For the convenience of reconstruction, each iosc is removed to
its nearest peak, and the peak values of these n × m encoding
neurons are encoded to the firing time of one neuron in the
end. Consequently, intensity values of the n × m pixels in
an RF are encoded to the firing time of one neuron. In our
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Fig. 3. Encoding process of the phase encoding algorithm.

Fig. 4. Network structure devised in our simulation. It includes an encoding
layer, a learning layer, and an output neuron. Each input neuron emits
64 spikes encoded by its connected 64 pixels.

simulations, we set a = 0.0032, tmax = 0.6 s, A1 = 1, ϕ0 = 0,
�ϕ = 2π/68, w = 100π rps, and m = n = 8.

The spiking network structure devised in our simulation is
shown in Fig. 4, which contains three parts, the encoding
layer, the learning layer, and the output neuron to generate
target outputs. The encoding layer converts 64 pixel values
into 64 spikes time of one input neuron using the method
shown in Fig. 3. The learning layer learns the input pattern by
the fully connected structure, and the output neuron gives the
output pattern.

B. Learning Performance

To demonstrate the learning performance of our learning
algorithm on image recognition tasks, two images are chosen
and recognized by a network with 1024 input neurons and one
output neuron which is described in Fig. 4. Using an RF of
size 8×8, a gray scale of 256×256 is encoded into the firing
states of 1024 neurons with each neuron emitting 64 spikes.
Each target pattern is defined as a sequence of five spikes,
[180, 280, 380, 480, 580] ms for image1, and [120, 220, 320,
420, 520] ms for image2.

The learning performance of our algorithm is shown
in Fig. 5, in which the blue quadrate points denote the voltage
of the output neuron before training at target time points,
and the red circular points show the voltage after training.

It indicates that after learning, all the voltage is equal to the
threshold 10 at target time. The firing states at the untarget
time are ignored. This simulation shows the neuron states of
our algorithm after a successful learning.

C. Memory Performance

The memory performance is an important property of an
algorithm indicating how much information a network can
load when employing the algorithm. In this section, we
investigate the memory performance of our proposed method
compared with the traditional algorithms and their improved
version. Since the amount of information can be measured
by the number of patterns, in our simulation, the number of
patterns a network can load is tested to measure the memory
performance.

The SNNs with the same network settings as the previous
experiments are employed here. The target output spike train
for each image is generated according to the homogeneous
Poisson process. The number of input images is gradu-
ally increased which are from the LabelMe database [29].
To evaluate the learning performance quantitatively in our
simulations, the correlation-based measure C [32] described in
the Appendix is employed to denote the similarity between the
target and the actual output spike trains. A group of patterns is
memorized successfully if the successful recall is above 0.8.

This simulation tests the number of patterns that an algo-
rithm can memorize with different numbers of target spikes.
To investigate the memory capability of our proposed selec-
tive attention learning mechanism, we apply the selective
attention learning mechanism to the traditional PBSNLR [22]
and ReSuMe [21], which is the ASA-based PBSNLR and
the ASA-based ReSuMe, and compare them with the ASA,
the traditional PBSNLR and ReSuMe. Like the ASA, the
ASA-based PBSNLR and ReSuMe are trained only at the
target time points, and use the error ϑ − uout

td employed
in (4). They are trained with the learning windows proposed
in PBSNLR and ReSuMe instead of our normalized STDP.

The comparison results are shown in Fig. 6, which indi-
cate that employing our proposed selective attention learn-
ing mechanism, the memory capabilities of both PBSNLR
and ReSuMe are improved significantly. Besides, the ASA
has substantially the same memory performance with the
ASA-based PBSNLR and the ASA-based ReSuMe, which
prove that the high memory capability of our algorithm is
mainly due to the selective attention learning mechanism. For
all algorithms, the more spikes in the target spike train, the
smaller memory capability an algorithm possessing, because
there are more information required to be processed for each
pattern.

D. Algorithm Robustness

The robustness is another important property of a learning
algorithm indicating the tolerate ability of different kinds of
noise. In this simulation, we add different levels of partially
occluded, Gaussian, and salt-and-pepper noise to the input
images to investigate the robustness of our algorithm. Noise
is added only in the test phases but not in the training
processes.
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Fig. 5. Learning performance of the ASA. Left: original grayscale images. Middle: encoding results. Using an RF with size 8 × 8, a gray scale of 256× 256
is encoded into the states of 1024 neurons with each neuron emitting 64 spikes. Right: voltage states before and after training, with the black bars denoting
the target spike train. Seven and six learning epochs are required to achieve convergent for these two images, respectively.

Fig. 6. Number of patterns memorized by the ASA, the traditional
PBSNLR, the ASA-based PBSNLR, the traditional ReSuMe, and the
ASA-based ReSuMe with different numbers of spikes in the target spike train.

A square with length a is applied to partially occlude an
image at a random location. Besides, a Gaussian noise with
means m = 0 and variance v, and the salt-and-pepper noise
specified by the noise density d is employed and shown
in Fig. 7(a). These noises added to input images shift some
of the firing times of the encoded spatiotemporal pattern;
50 different images are tested, and the average accuracy is
obtained shown in Fig. 7(b).

In this simulation, the SNNs with the same settings as
previous experiments are employed with original images for
training and noisy images for testing. Simulation results shown
in Fig. 7(b) indicate that our algorithm is more resistant
to these noises to some extent. This is mainly because our
algorithm tests voltage variations instead of traditional spike
time variations. Consequently, some slight shifts on the input
firing time have a smaller influence on the voltage than the
precise firing time.

For instance, successful training results of the traditional
precise spike time mechanism and our voltage detection
mechanism are shown in Fig. 8(a) and (b), respectively,
and their corresponding noisy testing results are shown
in Fig. 8(c) and (d). The blue and red bars denote the target

firing trains of two classes. It indicates that when there are
some shifts derived by noise on input firing time, in the tra-
ditional precise spike time mechanism, the actual output train
is completely different from the previous one because of the
numerous refractory periods after output spikes. Differently,
our algorithm detects spikes only in target ones, and ignores
output spikes and their refractory periods in other time points.
Fig. 8(d) shows that even some shifts are occurred on the
input firing train, it only affects the voltage to some extent.
The target firing train of the correct class still has the minimum
voltage error compared with other classes, leading to the same
recognition results as that without noise.

Since neurons cannot capture the information outside of the
target intervals in our algorithm, the accuracy reduces faster
than the traditional algorithms when the noise intensity is large
enough which is shown in Fig. 7(b). But in these cases, all of
these algorithms have bad antinoise performance.

E. Learning Efficiency

In this section, the learning efficiency of our algorithm
is investigated compared with the traditional ReSuMe [21]
and PBSNLR [22]. To evaluate the training efficiency of
these algorithms extensively, four simulations are conducted
on different cases of synthetic data, and the convergent epochs
and training accuracy for each randomly generated pattern
are tested. Since the training accuracy is tested in these
simulations, the training and testing processes share the same
data set generated by the homogeneous Poisson process.

1) The first simulation is devised to research the learn-
ing efficiency at different time lengths of spike trains.
In this simulation, there are 400 input neurons and one
output neuron. Each input and output neuron generates
spikes by homogeneous Poisson processes with the rate
r1 = 10 Hz and r2 = 50 Hz, respectively, ranging
the time length from 200 to 2800 ms. In this manner,
each neuron emits multiple spikes with firing rate r ,
then the average number of spikes a neuron generating
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Fig. 7. Test results with different types of noise. (a) Images with different noises. Left: partially occluded image. Middle: image with Gaussian noise.
Right: image with salt-and-pepper noise. (b) Recognition results of three learning algorithms on these three different noises, respectively.

Fig. 8. Learning results with noise. Learning results of the traditional
algorithms (a) with and (c) without noises, respectively. Learning results of
our algorithm (b) with and (d) without noises, respectively.

is num = r ∗ t , where t has the unit of seconds. To eval-
uate the learning accuracy quantitatively, the correlation-
based measure C defined in the Appendix is applied
to denote the training accuracy. The simulation results
shown in Fig. 9(a) indicate that the ASA can complete
learning at most 20 epochs and achieve C = 1. While the
PBSNLR and the ReSuMe require hundreds of epochs
at time lengths exceeding 800 ms, and obtain lower
accuracies than the ASA. These differences increase
with the growth of time length. Besides, it reveals that
the PBSNLR has a higher accuracy than ReSuMe but

a lower one than ASA. Although the PBSNLR shows
a better performance than the ReSuMe, it has a higher
standard deviation than other algorithms in both learning
accuracy and epoch, which indicates its instability in
learning errors.

2) The second simulation is conducted to investigate the
learning efficiency under different firing rates of spike
trains. Similar to the previous simulations, there are
400 input neurons and one output neuron. The input and
output spike trains share the same time length of 800 ms,
and the same firing rates which are generated by a homo-
geneous Poisson process ranging from 20 to 300 Hz.
Simulation results shown in Fig. 9(b) reveal that the
ASA can complete learning tasks at most 40 epochs
and only requires five epochs at 20 Hz. Whereas, the
PBSNLR and the ReSuMe require hundreds of epochs
to be convergent when the firing rate exceeds 50 Hz.
Similar to the previous results, our method can achieve
higher accuracy than the PBSNLR and the ReSuMe.
Fig. 9 shows that the ASA reduces computational epochs
dramatically, and obtains a higher accuracy compared
with the two popular algorithms in various learning
situations of multispike sequence learning.

3) The third group of simulations explores the running
time on one epoch instead of the number of epochs.
In these simulations, the running time to complete
one learning epoch with both different firing rates and
various time lengths is detected. For each algorithm,
learning time of 50 learning epochs are tested and
the average is obtained. First, the running time under
different firing rates is investigated. There are 500 input
presynaptic neurons with the time length of 800 ms, and
both the input and output trains have the same firing
rates, ranging from 10 to 200 Hz. The running time
of these three algorithms under different firing rates
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Fig. 9. Learning results on accuracy and efficiency. (a) Learning results at different time lengths. (b) Learning results under different firing rates.

TABLE I

RUNNING TIME OF ONE EPOCH FOR VARIOUS FIRING RATES

is shown in Table I, which reveals that our method
requires the least amount of running time compared
with the PBSNLR and the ReSuMe in all situations.
Besides, more time is demanded for each algorithm
with increasing firing rate. Second, to study the factors
affecting the time consuming of these algorithms, one
more simulation is conducted at different time lengths.
In this simulation, the running time of one epoch is
tested. Similar to the previous simulations, there are
500 input neurons, with the time step of 1 ms. In par-
ticular, the input and target spike trains are generated
by homogeneous Poisson processes with the number of
spikes fixed to 10. Simulation results shown in Table II
indicate that our ASA takes dramatically less running
time than the PBSNLR and the ReSuMe. Besides, the
running time of the ASA algorithm has no prominent
change with time length ranging from 100 to 700 ms,
whereas the running time of the PBSNLR and ReSuMe

TABLE II

RUNNING TIME OF ONE EPOCH FOR VARIOUS TIME LENGTHS

increases obviously. This reveals the advantage of the
selective attention mechanism employed in ASA, which
enables our ASA to concentrate attention on target
contents at target time and does not have to scan all
time points as traditional algorithms do. Consequently,
the running time of ASA is only relative to the number
of target spikes, and has no obvious relation to the time
length. Our algorithm relaxes the restrictions of SNN’s
applications, and extends temporal encoding’s range to
arbitrary large.

4) To investigate the influence factor on the learning effi-
ciency of our algorithm, the unnormalized ASA is
trained with �w j = ηγ j (ϑ − uout

td ), which adopts the
traditional unnormalized STDP learning window with
γ j = Wind(s j ) instead of the normalized one in (5). The
ASA and its unnormalized version are conducted with
different lengths of target spike trains on one image in
the LabelMe data set.
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Fig. 10. Learning epochs and learning time of the ASA compared with the
unnormalized ASA. All these simulations achieve C = 1.

TABLE III

RUNNING TIME FOR VARIOUS LENGTHS OF TARGET TRAINS

Fig. 10 shows the comparison results on the learning epochs
and learning time of the ASA compared with the unnormalized
ASA, which indicates that our ASA with normalization oper-
ating requires less learning epochs and learning time than that
of the unnormalized ASA. This suggests that the normalized
STDP learning window in our algorithm plays an important
role in the effective learning. Table III shows the learning
time of one epoch of the ASA and the unnormalized ASA,
indicating that with the selective attention mechanism, these
two algorithms require the same learning time to complete one
epoch.

Simulations in this section demonstrate that our algorithm
not only achieves a good performance on memory capability
and robustness, but also reduces computational time dramat-
ically. The accurate weight expression mechanism with the
normalized STDP rule makes our algorithm to require less
epochs for convergence, and the selective attention mechanism
enables our algorithm to consume less time in each epoch than
other SNN algorithms.

V. CLASSIFICATION ON THE UCI DATA SETS

In this section, the data sets of the Iris, Breast Cancer
Wisconsin (BCW), Glass Identification, Piama Diabetes,
and Liver Disorders from the UCI machine learning
repository [33] are employed to investigate the capability of
our algorithm over classification tasks. The number of fea-
tures M and classes N in each data set are shown in Table IV.

TABLE IV

FIVE UCI DATA SETS ADOPTED FOR CLASSIFICATION

Fig. 11. Continuous input variable encoded by local RFs. The
input variable is normalized to [0, 1], and a nonfiring zone is defined
to avoid spikes in later time. Every no firing neuron has code −1.
For instance, 0.28 is encoded to a spike train of 12 neurons:
−1, 7, 135, −1, 185, 14,−1,−1,−1,−1,−1,−1.

In our classification, ten cross-validations are employed, and
the average accuracies of training and testing sets are obtained.
By the ten cross-validations, the number of samples in the
training and testing set is shown in Table IV.

For better distinguishing the data, each feature value is
mapped into a high-dimensional space using the population
encoding method [34]. Several Gaussian RFs are defined to
express the excitation, which is proportional to input values.
These Gaussian RFs and their width σ and centers ci are
defined by the following equations:

f (xi ) = A2 exp

(
− (xi − ci )

2

2σ 2

)
(36)

σ = 1

γ (m + 1)
(37)

ci = i − 1

m − 1
(38)

where A2 defines the encoded maximum value, m is the
number of RFs, and γ controls the width σ . In our simulation,
to generate 12 uniforming distributed Gaussian RFs in [0, 1],
we set γ = 1.5, m = 12, and A2 = 400. As shown
in Fig. 11, these RFs can distribute an input variable over
12 input neurons, with each input neuron emits only one spike.
Consequently, one feature is expressed by 12 neurons, and the
encoding results of one sample with four features in Iris are
shown in Fig. 12.

The network structure devised for this classification is
shown in Fig. 13, and the input layer has 12 ∗ M neurons
with each 12 neurons representing one feature. For expressing
the characteristics of the four features comprehensively, there
are M hidden neurons possessing local connections to each
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Fig. 12. Encoding result of one sample from Iris. Each feature is represented
by the spikes of 12 neurons.

Fig. 13. Network structure consisting of input neurons, hidden neurons, and
output neurons. Every 12 input neurons connect to one hidden neuron.

12 input ones. In the training period, only synaptic weights
from input to hidden neurons are adjusted. The synaptic
efficiencies in the output layer denote the weight of a feature fi

in the decision making, and they are fixed to the emergence
probability p fi c with p fi c = N fi c/Nc , where N fi c is the
number of class c’s training samples that contain fi in the
i th feature, and Nc is the number of training samples in
class c. In the Glass Identification, since the high similarity of
data between different classes, the mean value of each feature
is adopted to calculate this probability: p fi c = �100/| fi −
m fi c| + N fi c/Nc�, where m fi c is the mean value of the
i th feature in class c. In the decision making, a feature fi votes
to class c when the i th hidden neurons fire at the target times
of c. To collect the vote for class c, the cth readout neuron adds
a normalized p fi c when feature fi votes to class c. A sample
belongs to the class possessing the maximum vote value.

In this application, the sth sample of class c has the input
spike train tsc

i for four features and a target spike train tsc
d ,

which is obtained by tsc
d = tsc

i + D, with the parameter D
a constant vector which is set to 3 in our simulations. The
local connections in our network enable us to train each
independent subnetwork concurrently, since the output layer
does not require training.

TABLE V

COMPARED WITH DIFFERENT ALGORITHMS FOR THE UCI DATA SET

1) Compared With Algorithms: We compare the convergent
accuracy and learning efficiency of the ASA with some
traditional algorithms, the SpikeProp [17], the ReSuMe [21],
the PBSNLR [22], and the support vector machines (SVM).
These SNN algorithms are conducted with the same network
settings as our algorithm. The standard LIBSVM toolbox [35]
with a radial-basis-function (RBF) kernel is applied to this
classification. Different features are trained synchronously in
our simulations of this section, and the training of a sample is
stopped when C > 0.95 or it is not changed on 60 successive
cycles.

Comparison results shown in Table V indicate that our algo-
rithm has a better performance than the SpikeProp, ReSuMe,
and PBSNLR, and has comparable accuracy with the SVM.
In learning efficiency, our algorithm consumes less than 1 s for
training, which is comparable with the SVM, and outperforms
the SNN algorithms significantly. Like the LIBSVM, the
training efficiency of our algorithm can meet the requirement
of real-world applications.

2) Compared With SNN Classifiers: To further explore the
learning performance of our method, we compare it with
the existing SNN classifiers in terms of number of neu-
rons, parameters, and training performance. The pioneered
classifier based on the SpikeProp [17] and a classical clas-
sifier employing the SWAT [23] is compared. Since the
recently proposed classifiers based on the self-regulating
methods [36]–[39] are the current most efficient ones, their two
newest methods, the SRESN classifier [25] and the growing-
pruning SNN (GPSNN) [39] are compared in our simulation.

The comparative results are shown in Table VI, which
indicate that the SRESN and the GPSNN require less neurons
than other classifiers, since the self-regulating method enables
them to add neurons dynamically according to the similarity
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TABLE VI

COMPARED WITH DIFFERENT CLASSIFIERS FOR THE UCI DATA SET

of the data. Since neurons in the SRESN and the GPSNN
are fully connected, and in our method are locally connected,
the number of parameters for each neuron in our method is
less than them. Then, when the samples have less features
or large gap between data, the ASA has less parameters
than the SRESN and the GPSNN, and conversely has more
parameters.

Table VI shows that even with more neurons or parameters,
our algorithm is still the most efficient one. The results reveal
that the classification accuracy of the ASA is comparable with
that of the other classifiers. Besides, our algorithm can be
applied to various spiking network structures to achieve higher
accuracy and reduce redundancy neurons.

VI. CONCLUSION

In this paper, an efficient supervised learning algorithm, the
ASA is presented for SNNs. The accurate weight modification
method using the normalized STDP learning rule enables our
algorithm to achieve a rapid convergence. Besides, motivated
by the selective attention mechanism of the primate visual
system, our algorithm only focuses on the main contents in
the target spike trains and ignores neuron states at the untarget
ones, which makes our algorithm to achieve a significant
improvement in efficiency for learning one epoch. Simulation
results indicate that our algorithm outperforms the existing
learning algorithms in learning efficiency, noise immunity,
and learning capacity. Besides, ASA achieves a comparable
learning performance with the SVM.

Our algorithm is derived from the SRM0 model with � j

containing all input spikes, but the same derivation process is
feasible to all models whose voltage u can be expressed by
an equation of time t specifically. Besides, with this training
efficiency, the SNN can be applied to various applications
with arbitrary real-value analog inputs,and it is feasible to
investigate a deep spiking model combining the strong com-
putation capability of spiking neurons and the good feature
representation ability of deep learning.

TABLE VII

LEARNING RATES IN EXPERIMENTS

TABLE VIII

VALUE OF τ1 (ms) AND ϑ (mv) IN EXPERIMENTS

APPENDIX

A. Experimental Details

Our experiments run on MATLAB 7.12.0 on a quad-core
system with 16-GB RAM in Windows environment. All para-
meters of our algorithm are empirical values. For traditional
algorithms, the parameter value scopes provided by their
corresponding references are employed in our simulations, and
many different values in these scopes are tested to find the one
achieving the highest accuracy, which is chosen and shown in
Tables VII and VIII. They enable us to achieve the compa-
rable learning performance with their original references. The
learning rates of the PBSNLR and the ReSuMe are shown
in Table VII. τ1 and ϑ in various simulations are shown
in Table VIII.

In the simulations of Section IV, the training of one pattern
is stopped when its training accuracy C > 0.95 or when it
achieves the maximum learning epochs 5000. The maximum
learning accuracy and its corresponding training epoch of these
5000 epochs are obtained. In the simulations of Section V, the
training time is only allowed in 10 000 s.

The maximum time length tmax is 600 ms in the simulations
of Figs. 5–7 and 10, and Table III, and 400 ms in Table V. The
time step in all simulations is 1 ms. The ASA-based PBSNLR
has a learning rate 0.01, and the ASA-based ReSuMe and the
unnormalized ASA have a learning rate 0.05. The learning
rates of the SpikeProp in Table V are set to 0.0005–0.001.
The LIBSVM has RBF kernal with c = 1 and g = 0.25 for
Iris, c = 1 and g = 0.12 for BCW, c = 1.2 and g = 0.4 for
Glass Identification, c = 1 and g = 0.17 for Liver Disorders,
and c = 1.2 and g = 0.125 for Piama Diabetes.

B. Error Measures

To evaluate the learning accuracy, we use the correlation-
based measure method of C [32] to denote the similarity
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between the target and actual output spike trains by

C = vd · vo

|vd ||vo| (39)

where vd and vo are the vectors obtained by the convolution
of the target and actual output spike trains using a Gaussian
filter

gi (t) =
Ni∑

m=1

Gσ/
√

2

(
t − t i

m

)
(40)

in which Ni is the number of spikes, t i
m is the mth spike time,

and Gσ/
√

2(t) = exp[−t2/σ 2]. vd · vo in (39) is the inner
product, and |vd |, |vo| are the Euclidean norms of vd and vo,
respectively. The standard deviations at the target and actual
output time are set to σd = σo = 1.

For the ASA, when the classification accuracy of several
patterns is evaluated, such as in Sections IV-C, IV-D, and V,
the C is calculated to measure the similarity between the
output and target spike trains. In this situation, the vector vo in
our method is obtained by target intervals instead of traditional
all time intervals. When the training accuracy of one pattern
is evaluated, the C is obtained by the voltage of the output
neuron at target times with

gi (u) =
Ni∑

m=1

Gσ/
√

2

(
u − ui

m

)
(41)

where Ni is the number of spikes, and ui
m is the voltage at the

mth spike time. In this situation, gi (u) is employed instead
of (40) to test the similarity of the neuron voltage and the
threshold, such as in Section IV-E.
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