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Abstract – Revealing complicated behaviors from time series constitutes a fundamental problem
of continuing interest and it has attracted a great deal of attention from a wide variety of fields
on account of its significant importance. The past decade has witnessed a rapid development
of complex network studies, which allow to characterize many types of systems in nature and
technology that contain a large number of components interacting with each other in a complicated
manner. Recently, the complex network theory has been incorporated into the analysis of time
series and fruitful achievements have been obtained. Complex network analysis of time series
opens up new venues to address interdisciplinary challenges in climate dynamics, multiphase flow,
brain functions, ECG dynamics, economics and traffic systems.

perspective Copyright c© EPLA, 2016

Introduction. – Characterizing dynamical processes
in a time-dependent complex system from observed time
series of just one or more variables is a fundamental prob-
lem of significant importance in many fields ranging from
physics and chemistry to economy and social science. Dif-
ferent time series analysis methods have been developed
to fulfill this challenging task, e.g., chaos analysis [1],
fractal analysis [2,3], recurrence plot [4], complexity mea-
sure [5], multiscale entropy [6], and time-frequency rep-
resentation [7]. Time series analysis has been broadly
adopted in scientific research and engineering applica-
tions. Many theoretical developments for time series anal-
ysis have significantly contributed to the understanding
of complex systems. However, when system complexity
increases, it becomes difficult to describe the dynami-
cal behavior from time series and traditional time series
analysis methods have difficulty in coping with the spe-
cific burdens of this increased complexity. During the
last decade, a new multidisciplinary methodology using
complex network has emerged for characterizing complex
systems [8–26]. Charting the interactions among system
components, abstracted as nodes and edges, has allowed
us to represent a complex system as a complex network

and then assess the system in terms of network theory.
Recently, several novel methodologies have been proposed
to map a univariate/multivariate time series into a com-
plex network. These methods have been applied to ad-
dress interdisciplinary challenges and have already proven
great potential for characterizing important properties of
complex dynamical systems. The literature on complex
network analysis of time series is growing at a very fast
rate due to its wide applications in a large variety of
research fields.

Complex network analysis of univariate time se-
ries. – We start from a time series xt, t = 1, 2, 3, . . . , N
where N is the length of the measured record. Zhang
and Small [27] were the first to construct a complex net-
work from a pseudoperiodic time series. They divided
a pseudoperiodic time series into disjoint cycles accord-
ing to the local minimum (or maximum), and then con-
structed a network by regarding each cycle as a node
and determining the connection between nodes in terms
of phase space distance between the corresponding cy-
cles. Xu and Small [28] developed an intriguing method
for inferring complex network from xt and indicated that
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Fig. 1: (Colour online) The structure of complex network con-
structed via phase space reconstruction from a chaotic time
series of (a) Lorenz system; (b) Duffing system; (c) Rössler
system. Figure from ref. [31].

the network motif distribution allows characterizing dif-
ferent types of xt. Yang et al. [29] proposed a proce-
dure for constructing complex networks from the corre-
lation matrix of xt. They first divided a time series into
many segments and then constructed a complex network
by regarding each segment as a point and determining the
edge between nodes in terms of the Pearson correlation
coefficient. Gao et al. [30,31] proposed methods to con-
struct complex networks from experimental flow signals
and employed network motifs to uncover the nonlinear
flow behaviors underlying two-phase flows. In addition,
Gao et al. [32] developed a directed weighted complex net-
work to characterize chaotic dynamics from time series.
The structures of complex networks constructed via phase
space reconstruction from three chaotic systems are shown
in fig. 1.

Another basic approach is viewing a time series as a
landscape (fig. 2) leading to a visibility graph (VG) [33]
which is an efficient and fast method for constructing a
complex network from a time series. Figure 2 presents a
scheme of the visibility algorithm. In the upper zone we
plot the first 20 values of a periodic series by using ver-
tical bars. Considering this as a landscape, one can link
every bar (every point of the time series) with all those
that can be seen from the top of the considered one (gray
lines), obtaining the associated graph (shown in the lower
part of the figure). In this graph, every node corresponds,
in the same order, to series data, and two nodes are con-
nected if visibility exists between the corresponding data,
that is to say, if there is a straight line that connects the
series data, provided that this “visibility line” does not
intersect any intermediate data height. VG has been suc-
cessfully implemented in different fields [34–43]. Lacasa
et al. [44] developed a horizontal visibility graph (HVG)
for analyzing time series. Recently, Gao et al. devel-
oped a limited penetrable visibility graph (LPVG) [45,46]
and a multiscale limited penetrable horizontal visibility
graph (MLPHVG) [47] to analyze nonlinear time series.
The limited penetrable horizontal visibility graph is a de-
velopment of the HVG and LPVG. In particular, if the

Fig. 2: Example of a time series (20 data values) and the as-
sociated graph derived from the visibility algorithm. In the
graph, every node corresponds, in the same order, to series
data. The visibility rays between the data define the links
connecting nodes in the graph. Figure from ref. [33].

limited penetrable distance is set to be L, a connection
between two nodes exists if the number of in-between
nodes that block the horizontal line is no more than L.
The LPVG and MLPHVG not only inherit the merits of
VG but also present a good anti-noise ability, which ren-
der LPVG and MLPHVG particularly useful for analyzing
real signals polluted by unavoidable noise. The LPVG
method has been successfully implemented to analyze
many real signals from different fields, e.g., experimental
flow signals [46], EEG signals [47–49], electromechanical
signals [50]. Moreover, many developments of VG have
been proposed, e.g., [51–53].

A third important network approach for analyzing time
series is the recurrence network (RN), which has under-
gone an explosive growth in recent years [54–58]. In a RN,
Ri,j = Θ(ε − ‖−→x (i)− −→x (j)‖), i �= j where Θ is the Heavi-
side function, −→x (i) is a phase space vector i = 1, 2, . . . , N ,
and N is the number of phase space vectors. The indi-
vidual phase space vector (−→x (i)) serves as a node and
the existence of an edge indicates the occurrence of a re-
currence, i.e., the distance measure (Ri,j) between a pair
of nodes in the phase space is smaller than a threshold
(ε). RN has been successfully applied to many fields,
e.g., EEG data [59], cardiovascular data [60], turbulent
heated jets [61], multiphase flow system [62–65], climate
system [66–68]. To give an application example, Marwan
et al. [68] demonstrated that the RN allows identifying
qualitative transitions in observational data, e.g., when
analyzing paleoclimate regime transitions. They defined a
network divergence (ΔSi = Sin

i − Sout
i ) as the difference

between in- and out-strength and found that negative val-
ues of network divergence (ΔS) indicate the source regions
of extreme events whereas positive values indicate sinks.
They analyzed RN from extreme rainfall during Austral
winter season, in fig. 3(a), and found negative network
divergence values within the southeastern South America
region, indicating that this region is a source region of ex-
treme rainfall although it is one of the exit regions of the
low-level moisture flow from the Amazon region. For the
southeastern South America region, they found high val-
ues of impact not only in the direct vicinity of southeastern
South America but also at the eastern slopes of the Central
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(a) (b)

Fig. 3: (Colour online) (a) RN divergence of extreme rainfall
network during Austral winter season. Negative values indi-
cate source and positive values indicate sink regions of extreme
rainfall; (b) impact of a region (here the southeastern South
America, marked by the box) in form of contributing propa-
gated extreme rainfall. Figure from ref. [68].

Andes (fig. 3(b)), which suggests that extreme rainfall at
the Central (in particular, Bolivian) Andes will precede
after rainfall events in the southeastern South America
region.

There are also many other methods for mapping a time
series into a complex network, such as the methods based
on stochastic processes [69], coarse geometry theory [70],
nonlinear mutual information [71], or event synchroniza-
tion [72]. Recently, McCullough and co-workers [73] have
used ordinal codings to construct networks from time se-
ries. The time series is first replaced by a sequence of
permutations of integers, where each permutation encodes
the shape of the time series waveform in a short window.
These permutations then map to nodes of a complex net-
work and nodes are connected if the corresponding permu-
tations occur in succession. Effectively these permutation
methods provide a robust partitioning of state space.

Wide applications of complex network in real
data analysis. – Complex network analysis of time se-
ries has been widely used to solve challenging problems in
different research fields. Liu et al. [74] employed VG to
infer complex networks from time series of energy dissipa-
tion rates in three-dimensional fully developed turbulence.
Zhuang et al. [75] used VG to analyze financial time se-
ries and identified important historical incidents that in-
fluenced market integration coincide with variations in the
measured graphical node degree. Yang et al. [76] pro-
posed a novel VG-based method and applied this method
to the analysis of empirical records for stock markets in
USA, in which series segments are mapped to VG as
descriptions of the corresponding states and the succes-
sively occurring states are linked. Qian et al. [77] em-
ployed VG to investigate 30 world stock market indices
and a universal allometric scaling law was uncovered in
the minimal spanning trees, whose scaling exponent is in-
dependent of the stock market and the length of the stock
index. Ahmadlou et al. [52] improved the VG to ana-
lyze EEG signals associated with autistic children. Gao

et al. [53] proposed an adaptive optimal kernel VG, which
combines the advantages of VG and adaptive optimal-
kernel time-frequency representation, and applied it to
characterize the EEG recordings associated with epileptic
seizures. Subramaniyam et al. [59] proposed the applica-
tion of randomness and nonlinear independence test based
on RN measures to distinguish between the dynamics of fo-
cal and nonfocal EEG signals. Ramı́rez et al. [60] used RN
to distinguish pregnancies already in the second trimester,
using the cardiovascular time series including the variabil-
ity of heart rate and systolic and diastolic blood pressures.
Charakopoulos et al. [61] used a phase space reconstruc-
tion and VG to analyze experimental temperature time
series from a vertical turbulent heated jet and suggested
that the complex network approach allows distinguishing,
identifying, and exploring in detail various dynamical re-
gions of the jet flow. Telesca et al. [78] used VG to inves-
tigate the seismicity of Italy between April 16, 2005 and
December 31, 2010. Jiang et al. [79] used VG to construct
complex networks from heartbeat interval time series and
investigated the statistical properties of the network be-
fore and during chi and yoga meditation. Meenatchidevi
et al. [80] investigated the scale invariance of combustion
noise generated from turbulent reacting flows in a con-
fined environment using complex networks. Zou et al. [81]
employed VG to analyze the daily and monthly sunspot
series and got some new insights. Tang et al. [82] con-
structed and analyzed complex networks from traffic time
series and indicated that complex network is a practical
tool for exploring dynamics in traffic time series. Banerjee
et al. [83] presented a fresh and broad yet simple approach
towards information retrieval in general and diagnostics in
particular by applying the theory of complex networks on
multidimensional, dynamic images. Deza et al. [84] con-
structed and analyzed global climate complex networks.
Gao et al. [85] proposed an approach combining econo-
metrics and complex network theory to explore the trans-
mission mechanism of forex burden fluctuant patterns.
Ghaffari et al. [86,87] analyzed the dynamics of static
friction, i.e., nucleation processes, with respect to friction
networks, and indicated that complex networks can suc-
cessfully capture the crack-like shear ruptures and possible
corresponding acoustic features.

Brain network represents an important application of
complex network analysis of time series. The human brain,
as one of the most complicated and complex systems in na-
ture, is an open, dissipative, and adaptive dynamical sys-
tem with immense functionality, which can be regarded as
a network with lots of interacting subsystems. There are
so many related works in brain network analysis, and we
here cite a few as examples as follows: Chavez et al. [88]
analyzed the connectivity structure of weighted brain
networks extracted from spontaneous magnetoencephalo-
graphic signals of healthy subjects and epileptic patients
(suffering from absence seizures) recorded at rest and sug-
gested that modularity plays a key role in the functional
organization of brain areas during normal and pathological
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neural activities at rest. Carbonell et al. [89] investi-
gated the role of dopamine in the topological organization
of brain networks at rest and concluded that dopamine
plays a role in maintaining efficient small-world proper-
ties and high modularity of functional brain networks,
and in segregating the task-positive and default-mode
networks. Liu et al. [90] explored abnormal functional
magnetic resonance imaging (fMRI) resting-state dynam-
ics, functional connectivity, and weighted functional net-
works, in a sample of patients with severe Alzheimer’s
disease and age-matched healthy volunteers. Using net-
work analysis of DTI data from healthy volunteers, and
meta-analyses of published MRI studies in 26 brain disor-
ders, Crossley et al. [91] indicated that lesions across dis-
orders tend to be concentrated at hubs. Gong et al. [92]
summarized the current findings and historical under-
standing of structural and functional connectomes in de-
pression, focusing on graph analyses of depressive brain
networks. Dai et al. [93] employed resting-state fMRI
data and voxel-based graph-theory analysis to systemati-
cally investigate intrinsic functional connectivity patterns
of whole-brain networks in Alzheimer’s disease patients
and healthy controls. Using simultaneous EEG/functional
MRI and functional MRI/DTI data, Zhang et al. [94]
identified the neural and anatomical basis of variability
in regional functional architecture, and revealed disease-
specific changes. Their findings shed light on the dynamic
organization of normal and disordered brain networks.
Liang et al. [95] employed graph-based modularity analy-
sis to identify the default-mode network, executive-control
network, and salience network during an N-back working
memory (WM) task and further investigated the modu-
lation of intra- and inter-network interactions at different
cognitive loads. Lehnertz et al. [96] well reviewed analysis
techniques for human epileptic brain networks and sum-
marized recent findings derived from studies investigating
these networks. More examples and methods for inferring
brain networks can be seen in ref. [96]. It is believed that
the brain network analysis will advance the understanding
of dynamical diseases and may guide new developments for
diagnosis, treatment, and control.

Multi-information fusion in complex network. –
Besides the above network inference methods and their

applications, more recently, the multi-information fusion
in complex network gradually has become a hot topic, es-
pecially in the nowadays Big Data time. The complex
network methods dedicated to multivariate time series
analysis are drawing increasing attention on account of
their significant importance. Kramer et al. [97] proposed
a method for inferring complex networks from multivari-
ate time series, which yielded as output both the inferred
network and a quantification of uncertainty in the number
of edges. Jachan et al. [98] introduced the nonparamet-
ric partial directed coherence that allows disentanglement
of direct and indirect connections and their directions in a
network. Gao et al. developed the multivariate RN [62,63]

(a) (b)

Fig. 4: (Colour online) (a) Schematic diagram for the con-
struction of a directed weighted complex network from multi-
variate time series. (b) Topological structure of the complex
network generated from the multivariate time series shown
in (a). Figure from ref. [102].

and multivariate weighted RN [99] to analyze multivariate
time series, and then applied them to characterize non-
linear flow behaviors underlying multiphase flow. Lucas
et al. [100] presented a non-parametric method to analyze
multivariate time series, based on the mapping of a mul-
tidimensional time series into a multilayer network, which
allows to extract information on a high dimensional dy-
namical system through the analysis of the structure of
the associated multiplex network. Nakamura et al. [101]
described a method for constructing networks from multi-
variate nonlinear time series, in which each time series is
regarded as a node and the connection between nodes is
determined in terms of small-shuffle surrogate method.

More recently, three novel methodologies [102–104] have
been proposed for realizing multi-information fusion in
a complex network. In particular, Gao et al. [102] pro-
posed a modality transition-based network for mapping
the experimental multivariate measurements into a di-
rected weighted complex network. The basic idea is the
following: For a multivariate time series, e.g., four ex-
perimental signals of equal length of L, we use a moving
window that contains four sub-time series to partition the
four time series. In particular, the moving window slides
with the time from left to right by a step of S and the
length of each window is W . Thus we can partition the
four time series into (L − W + S) windows. Within each
window, we first calculate the Pearson correlation coef-
ficient for each pair of sub-time series. We thus obtain
the correlation coefficient r12, r13, r14, r23, r24, r34, re-
spectively, and denote each correlation coefficient as an
element of the modality as follows: r12 → A, r13 → B,
r14 → C, r23 → D, r24 → E, r34 → F . Then we rank the
six correlation coefficients in ascending order to get a per-
mutation of ABCDEF, named as a modality, for each win-
dow. The largest number of modality is the permutation
of ABCDEF, i.e., 6! = 720. We represent each modal-
ity as a node and determine the edge according to the
transition of modality. In particular, node i (e.g., modal-
ity FBCEAD) and node j (e.g., modality FEBCAD) are
connected if the modality FBCEAD changes to modality
FEBCAD in one time step and the direction is from node
i to node j. A weight wij of an edge is the number of
times for the transition from modality i to modality j.
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Note that self-connections of a node are excluded. Re-
peated transitions between modalities lead to edges with
large weights. Figure 4 demonstrates the construction of a
modality transition-based network from multivariate time
series.

Gao et al. [103] also developed a multiscale complex net-
work and clustering coefficient entropy for analyzing mul-
tivariate time series. The basic procedure for constructing
a multiscale complex network from multivariate time se-
ries is as follows: For a multivariate signals that contains
p sub-signals of equal length L ({xk,i}L

i=1, k = 1, 2, . . . , p),
we first perform a coarse-grain process to define tempo-
ral scales and further obtain multivariate coarse-grained
signals as follows:

ys
k,j =

1
s

js∑

i=(j−1)s+1

xk,i (1)

where s is the scale factor and 1 ≤ j ≤ �L
s �, k =

1, 2, . . . , p. Then we use multivariate embedding theory
to construct a complex network from each obtained ys

k,j ,
i.e., constructing a complex network at a different scale
factor s. Specifically, we perform the multivariate phase
space reconstruction on the {xk,i}L

i=1, k = 1, 2, . . . , p as
follows:

Xm(i) = [x1,i, . . . , x1,i+(m1−1)τ1 , x2,i, . . . ,

x2,i+(m2−1)τ2 , . . . , xp,i, . . . , xp,i+(mp−1)τp
], (2)

where τ = [τ1, τ2, . . . , τp] and M = [m1, m2, . . . , mp] ∈ Rp

is the vector of time delay and vector of embedding di-

mension, respectively, and Xm(i) ∈ Rm(m =
p∑

k=1
mk).

Then we can infer multiscale complex networks from
multivariate signals {xk,i}L

i=1, k = 1, 2, . . . , p by the fol-
lowing steps: a) we produce (L − n) composite delay vec-
tors Xm(i) ∈ Rm, where n = max{M} × max{τ} and
i = 1, 2, . . . , L − n. b) We define the phase space distance
between any two vectors Xm(i) and Xm(j), j �= i in terms
of maximum norm

d[Xm(i), Xm(j)] = max
l=1,...,m

{|x(i+l−1)−x(j+l−1)|}. (3)

c) We then regard each phase space vector as a node and
use the phase space distance to determine the edges for
constructing a complex network. By choosing a thresh-
old, we obtain the adjacency matrix A of the complex
network: An edge between node i and j exists (Aij = 1) if
the phase space distance between them is smaller than the
threshold; while node i and j are not connected (Aij = 0)
otherwise. The topology of the derived complex network
at different scales is determined entirely by the adjacency
matrix A. d) Finally, we obtain the multiscale complex
networks by performing steps a)–c) on each coarse-grained
multivariate signals. The threshold can be determined by
the percentage (i.e., 15%) of total variation Tr(S), where
S is the covariance matrix of the multivariate signals. Gao

(a) (b)

(c) (d)

(e)

Fig. 5: (Colour online) Community structures of the multi-
frequency complex networks for five horizontal oil-water flow
patterns. (a) Stratified flow pattern (ST); (b) stratified flow
with mixing at an interface pattern (ST&MI); (c) dispersion of
oil in water and water flow pattern (D O/W&W); (d) disper-
sion of water in oil and oil in water flow pattern (D W/O&D
O/W); (e) dispersion of oil in water flow pattern (D O/W). The
networks from different flow patterns exhibit distinct commu-
nity structures and the community structures faithfully repre-
sent the structural features of different flow patterns. Figure
from ref. [104].

et al. applied their proposed multiscale complex network
to analyze multi-channel measurements from gas-liquid
flows and suggested that multiscale complex networks al-
low quantitatively revealing the nonlinear flow behavior
governing the transitions of flow patterns from the per-
spective of multiscale analysis and complex network analy-
sis. Moreover, Gao et al. [104] proposed a multi-frequency
complex network for analyzing multivariate time series
and implemented it to uncover the flow structures under-
lying horizontal oil-water flows. The detected community
structures of the multi-frequency complex networks for five
horizontal oil-water flow patterns are shown in fig. 5. The
results allow us to recognize different horizontal oil-water
flow patterns and further pave a way for realizing network
visualization of complex flow patterns from a community
structure perspective.

Multiphase flow is commonly observed in many indus-
trial applications and its behaviors under a wide range of
flow conditions and inclination angles constitute an out-
standing interdisciplinary problem [105,106]. Due to the
interplay among many complex factors such as fluid tur-
bulence, phase interfacial interaction, local relative move-
ments between phases, multiphase flow exhibits highly
irregular, random, and unsteady flow structures and thus
represents a typical complex system. The above re-
sults render the complex network as a powerful tool for
characterizing the complicated flow behaviors underlying
different multiphase flow systems from multi-channel mea-
surements. These results also deepen the understanding
about the flow mechanism governing the formation and
evolution of different multiphase flow patterns.
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Conclusions. – In summary, we have reviewed the cur-
rent status in complex network analysis of time series,
and presented some often used but also newly developed
methodologies. Broader applicability of these novel meth-
ods have been demonstrated and articulated. Complex
network analysis that originates from graph theory has
undergone a brilliant development in the past decade, and
it has contributed significantly to the understanding of
complex systems. Complex network analysis of time se-
ries brings us a new analytical framework for character-
izing complicated behavior from observational data. This
will have a strong impact on a number of applications
because abundant observational data exist in many re-
search fields. Furthermore, new challenges for complex
network analysis of time series appear in different fields.
For example, in the brain network analysis, how to effi-
ciently define the brain functional connectivity and then
infer brain network from EEG recordings or fMRI data
to probe the underlying complicated dynamics still repre-
sents a significant challenge. In the study of multiphase
flow, new complex network methods are required to re-
alize the multi-information fusion for coping with the in-
creased complexity underlying the new multiphase flow
system. These challenges will facilitate the generations of
new methods for mapping time series into a complex net-
work and correspondingly the characterization of various
complex networks from different real data will bring out
new network topological measures and then promote the
topological analysis of network structure. Complex net-
work analysis of time series could open up new venues for
cross-fertilization between network theory and time series
analysis, and also provide a fascinating analytical frame-
work for addressing interdisciplinary challenges.
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