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Climate networks have proven to be a valuable method to investigate spatial connectivity patterns

of the climate system. However, so far such networks have mostly been applied to scalar

observables. In this study, we propose a new method for constructing networks from atmospheric

wind fields on two-dimensional isobaric surfaces. By connecting nodes along a spatial environment

based on the local wind flow, we derive a network representation of the low-level circulation that

captures its most important characteristics. In our approach, network links are placed according to

a suitable statistical null model that takes into account the direction and magnitude of the flow. We

compare a simulation-based (numerically costly) and a semi-analytical (numerically cheaper)

approach to determine the statistical significance of possible connections, and find that both meth-

ods yield qualitatively similar results. As an application, we choose the regional climate system of

South America and focus on the monsoon season in austral summer. Monsoon systems are gener-

ally characterized by substantial changes in the large-scale wind directions, and therefore provide

ideal applications for the proposed wind networks. Based on these networks, we are able to reveal

the key features of the low-level circulation of the South American Monsoon System, including the

South American Low-Level Jet. Networks of the dry and the wet season are compared with each

other and their differences are consistent with the literature on South American climate. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4977699]

It has been shown recently that complex networks pro-

vide an important tool for the statistical analysis of the

spatial characteristics of climatic variability. They thus

constitute important means to improve our understand-

ing of the climate system like, e.g., the impact of the El

Ni~no Southern Oscillation. In general terms, each node of

a climate network represents a geographic area and its

climatic variability. It is thus a small dynamical subsys-

tem on its own. By various—mostly statistical—means,

we can quantify the similarity of the behavior between

these subsystems such as, e.g., correlations between time

series measured for each of the subsystems. Nodes with

strong similarities are then linked to form a network. In

this way, networks can be used to represent very complex

interactions within the climate system in a mathematical

model that is comparably easy to evaluate. Most existing

climate network approaches focus on scalar observables

like surface temperature, pressure, or precipitation.

Here, we propose a new method to construct networks

from atmospheric wind fields on isobaric surfaces. We

focus on the directed properties of this two-dimensional

vector field by connecting nodes along a spatial environ-

ment based on the magnitude and direction of the wind.

We compare a simulation-based and semi-analytical

approach to ensure the statistical significance of these

possible connections. Monsoon systems are an ideal field

of application for these networks. The large-scale wind

direction in a monsoon region changes considerably

between the dry and wet season. Therefore, we choose to

apply the proposed methodology to investigate South

American climate and in particular, the South American

Monsoon System (SAMS). Our results show that impor-

tant features of the South American climate system like

the South American Low-Level Jet (SALLJ) are revealed

by the wind networks. Furthermore, intraseasonal varia-

tions between the dry and wet seasons are accurately and

consistently captured by the streamflow networks intro-

duced here.

I. INTRODUCTION

Complex Network have only recently become a method

for climate data analysis. Tsonis and Roebber1 proposed to

compute networks of the gridded 500 hPa geopotential

height data with the linear Pearson correlation coefficient to

define the links. This sparked a lot of interest in the possi-

bilities of applying climate networks to different climatic

observables. Networks based on the surface temperature

and rainfall have been investigated, as well as networks that

used other measures of statistical interdependence like

mutual information and rank correlation.2–4 Complex net-

works proved to be a suitable tool to uncover and visualizea)gelbrecht@pik-potsdam.de

1054-1500/2017/27(3)/035808/15/$30.00 Published by AIP Publishing.27, 035808-1

CHAOS 27, 035808 (2017)

http://dx.doi.org/10.1063/1.4977699
http://dx.doi.org/10.1063/1.4977699
mailto:gelbrecht@pik-potsdam.de
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4977699&domain=pdf&date_stamp=2017-03-13


phenomena like the El Ni~no Southern Oscillation.5,6

Networks representing the synchronizations of extreme

rainfall events were able to uncover a prediction mechanism

for floods in the South American Andes.7 Additionally,

multiple temperature networks of different geographical

regions have been compared,5 and coupled networks of the

geopotential height in different altitudes were used to inves-

tigate the vertical structure of the atmosphere.8 More

recently, networks were employed to investigate fluid flows

as well. Promising analytic and data-driven approaches to

research ocean circulation patterns have been intro-

duced,9,10 as well as investigations of the dynamics of

correlation-based climate networks with underlying flow

fields.11,12

One of the few climatic observables that have so far not

been considered for a complex network analysis is the atmo-

spheric wind field. Wind data provide crucial information

about Earth’s atmospheric circulation. Climatic phenomena

like the monsoons are characterized by large-scale changes

in the wind directions. Furthermore, global-scale phenom-

ena like the El Ni~no Southern Oscillation also directly

impact regional wind fields. Wind is, in contrast to other

quantities that were previously used to construct climate

networks like temperature or rainfall, not a scalar but a

three-dimensional observable. Large-scale atmospheric

motions are dominated by a balance between the Coriolis

and pressure-gradient forces. This geostrophic equilibrium
causes the wind vectors to be approximately parallel with

isobaric surfaces as long as the Coriolis force has a horizon-

tal component, which is the case everywhere except along

the equator.13 For our application, we are interested mainly

in advective processes (i.e., horizontal transport of air

masses) associated with the South American Monsoon

System (SAMS), because these determine their characteris-

tic, large-scale coupling patterns which we intend to analyze

with our streamflow network approach. For the case at hand,

it is therefore sufficient to investigate the two-dimensional

wind on isobaric surfaces, even though heat transfer causes

vertical winds, which play a key role for the formation of

the large-scale circulation cells of earth’s atmosphere. This

vertical motion is usually slower than the geostrophic

motion, which at 850 hPa is typically of Oð10 m s�1Þ. The

restriction to two-dimensional isobaric surfaces also allows

for an easier interpretation of the methods and results:

although the three-dimensional field could technically be

analyzed with the method introduced below, it would make

the results much harder to visualize on two-dimensional

geographic maps.

In this study, we introduce a new construction method

for climate networks from two-dimensional flows like the

low-level atmospheric wind field. The majority of the exist-

ing climate network construction methods are based on

pairwise correlations of scalar observables. Of course, even

from a two-dimensional observable, like the wind field on a

given geopotential height, we could derive a network repre-

sentation solely based on correlations. For example, corre-

lations could be computed between the zonal and

meridional components separately, or from the absolute

values of the two-dimensional vectors. Several successful

approaches to construct networks from flows based on cor-

relations have been introduced.11,12 Complementarily, we

intend here to introduce a method that directly employs the

characteristics of multidimensional vector fields. Several

approaches for a direct network representation of flows

have been introduced, e.g., by Viebahn and Dijkstra9 and

Ser-Giacomi et al.10 Viebahn and Dijkstra9 investigated

critical transitions of the wind-driven ocean circulation in a

model basin by employing complex networks that were

constructed with links along or across the streamlines of the

flux. Ser-Giacomi et al.10 used Lagrangian simulations to

construct complex networks of the surface flow of the

Mediterranean sea. Further studies investigated atmospheric

blocking with these Lagrangian flow networks as well.14

Here, we intend to propose a new construction method for

the analysis of flow data. We will introduce a simple model

of the local flow and propose two different approaches to

ensure the significance of the links that we set. We will test

and validate our method by applying it to observational

wind data of the South American Monsoon System. As

large scale changes in the wind field are a substantial fea-

ture of every monsoon system, they serve as an ideal appli-

cation for the proposed methodology. Furthermore, since

this climatic subsystem is already quite well-understood, it

provides a well-suited real-world example to corroborate

our methodology.

In the following, we will first provide a short overview

of the South American Monsoon System (SAMS), which is

our geographical region of application. Thereafter, we will

introduce our methodological framework by giving a brief

introduction into basic elements of network theory and the

network measures used in this study. Next, different

approaches to construct networks from wind data will be

proposed and compared. Subsequently, we will show how

these networks are applied to the SAMS and interpret our

results in a climatological context.

A. The South American Monsoon System

Monsoon systems are usually characterized by a sea-

sonal reversal in the large-scale circulation system that is

accompanied by heavy precipitation. However, this change

in the prevailing wind direction is not given in South

America. This is why for a long time South America was not

considered to exhibit a monsoon system. That changed when

researchers started to investigate the Bolivian high, a high

pressure system in the upper troposphere that forms in aus-

tral summer over the Altiplano Plateau, a plateau in the

Andes of Bolivia and Peru in about 3.75 km height (see

Figure 1).15 In the lower troposphere a thermal low pressure

system forms in the Gran Chaco region in northern

Argentina, Paraguay, and southern Bolivia.

The trade winds dominate the low-level wind direction

over South America. However, when removing the annual

mean from the wind field component-wise, a change in sign

between the austral summer and winter is immediately visi-

ble (Figure 2). In austral summer the north-easterly trade

winds are enhanced. Deflected by the Andes, a strong north-

westerly jet forms on the eastern slope of the Andes that then
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turns clockwise around the Gran Chaco low. In austral winter

this anomalous flow reverses its direction, although the abso-

lute wind fields are still north-westerly.15

The total precipitation is similar to other monsoon

regions. However, the difference between the wet and the

dry seasons is smaller than, e.g., in India or eastern Asia.16

The largest difference in precipitation between the wet and

dry season can be observed in the south-central Amazon

basin where the wet season peaks from December to

February with an average 300 mm precipitation per month

and less than 20 mm per month from June to August.16 The

south-west extension of this area is referred to as South
Atlantic Convergence Zone (SACZ).17 Most of the convec-

tive activity of the SAMS occurs in this area.17

Moisture advected from the Amazon to Southeastern
South America (SESA) by the South American Low-Level
Jet (SALLJ) results in the frequent formation of some of the

largest Mesoscale Convective Systems on Earth, which can

cause heavy thunderstorms, extreme rainfall, and

floods.16,18,19 The SACZ exhibits a dipole-like behavior con-

cerning the precipitation on various time scales.18,20 In one

phase of the dipole the SACZ is enhanced and precipitation

in SESA is suppressed. The SALLJ is westward orientated

(upper part of the SALLJ-arrow in Fig. 1). In the other phase,

the SACZ is suppressed, the southward SALLJ is stronger,

and rainfall is enhanced in SESA.16,20 A strong southward

SALLJ, the so-called Gran Chaco Jet, can cause heavy rain-

fall over central Argentina.18

II. DATA

For our calculations we use the MERRA IAU 2D atmo-

spheric single-level diagnostics.21 It provides us with data-

sets on a rectangular grid with a latitudinal resolution of

Dk ¼ 1
3

�
and a longitudinal resolution of DU ¼ 2

3

�
. This

implies that the grid is denser at higher latitudes due to the

longitudes being closer to each other. The wind data com-

prise two-component time series, a zonal eastward compo-

nent ui(t), and a meridional northward component vi(t). This

study uses a dataset spanning from 1985 to 2010, consisting

of daily data at a height of 850 hPa which corresponds

roughly to 1.47 km (mean of the geopotential height H850

provided by MERRA for South America from 2000 to

201021). All networks were computed with the regular wind

time series, but not their anomalies.

All computations are performed with relatively large

datasets that cover the geographic region enclosed by

0�W–110�W; 70�S–25�N in order to minimize the influence

of possible boundary effects on the constructed networks.

The network measures are then cropped to 20�W–90�W;

60�S–20�N for all figures shown. In total, the dataset encom-

passes N¼ 33 366 grid cells, each possessing two time series

with Nt¼ 9496 time steps. These grid cells will, in the fol-

lowing, be identified as the nodes of the networks. One of

the main aims of this work is to identify wind patterns in the

FIG. 1. Overview of the South American Monsoon System (SAMS): The

upper troposphere Bolivian high over the Altiplano Plateau (red area) and

the thermal low over the lower troposphere of Gran Chaco (blue area) are

key ingredients to the SAMS. The main convection area is the South

Atlantic Convergence Zone (SACZ) spanning from the Amazon in south-

east direction to the Atlantic. The incoming trade winds are deflected by the

Andes and channeled into the South American Low-Level Jet (SALLJ). The

SALLJ influences the SACZ and modulates precipitation in Southeastern

South America (SESA).

FIG. 2. Wind field of South America on the 850 hPa pressure surface during

December, January, and February (DJF) and June, July, and August (JJA).

The anomaly values were calculated by removing the annual mean and nor-

malization with the standard deviation. The arrows indicate the average

wind direction. Their length is proportional to the absolute value of the

wind. During the wet monsoon phase (DJF) there are strong north-easterly

trade winds and an enhanced SALLJ along the eastern slopes of the Andes,

whereas the SALLJ is suppressed in the dry season. The difference between

wet and dry seasons is even more obvious when investigating the anomaly

wind field: the prevailing wind direction is reversed.
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SAMS; therefore, most of the following networks will be

constructed with data that are restricted to the monsoon sea-

son from December to February (DJF).

III. METHODS

A. Network preliminaries

In this study, we investigate the spatially embedded

directed networks G¼ (N, E) encompassing a set of N Nodes

N and a set of m directed, unweighted edges E. The adja-

cency matrix of the network is given by

Aij ¼
1 if there is an edge directed from node j to i

0 otherwise:

�
(1)

The topological characteristics of the constructed networks

encode the spatial coupling structure of the underlying wind

data. We evaluate these topological characteristics by means

of node-based network measures. The indegree and outde-
gree of a node are defined as

kin
i ¼

XN

j¼1

Aij; (2)

kout
i ¼

XN

j¼1

Aji: (3)

The proposed networks are spatially embedded, mean-

ing that every node represents a certain area. Because the

data are provided on a rectangular geographical grid, the size

of this area depends on the latitude of the node. We can cor-

rect this for the degree by using the out- and in-area
weighted connectivity,22 defined as

OAWCi ¼

PN
j¼1

Aji cos kj

PN
j¼1

cos kj

; (4)

and accordingly for the in-area weighted connectivity
(IAWC). The difference between out- and in-area weighted

connectivity

Di ¼ OAWCi � IAWCi; (5)

provides us with deeper insights into the network structure,

with particular focus on directional asymmetries. By con-

struction, the networks introduced in Section III B tend to

form shortest network paths (so-called geodesic paths) along

important wind transport routes. The betweenness central-
ity,23 which is defined by

Bi ¼
X

jk

n ið Þ
jk

gjk
; (6)

is the key measure to evaluate a node’s importance for the

path structure of the network. In this sum, n
ðiÞ
jk is 1 if there is

a geodesic path between j and k running through i and 0 oth-

erwise. This number is divided by the total number of geode-

sic paths between j and k: gjk. Recall that a geodesic path in a

network is defined as the shortest sequence of links to con-

nect two given nodes.

B. Streamflow networks

So far, most climate networks focused on statistical co-

variability measures to compare two time series, placing a

link between the corresponding nodes if their co-variability

(quantified, e.g., in terms of the Pearson correlation coeffi-

cient) is particularly high. For the case of the two-dimensional

isobaric wind field, we propose here an alternative approach

that focuses on the directed properties of this two-dimensional

vector field: Wind mainly transports air and moisture from

one location to another. Given the wind data at a specific loca-

tion, we can calculate how far the wind transports matter dur-

ing a specific time and link all nodes reached by the wind. We

call networks based on this idea subsequently streamflow net-
works. They will most suitably be analyzed by measures that

focus on the paths which these streamflow links create. We

will in the following present two ways to construct such net-

works: One where the corresponding significance tests are

based on numerical simulations, and one where they are based

on an analytical approximation.

1. Simulation method

To implement the basic idea of networks directly repre-

senting the streamflow of the wind fields, we first focus on a

single node i and a single step t in the time series.

Introducing a fixed travel time T, the distance the wind can

reach is jðuiðtÞ; viðtÞÞj � T. We add an additional uncertainty

udi
ðkiÞ. This uncertainty is chosen to ensure that two nodes

will be linked when the distance the wind can reach passed

more than halfway through the distance between two neighbor-

ing nodes. This way, we lower the chances of having dead

ends in the paths of the network. Furthermore, adding such an

uncertainty corresponds to the idea that the nodes represent the

entire grid cell area surrounding them, and not just their precise

location. For a given rectangular grid, this uncertainty will

therefore depend on the latitude k of node i. We define this

uncertainty as the average of the distance to the next neighbor

in the meridional direction dm and the zonal direction dz

udi
kið Þ ¼

1

2
dm þ dz kið Þð Þ : (7)

The distance in the zonal direction depends on the latitude,

whereas the distance in the meridional direction is a constant

for a given rectangular grid. The expression

diðtÞ ¼ jðuiðtÞ; viðtÞÞj � T þ udi
ðkÞ; (8)

is thus the distance considered to be covered by the given

wind vector. For grids with a very fine resolution, udi
will be

small in comparison with jðuiðtÞ; viðtÞÞj � T. Note, however,

that it would become more important for coarser grids.
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Focusing on the actual wind flow, we also have to

account for the direction of the wind. The arctangent of the

meridional and zonal wind components yields the wind angle

hi(t). Next, we also introduce an angle uncertainty uh. We

define a circle section with the spatial position of node i as

its center for every time step. The radius is di(t), the central

angle is 2 � uh, and hi(t) its direction (see Fig. 3). All nodes

that lie within this circle sector are considered to be reach-

able by the wind at time t. The angle uncertainty uh intro-

duced here remains a parameter to be set. It governs how

wide the circle section is and therefore directly influences

the degree centrality and link density of the resulting net-

work (see Section III C below regarding suitable choices of

this parameter).

Next, we apply this method to the whole time series at

node i and count how often each other node j lies within the

circle sections determined for each time step t. This provides

the hit counts hij. In order to judge whether these hit counts

are significant or not, we compute Nstat surrogate hit counts

gðkÞij that tell us how often node j lies within the circle section

spanned by node i in the k-th surrogate. The surrogates are

based on uniformly distributed angles as their direction and

velocities drawn from the velocity time series of the node.

These hit counts are approximately normally distributed

(see Figure 10) and therefore it seems reasonable to calculate

the mean lg,ij and standard deviation rg,ij of gðkÞij with respect

to k to estimate a significance threshold for hij. Thus, we

define the adjacency matrix of the network as

Aij ¼
1 if hij > lg;ij þ n � rg;ij with n 2N

0 otherwise:

�
(9)

The parameter n is either 2 for a 95.5% significance or 3

for a 99.7% significance, assuming a normal distribution. A

pseudocode representation of the complete algorithm is

shown in the Appendix. It is tailored to be low in memory

consumption and flawlessly parallelizable for a fast

computation.

The resulting network is directed. Its outdegree thus

strongly depends on the absolute value of the wind velocity

and does not provide much additional information. A path-

based measure like the betweenness centrality seems to be

ideal for these kinds of networks. The resulting networks

will exhibit strong boundary effects due to the underlying

wind fields and the directed nature of the network.

2. Semi-analytic method

The proposed method to calculate the streamflow net-
works has one significant flaw: the computation of the surro-

gates is very costly and scales with OðNstat � Nt � NNodeÞ in

computation time for every node. Using the same basic con-

cept (see Fig. 3), we can, alternatively, analytically estimate

how likely it is that a hit count hij occurs just by chance.

The probability for a single hit from node i to node j can

be assumed to be binomially distributed because either a hit

occurs with the probability pij or it does not with probability

1 – pij. Hence, we compute the probability for k hits to occur

with a cumulative binomial distribution

Pijðk � hijÞ ¼ 1� Pijðk < hijÞ; (10)

¼ 1�
Xhij

k¼0

Nt

k

� �
pk

ijð1� pijÞNt�k: (11)

Looking at time series with large Nt, the binomial distribu-

tion can be approximated either by a Poisson distribution for

small Ntpij or a normal distribution otherwise

Pij k � hijð Þ ¼
1�

Xhij

k¼0

Ntpijð Þk exp �Ntpijð Þ
k!

Ntpij small

1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pNtpij 1� pijð Þ

p Xhij

k¼0

exp
� k � Ntpijð Þ2

2Ntpij 1� pijð Þ

 !
otherwise:

8>>>>><
>>>>>:

(12)

Both situations will occur when looking at large datasets with big map sections. The approximation with the Poisson distribu-

tion is typically used for pairs of nodes with a large spatial distance.

FIG. 3. Basic concept of the streamflow networks: The black filled nodes

are considered to be reachable by the wind of the red node. The covered dis-

tance di(t) is directly proportional to the velocity of the wind; the vector has

the same direction as the original wind vector (ui(t), vi(t)), and the angle

uncertainty uh is a parameter of the network. The red shaded area indicates

the central angle referred to in the text.
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We introduced the streamflow network method by first

looking at the absolute value of the velocity and then at its

direction, one after the other. It is therefore reasonable to

split the elementary probability pij into a velocity component

pjvjij and an angular component phij
, too. In first order we

may approximate these two probabilities as independent

from each other. Hence, the elementary probability pij can be

obtained via

pij � pjvjij � phij
: (13)

The velocity probability pjvjij is the probability to have a

velocity large enough that the node j is reachable for wind

from node i. Hence, it is the probability that jvji >
dij

T . This

can be calculated using the velocity probability density func-

tion pðjvjÞdv

pjvjij ¼
ð1

dij
T

p jvjð Þdv: (14)

Given a discrete sample time series for jvðtÞji, this integral

can be estimated by sorting the time series and then finding

the value closest to
dij

T . The relative position of this value in

the sorted series is then the estimated value of the integral.

This method does not actually try to calculate the probability

density function. However, when computing the surrogates,

we also do not compute the probability function as we only

draw a random value from the time series. So pjvjij is actually

the probability to draw a velocity from the sample time

series large enough for node i and j to be connected. The

angular probability phij
is the probability to randomly draw a

direction in the interval ½hij � uh; hij þ uh�. Assuming a uni-

form distribution for this random process as when calculat-

ing the surrogates before, this probability is just the fraction

of the whole circle which the corresponding circle section

occupies. Thus,

phij
¼ uh

p
: (15)

The probability Pij(k� hij) can now be calculated using the

elementary probability pij. It tells us how likely it is that hij

(or more) hits occur just by chance. Thresholding this proba-

bility, we are able to get the adjacency matrix

Aij ¼
1 if Pijðk � hijÞ < w

0 otherwise:

�
(16)

It seems reasonable to choose the threshold w to fit the

probability enclosed by lg,ij 6 n � rg,ij when calculating the

surrogates, so that both methods yield comparable networks.

This semi-analytic approach is just another way of cal-

culating a streamflow network with similar properties as

with the surrogates. It is an unweighted, directed network

that emphasizes on the importance of paths through the net-

work. The semi-analytic approach should save us a lot of

computation time, though. The only computationally inten-

sive task remaining is the integral for pjvjij . Solved by sorting

the time series, with, e.g., quicksort, and then searching for

the position in the sorted array with a binary search, its com-

putation time scales with OðNt � log Nt � log NtÞ. This is

much less than the computation of the surrogates for the sim-

ulation method.

C. Parameters used for the network construction

Both methods of calculating streamflow networks have

most parameters in common (Table I). The travel time T
and angle uncertainty uh are crucial for the basic concept of

the streamflow networks. The travel time governs the radius

of the circle section that is used to calculate the network

links. It is therefore directly linked to the outdegree of the

nodes and thus the link density of the whole network. Due

to the additional distance uncertainty that was introduced,

even small travel times T should allow to reasonably com-

pute path-based measures like the betweenness because

dead ends in the network are less likely to appear. Figure 4

shows the dependency of the link density on the travel time

T. For both methods the link density increases monoto-

nously, in an almost linear way for larger travel times. A

travel distance of one day results in a link density large

enough for the network to include enough interesting fea-

tures and is therefore chosen for all following streamflow

networks.

The angle uncertainty uh governs the central angle of the

circle section and therefore directly affects the outdegree of

TABLE I. Overview over most used parameter choices for streamflow

networks.

Travel time T 1 d

Angle uncertainty uh
p
6

Number of surrogates (simulation method) Nstat 200

Significance parameter n (simulation method) 2

Threshold probability w (semi-analytic method) 0.05

FIG. 4. Dependency of the link density of the delay time T for the simulated

and the semi-analytic streamflow network. The calculations were done with

the 1985–2010 MERRA dataset for South America and with n¼ 2 respec-

tively w¼ 0.05. It shows that the link density increases for the semi-analytic

method slightly stronger than for the simulation method. For both methods a

delay time of one day (red dot) is picked for further computations.
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all nodes as well. However, the angle uncertainty will also

affect paths through the network and the overall structure:

The extreme case of uh¼ p would, for example, result in an

undirected network because the circle section has become a

whole circle. We should hence choose an angle uncertainty

that is large enough, such that enough connections are possi-

ble, but not too large, such that the directed nature of the

streamflow networks is not lost. Figure 5 shows that the link

density slowly and almost linearly increases with larger uh,

in a very similar way for both construction methods. For

both networks a fixed uncertainty of uh ¼ p
6

is chosen. Future

work could investigate variable angle uncertainties, e.g., by

relating them to the variance of the wind direction. However,

sensitivity analyses with varying choices of uh reveal that the

qualitative spatial structure of the networks is very robust to

small changes of uh (see Figs. 11 and 12), which justifies to

choose a fixed value of uh as a network parameter. Such a

fixed angle uncertainty leads to a significantly simpler and

computationally faster model. Furthermore, the almost linear

increase of the link density with larger time lags (Fig. 4)

indicates that uh ¼ p
6

is a reasonable choice given the spatial

grid resolution, since this increase would scale quadratically

if the angle uncertainty were too large. In different settings

and applications, however, we suggest to always explicitly

check the robustness of the results to different choices of uh,

and modify it in accordance to the local dispersions of the

wind field if necessary.

Both of the statistical parameters n (simulation method)

and w (semi-analytic method) will have a direct influence on

the link density as well. However, we introduced both

parameters as a threshold for statistical significance. Hence,

both should be chosen in a way that a certain significance is

ensured. It seems therefore convenient to set these parame-

ters such that a 95% confidence level is obtained. An even

higher value could result in too low link densities. Here, we

choose to set both statistical parameters to a similar level of

significance with n¼ 2, which represents 95.45% for normal

distributed values, and w¼ 5%. This leads to both methods

using a comparable parameter set.

IV. RESULTS

We compute streamflow networks for the core monsoon

season in South America (DJF) using the MERRA dataset of

wind fields at 850 hPa introduced in Section II. Spatial distri-

butions of network measures, computed for both the analyti-

cally and the numerically constructed network, can be seen

in Figures 6–8.

In order to reduce boundary effects caused by the spatial

embedding, the dataset encompasses N¼ 33 366 nodes that

cover 0�W–110�W; 70�S–25�N. The network measures cal-

culated on this larger dataset are then cropped for the figures

to cover 20�W–90�W; 60�S–20�N which corresponds to

N¼ 17 066 nodes.

The OAWC of both network types exhibits the largest

values south of 40�S. However, these values are smaller at the

FIG. 5. Dependency of the link density of the angle uncertainty uh for the

simulated and the semi-analytic streamflow network. The calculations were

done with the 1985–2010 MERRA dataset for South America and with

n¼ 2 respectively w¼ 0.05. It shows that the link density increases in an

almost linear way for both methods. The red dots show the angle uncertainty

uh¼p/6 picked for further computations.

FIG. 6. Out-area weighted connectivity

of streamflow networks representing the

South American low-level circulation,

for both the semi-analytic (a) and the

simulation-based (b) network construc-

tion method. The relative difference

ðOAWC
ðanaÞ
i �OAWC

ðsimÞ
i Þ=jOAWC

ðanaÞ
i j

between both networks is shown in (c).

The strong eastward winds south of 40�S
dominate the OAWC. Qualitatively both

methods produce networks with similar

OAWC. The largest difference can be

found in central and southern Brazil.
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eastern than at the western boundary of the map section.

Qualitatively, the spatial distribution of OAWC is very similar

for both network construction methods. In fact, the relative

difference between the semi-analytic and the simulated net-

work is rather small. The semi-analytic network has a

0%–20% larger OAWC (and outdegree) for most parts of the

network. The only larger area with an OAWC that is more

than 50% larger for the semi-analytic method can be found

in southern Brazil close to the border with Paraguay. This

region (10�–30�S, 40�–50�W) exhibits a relatively small aver-

age wind velocity of only 2.87 m s�1, compared with the

average wind velocity of the complete map section, equal to

5.86 m s�1. The wind direction is changing in this area as there

is an anticyclone east of it and the SALLJ west of it. Possible

FIG. 7. Difference of out- and in-area weighted connectivity of streamflow networks representing the South American low-level circulation, for both the semi-

analytic (a) and the simulation-based (b) network construction method. The relative difference ðDðanaÞ
i �DðsimÞi Þ=jDðanaÞi j between both networks is shown in (c).

While the high values south of 40�S are caused by the spatial embedding, the large values along the eastern slopes of the Andes in Bolivia and northern Argentina

indicate jet-like behavior caused by the South American Low-Level Jet (SALLJ).

FIG. 8. Betweenness centrality of streamflow networks representing the South American low-level circulation, for both the semi-analytic (a) and the simulation-

based (b) network construction method. The relative difference ðBðanaÞ
i � B

ðsimÞ
i Þ=jBðanaÞ

i j between both networks is shown in (c). Both methods exhibit the highest

betweenness along the eastern slopes of the Andes. This corresponds to the South American Low-Level Jet (SALLJ), which is a key feature for the moisture trans-

port of the South American Monsoon System. A major difference between both methods is the high betweenness of the simulation network along the Amazon

river.
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reasons for the relatively large differences between the

simulation-based and analytical networks in this area are dis-

cussed below.

In order to investigate the directional asymmetries of

the streamflow networks, we consider the difference

between out- and in-area weighted connectivity. We find

that the OAWC of both network types is much larger than

the IAWC south-east of 50�S; 30�W, on both sides of the

southern Andes in central Argentina and Chile, as well as in

SESA. The OAWC is much larger over the Atlantic Ocean

south of the continent as well as along the eastern slopes of

the Andes in Bolivia, Paraguay, and northern Argentina.

The area weighted connectivity difference Di in this region

is larger for the simulation method than for the semi-

analytic one. Most part of northern and central South

America exhibits a very similar OAWC and IAWC.

The betweenness centrality of both network types is

high along the eastern slopes of the Andes as well as in large

parts of eastern and northeastern Brazil. Relatively, the

simulation-based network shows larger values in these

regions and exhibits a more concise pattern. In particular, the

simulation-based network has very high betweenness cen-

trality along the Amazon river.

To investigate the seasonal dependence of these spatial

patterns, we construct another simulation-based network for

the austral winter season (JJA), which is also the dry season

in most parts of South America. Figure 9 shows the differ-

ence of the betweenness centrality between this JJA-

network and the simulation-based DJF-network discussed

above. During DJF, the betweenness is much higher along

the eastern slopes of the Andes and most parts of northern

South America, especially along three narrow bands: one

around Los Llanos (0�N–10�N, 60�W–75�W), one south of

the Guyana Shield (0�N–5�N, 55�W–70�W), and one along

the Amazon river (0�S–5�S, 50�W–65�W) (all are marked

in Figure 9). These bands align very well with the average

wind field in these areas as well. The JJA-network exhibits

higher betweenness centrality in Paraguay and south-

western Brazil.

V. DISCUSSION

In the following we will discuss the results of the

streamflow networks. While some of the properties of the

spatial distribution of the network measures shown before

can be attributed to our own method and the boundaries of

the map section we choose, other properties unveil important

parts of the South American climate.

A. Methodological considerations

The OAWC of the streamflow networks is, by construc-

tion, directly related to the wind velocity. In the south of the

map section strong eastward winds prevail. That is why the

OAWC is the largest in this region. The OAWC of both net-

works types is overall very similar. The main difference

(around 25�S, 55�N) is in a region with very low average

wind velocities, east of the SALLJ and west of an anticy-

clone. It is not clear what exactly causes the difference

between both network types in this region, apart from the

approximations involved in the semi-analytic method. In par-

ticular, the assumption of the semi-analytic method that

velocities and directions are independent might not hold true

in this case. However, one should expect a low OAWC in

this region due to the relatively low wind velocities. This

argument favors the simulation-based network.

The streamflow networks exhibit strong boundary effects

due to their spatial embedding. These effects are especially

visible for the out-area weighted connectivity and area

weighted connectivity difference (see Figures 6 and 7): Nodes

in the south-eastern corner of the map section show a smaller

OAWC than in the south-west, although the average wind

velocities are similar in both regions. The wind field at these

nodes is predominantly eastward and thus the nodes in the

south-east would connect to nodes farther east, which are

however not part of the considered map section anymore. For

spatially embedded networks based on correlation measures,

one can use spatially embedded random networks (SERN) to

correct for these boundary effects.24 However, this method is

not applicable to the streamflow networks introduced here:

FIG. 9. Difference between wet and dry

season of betweenness centrality of

streamflow networks of South America,

constructed with the numerical simula-

tion method. Note the high betweenness

during DJF along the eastern slopes of

the Andes and along the three narrow

bands marked in magenta in northern

South America.
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The nodes of streamflow networks are connected to other

nodes in a spatial environment around their position, based on

the underlying wind field. SERNs cannot be used as surro-

gates for networks with this kind of spatial embedding.

Fortunately, the boundary effects are mostly restricted to the

actual boundary, because the spatial link distance is limited

by the wind velocity: Nodes at the edge of the map cannot be

linked to nodes in the center or even at the opposite end of the

map. This is the reason why we chose a larger spatial area to

compute the networks than the map section on which the

results are actually shown.

The difference between out- and in-area weighted con-

nectivity Di is influenced by these boundary effects in the

southern parts of the study area, but it is not only an artifact

of the boundary effects: Regions where the winds are

slowed down and deflected by orographic barriers like the

Andes result in large differences as well. More importantly,

the SALLJ region has a much higher out- than in-area

weighted connectivity. The winds leading into this region

from the Amazon region are deflected by the Andes and are

typically quite slow, which results in a low IAWC in the

SALLJ region. Additionally, the wind speeds of the SALLJ

are higher and the wind direction possesses multiple

regimes, so that connections in multiple directions are pos-

sible. The observed difference in out- and in-area weighted

connectivity can therefore be used to infer such a jet-like

behavior. This is also true for the area along the Amazon

river and around Los Llanos, which are the only regions in

northern South America with a slightly larger out- than in-

area weighted connectivity. This effect is present in both

methods but it is stronger for the simulation method.

The betweenness is probably the most important mea-

sure for the streamflow networks, which by construction call

for a path-based analysis of their topology. Due to our choice

of a construction method based on the local flows, we associ-

ate network paths with paths the wind could take in terms of

an uninterrupted transport of air masses. The betweenness

centrality, as a measure of the number of shortest paths run-

ning through a node, is therefore a key measure to evaluate

which areas are the most important ones for the overall path

structure. Jet-like structures that interconnect different areas

of the network are particularly emphasized by the between-

ness centrality.

The difference between the betweenness of both meth-

ods is spread over the whole map section. The largest and

most important difference is a region of high betweenness

along the Amazon river for the simulation method that is

only very weakly present for the semi-analytic method.

Both methods produce networks which are overall very

similar to each other. Differences appear only in the detail and

thus one can safely pick the semi-analytic method when com-

putation time is an issue. However, the simulation method

might be able to reveal important wind paths slightly better

and is therefore picked to demonstrate the seasonal variability.

B. Climatic interpretation of the results

The streamflow networks provide a network represen-

tation of the low-level atmospheric circulation. Many

properties of the spatial distribution of the networks mea-

sures can be interpreted as key features of the South

American climate. The low-level circulation pattern of the

SAMS is dominated by the incoming trade winds in north-

ern South America that are, after crossing the Amazon

basin, deflected southward by the Andes and channeled into

the SALLJ (see Section I A). The SALLJ transports mois-

ture from the Amazon to the subtropics.25 The here pre-

sented streamflow networks are able to unveil these

important features: For both methods (simulation-based and

semi-analytic), the betweenness shows high values in the

SALLJ and the Amazon region, indicating the relevance of

these areas in terms of important transport routes of the

low-level circulation. The wind paths of the incoming trade

winds over the northern Amazon basin are clearly visible in

the betweenness in terms of three narrow bands of high

betweenness (Figure 8).

Furthermore, South American climate is strongly influ-

enced by frontal systems originating from the southern

extra-tropics, which are caused by Rossby waves that prop-

agate across the southern Pacific Ocean.26–29 In the vicinity

of the southern tip of the South American continent, the

absolute value of the mean wind field strongly influences

the OAWC (Figure 7). However, the spatial pattern of the

difference between out- and in-area weighted connectivity

is not solely determined by this climatologically westerly

wind direction. The large areas of positive differences of

out- and in-area weighted connectivity around 50�S in com-

bination with the negative differences over southern South

America around 40�S can be associated with the northward

propagating frontal systems, which transport cold, dry air

northward at low atmospheric levels. In this sense, the dif-

ference between out- and in-area weighted connectivity

also gives a notion of sources and sinks of the dominant cir-

culation patterns.

Regarding interseasonal variability, Figure 9 shows that

the betweenness centrality is able to capture the activity of the

monsoon very well: During the wet season (DJF) the between-

ness along the slopes of the Andes and northern South

America, where most moisture is transported to southern

South America, is much larger than during the dry season

(JJA). As mentioned in the previous paragraph, these incom-

ing north-easterly trade winds are visible in the spatial distri-

bution of the betweenness for DJF, but are strongly

diminished for JJA.

VI. CONCLUSION

In this study, we have introduced a new method to con-

struct complex networks from two-dimensional wind fields.

For this purpose, a simulation-based approach as well as an

analytical approximation was compared in detail. Both the

simulation-based and the semi-analytic method yield qualita-

tively similar networks. Networks constructed with the pro-

posed method are able to unveil important characteristics of a

regional climate system like the South American monsoon.

They thus provide an accurate, coarse-grained representation

of the low-level atmospheric circulation that focuses on
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the key features thereof. Especially the network measure

betweenness centrality captures important wind paths like

trade winds and the South American Low-Level Jet very well.

Additionally, the spatial pattern of the difference between out-

and in-area weighted connectivity provides information about

jet-like behavior, as well as about sources and sinks of the

dominant circulation patterns. The large difference observed

between the wet and dry season networks indicates that the

betweenness centrality of the proposed networks can also be

an indicator for the overall activity of the monsoon. The

enhanced trade winds and South American Low-Level Jet

during the wet season are in accordance with the literature

about the South American Monsoon System. While we

focused on wind flows in Earth’s atmosphere in this study, an

application of the proposed streamflow network concept to

other fluids seems possible as well. Applying the streamflow

networks to three dimensional flows is straightforward, too.

The availability of suitable three dimensional data could be

problematic, though.
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APPENDIX: EXTENDED COMPUTATIONAL MATERIAL

1. Simulation method algorithm

ALGORITHM 1. Computation of the edge list of the streamflow network using the simulation method.

D spatial distances of all nodes to each other

c angles between the spatial positions of all nodes to each other

for i 2 nodes do

ud  1
2

dm þ dz kð Þ
� �

� calculate distance uncertainty

for t 2 time series do � compute hit counts of actual wind time series

d jviðtÞj � T þ ud

for j 2 nodes do � depending on the used grid it is possible to limit the set of nodes j has to loop over based on additional geometrical

considerations

if d > Dij then

if cij 2 ½hi � uh; hi þ uh� then

hij  hij þ 1

for k 2 ½0;Nstat� do � compute hit counts of surrogates

for t 2 time series do

d jviðtÞj � T þ ud

for j 2 nodes do � it is possible to limit the set of nodes j has to loop over (see above)

if d > Dij then

b random uniformly distributed number 2 ½�p;p�
if cj 2 ½b� uh; bi þ uh� then

gðkÞij  gðkÞij þ 1

for j 2 nodes do � evaluate surrogates and set links

if hij > 0 then

l mean of gðkÞij with respect to k

r standard deviation of gðkÞij with respect to k

if hij > lþ n � r then

add ði; jÞ to edge list E
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2. Selected hit count statistic

FIG. 10. Histograms of the distribution of the hit count surrogates for different locations in South America. The distribution is approximately normally distrib-

uted when there are only few hits when looking at larger distances (bottom-left panel) and also for large hit counts when smaller distances are chosen (bottom-

right panel). The results of a Kolmogorov–Smirnov test are shown in Table II. Both top-row panels show the surrogate distribution between the same locations,

only with a different number of surrogates. Apparently already as few as 100 surrogates can be enough to get a good estimate for a significance threshold. The

significance threshold lg,ijþ n � rg,ij itself is marked in every panel with a dark blue line.

TABLE II. Kolmogorov–Smirnov statistic of the distributions of the surrogate hit counts in Figure 10.

Figure dcrit(a¼ 0.001)a dmax

(a) 0.1949 0.1024

(b) 0.0872 0.0680

(c) 0.0872 0.0657

(d) 0.0872 0.0703

aCalculated according to Ref. 30 with dcritða ¼ 0:001Þ ¼ 1:949ffiffi
n
p .
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3. Robustness of network measures to changes of the angle uncertainty

FIG. 11. Out-area weighted connectivity of streamflow networks using the simulation method. All networks were computed using DJF data and the same

parameter except for the angle uncertainty uh. uh was varied to investigate the qualitative behaviour of the OAWC with changing uh. The OAWC is very robust

to small changes of uh.
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