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Recurrence in the phase space of complex systems is a well-studied phenomenon, which has provided

deep insights into the nonlinear dynamics of such systems. For dissipative systems, characteristics

based on recurrence plots have recently attracted much interest for discriminating qualitatively differ-

ent types of dynamics in terms of measures of complexity, dynamical invariants, or even structural

characteristics of the underlying attractor’s geometry in phase space. Here, we demonstrate that the lat-

ter approach also provides a corresponding distinction between different co-existing dynamical regimes

of the standard map, a paradigmatic example of a low-dimensional conservative system. Specifically,

we show that the recently developed approach of recurrence network analysis provides potentially use-

ful geometric characteristics distinguishing between regular and chaotic orbits. We find that chaotic

orbits in an intermittent laminar phase (commonly referred to as sticky orbits) have a distinct geometric

structure possibly differing in a subtle way from those of regular orbits, which is highlighted by differ-

ent recurrence network properties obtained from relatively short time series. Thus, this approach can

help discriminating regular orbits from laminar phases of chaotic ones, which presents a persistent

challenge to many existing chaos detection techniques. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4942584]

In recent years, complex network theory has provided

many conceptual insights based on recurrence character-

istics of time series from various fields, which is referred

to as recurrence network analysis. While recent applica-

tions of this novel concept have been restricted almost

exclusively to dissipative dynamics (i.e., the quantitative

characterization of attractors), we demonstrate in this

work that some of the characteristic features of recur-

rence networks are useful for disentangling the complex

dynamics of low-dimensional conservative systems as

well. In the standard map, a typical chaotic orbit can be

temporarily trapped in the vicinity of the regular

domains in phase space, resulting in a possibly rather

long time necessary to homogeneously fill the chaotic do-

main—a phenomenon known as stickiness. The presence

of sticky orbits (i.e., intermittent laminar phases of cha-

otic trajectories) presents an ongoing challenge to

numerically characterizing the associated phase por-

traits. In this work, we demonstrate that in the standard

map, the geometric organization of regular orbits as well

as sticky versus filling parts of chaotic orbits in phase

space can be successfully discriminated based on rela-

tively short time series by using several recurrence net-

work measures, including network transitivity, global

clustering coefficient, and average path length. This

result provides the first documented finding pointing to

the relevance of recurrence network analysis for studying

conservative dynamical systems.

I. INTRODUCTION

The importance of Poincar�e’s recurrences in dynamical

systems has been widely recognized.1 In the last decades, con-

siderable theoretical progress has been made regarding the dy-

namical characteristics of various types of complex systems.

One particularly important achievement has been the introduc-

tion of a rather simple visualization technique for recurrences

in phase space, the recurrence plot,2,3 which reduces the fun-

damental complexity of studying recurrences to a binary ma-

trix representation. This conceptually simple mathematical

form allows drawing upon analogies to basic concepts of non-

linear time series analysis,4,5 information theory (statistics on

binary sequences providing measures of dynamical disorder

and complexity)6,7 or, more recently, complex network

theory.8–10 These analogies have opened important research

avenues for using different types of statistics based on recur-

rences, which are nowadays widely applied to time series

from various fields. While most recent studies have been re-

stricted to dissipative dynamics (i.e., the quantitative charac-

terization of attractors), we demonstrate in this work that

some of the characteristic features of recurrence networks are

useful for studying conservative systems as well.

The phase space of many non-integrable Hamiltonian

systems is composed of intermingled regions of regular and

irregular orbits.14 The regular domain comprises the state

vectors on both periodic and quasi-periodic trajectories,

while the irregular one contains the states forming chaotic

orbits. Here, a typical chaotic trajectory needs a certain time

1054-1500/2016/26(2)/023120/12/$30.00 VC 2016 AIP Publishing LLC26, 023120-1
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to homogeneously fill its corresponding domain in phase

space. However, once a chaotic orbit gets close to a stable

periodic island (i.e., the regular domain), it can be trapped in

the vicinity of this domain and, hence, appears almost regu-

lar in its motion for a substantial amount of time. After this

intermittent laminar phase, the orbit escapes again to the rest

of the chaotic domain, eventually describing chaotic bursts

across the termination of this phase. Such an intermittent,

possibly long-term confinement of the trajectory close to the

regular domain is commonly referred to as stickiness11,13

and has been accepted as a fundamental property of many

Hamiltonian systems. Among other possible scenarios,15 the

existence of (regular) islands-around-islands embedded in

the chaotic domain is one of the mechanisms that is able to

generate stickiness.13,16 As a particularly relevant conse-

quence, stickiness has been demonstrated to result in anoma-

lous transport phenomena in the phase space of Hamiltonian

systems.

The most traditional way of discriminating qualitatively

different types of dynamics is computing or numerically esti-

mating the largest Lyapunov exponent k.17 Chaotic motion is

characterized by positive k (in the case of conservative sys-

tems, the sum of all exponents is zero). Regular orbits, on

the other hand, have zero Lyapunov exponents. In practice,

finite-time Lyapunov exponents are commonly used when

resorting to numerical calculations. In such cases, consider-

able attention has to be paid to the convergence rate of the

employed method, since the proper estimation of k becomes

extremely challenging if the observed orbit encounters a

sticky phase or exhibits another type of intermittent behav-

ior.15,18 Recent work19 has proposed circumventing the cor-

responding problems by considering sticky and filling

chaotic phases separately. This distinction can be useful for

chaotic orbits that have a long sticking time20 and shall also

be employed throughout the remainder of this manuscript.

Beyond the concept of Lyapunov exponents, there is a

vast body of methods for detecting chaos from time series.14

Most of these approaches make use of the transverse stability

of regular orbits in contrast to the exponential divergence of

initially close trajectories in the case of chaos, thereby pro-

viding heuristic simplifications of the classical Lyapunov

exponent concept. As a potential alternative, in this work, we

further explore the potentials of recurrence plot-based meth-

ods (in particular, recurrence network analysis) for obtaining

a discrimination between regular and chaotic trajectories

from relatively short time series—a problem where other

chaos indicators commonly experience difficulties.

Corresponding studies for dissipative systems have already

demonstrated the great potentials of such approaches but

have not yet been systematically extended to conservative

dynamics. However, the underlying concept of recurrences

in phase space is well-defined in both types of systems, so

that it appears natural to apply corresponding methods to

conservative systems as well. This work is intended to fill

this gap.

As a paradigmatic example of an autonomous nearly

integrable system with two degrees of freedom, we restrict

our attention to the standard map

ynþ1 ¼ yn þ
j
2p

sin 2pxnð Þ;

xnþ1 ¼ xn þ ynþ1;
mod 1; (1)

with j denoting the system’s single control parameter, and

vn ¼ ðxn; ynÞ being the state vector of the system at its nth

iteration. This model is probably the best-studied chaotic

Hamiltonian map and can be interpreted as a Poincar�e sec-

tion of a periodically kicked rotor.12,13

The remainder of this paper is organized as follows:

Section II briefly reviews some of the mathematical concepts

of recurrence analysis, comprising different approaches that

address either dynamical (R�enyi entropy of second order K2,

mean recurrence time hRTi) or geometric characteristics (re-

currence network properties). A more detailed description of

all methods is provided as an Appendix. The results obtained

when applying the different methods to example trajectories

of the standard map are discussed in Section III, providing

some particularly interesting findings based on the recur-

rence network approach. We use this information for discus-

sing the corresponding potentials to discriminate between

initial conditions yielding regular and chaotic orbits of the

standard map, focusing on the problem of identifying and

characterizing chaotic orbits in their sticky phase.

II. METHODS

Recurrence is a fundamental property of dynamical

systems. In general, it can be conveniently analyzed by

means of recurrence plots (RPs)3 originally introduced in

the seminal work of Eckmann et al.2 This tool provides a

two-dimensional intuitive visualization of the underlying

temporal recurrence patterns even for high-dimensional sys-

tems. For this purpose, one defines the recurrence matrix
(RM) Ri;j as a binary representation of whether or not pairs

of observed state vectors on the same trajectory are mutually

close in phase space. Given two state vectors vi and vj

(where i and j denote time indices), this proximity is most

commonly characterized by comparing the length of the dif-

ference vector between vi and vj to a prescribed maximum

distance e, i.e.,

Ri;jðeÞ ¼ Hðe� kvi � vjkÞ; (2)

where Hð�Þ is the Heaviside function and k � k a suitable

norm. In this work, we use the maximum norm for defining

distances between state vectors in phase space. The proper-

ties of RPs have been intensively studied for different kinds

of dynamics,3 including periodic, quasi-periodic,21,22 cha-

otic, and stochastic dynamics.3

The crucial parameter for the calculation of the RM is

the recurrence threshold e. There are several rules-of-thumb

to select a proper value of e. In many applications of RPs to

time series from various fields, it was found that the recur-

rence patterns do not change qualitatively for a large range

of e, allowing for a reliable statistical analysis. Furthermore,

when comparing different time series (or trajectories), there

are two ways to set e: (i) as a fixed value for all time series,

yielding possibly different values of the recurrence rate

023120-2 Zou et al. Chaos 26, 023120 (2016)
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RR ¼ 2

N N � 1ð Þ
X
i>j

Ri;j eð Þ; (3)

i.e., the density of non-zero entries in the RM, for different

series; and (ii) as a (variable) threshold value corresponding

to a fixed (desired) RR. Note that the method (ii) generally

makes it easier to quantitatively compare the recurrence

structures of different time series, since some of the charac-

teristic statistical quantities based on the RM change system-

atically with an increasing RR. In this work, we will revisit

the difference between both approaches for choosing e for a

low-dimensional area-preserving map (Eq. (1)).

There is a multiplicity of approaches allowing to charac-

terize the dynamics of a system under study based on its RM.

First, it has been shown that, among other features, the length

of diagonal and vertical structures in RPs can be used for

defining a variety of complexity measures, which characterize

properties such as the degree of determinism or laminarity of

the system.6,23 The resulting recurrence quantification analysis

(RQA) has been widely applied for studying phenomena from

various scientific disciplines.3 As demonstrated earlier,22

RQA measures are able to characterize the stickiness property

of chaotic orbits in Hamiltonian systems like the standard

map. Therefore, in the present work, we do not include any

further discussion of RQA measures to avoid repetitions.

A second approach to use recurrence properties for a quan-

titative characterization of the system’s dynamics makes use of

the fact that several dynamical invariants, such as the R�enyi en-

tropy of second order K2 and the correlation dimension D2, can

be reliably estimated from the RM.4,5,24 Specifically, K2 meas-

ures the average rate at which information on previous states is

lost during the system’s evolution. The inverse of the entropy

value thus provides a rough estimate of the time for which a rea-

sonable prediction is possible. Accordingly, for a sequence of in-

dependent and identically distributed random numbers (white

noise), K2 tends to infinity, periodic dynamics is characterized

by K2 ¼ 0, and chaotic systems yield a positive yet finite K2, as

they belong to a category between regular deterministic and sto-

chastic systems in terms of their predictability. A quasi-periodic

system shows non-trivial recurrences but low complexity,12

which yields K2 � 0. Hence, K2 is an appropriate measure to

distinguish qualitatively different behaviors of the system. For

the examples considered in this paper, we use trajectories of

N¼ 1000 to 5000 data points to estimate K2 for each orbit,

applying the algorithm proposed by Thiel et al.5

A third way to characterize the recurrence properties is

statistically evaluating the distribution of recurrence times

(RTs), which has been applied to both chaotic and stochastic

systems.16,25 Recurrence times refer to the time intervals af-

ter which a trajectory enters the e-neighborhood of a previ-

ously visited point in phase space and are conveniently

described by their empirical probability distribution pðsÞ.
Note that pðsÞ contains important information about the dy-
namics of the system, which can be used for detecting subtle

dynamical transitions of the system under study as some

characteristic parameter is varied. A periodic process shows

a trivial RT distribution that yields a delta-peaked pðsÞ posi-

tioned at the system’s period. A quasi-periodic process

involving two incommensurate frequencies (equivalent to a

linear rotation on a unit circle with an irrational frequency)

displays three unique recurrence times, resulting in pðsÞ
being delta-peaked at the three corresponding periods. Here,

the largest characteristic RT is simply the sum of the other

two according to Slater’s theorem.26 This theorem has been

demonstrated to provide a useful and fast tool for determin-

ing the presence of quasi-periodicity.21,22,27 Moreover, RT

statistics have great potentials for estimating dynamical

invariants (such as the information dimension D1 and the

Kolmogorov-Sinai entropy28) and for studying extreme

events.25 In turn, the recurrence of extreme events in dynam-

ical systems has been recently discussed in terms of general-

ized extreme value theory to define a dynamical stability

indicator for Hamiltonian maps,29 an approach that is con-

ceptually related to the focus of this study, but shall not be

further discussed here. An empirical estimation of pðsÞ from

the RM is based on the same concept as other recurrence

time statistics utilized elsewhere in the literature,16,30 with a

slightly different averaging over all available state vectors vi

involved (see the Appendix for details). The mean recurrence

time is calculated straightforwardly as hRTi ¼
Ð1

0
spðsÞds.

Finally, following a more recent approach, the RM (Eq.

(2)) can be re-interpreted as the adjacency matrix of a complex

network, the e-recurrence network (RN). In this context, each

state vector vi used in the computation of the RM is interpreted

as a node of a complex network embedded in the phase space

of the dynamical system under study. The quantitative analysis

of RNs allows identifying transitions between different types of

dynamics in a very precise way.8,10,31,32 In this paper, we con-

sider three network measures that have already been shown to

distinguish between qualitatively different types of behavior in

both discrete and continuous-time dissipative systems:8,31,33,34

global clustering coefficient C, network transitivity T , and av-
erage path length L (see the Appendix for details). Given the

invariant density qðxÞ of the system under study, the value of

T can be analytically computed35 and interpreted as a general-

ized fractal dimension.32 Specifically, high values of T indicate

the presence of a lower-dimensional structure in phase space

commonly corresponding to more regular dynamics. In con-

trast, the average path length behaves differently for different

types of dissipative dynamical systems:8,9,31 for maps, more

regular dynamics is characterized by lower values of L,

whereas the opposite applies to continuous-time systems such

as dissipative chaotic oscillators.

Table I summarizes all measures that will be used in the

following. We note that the Lyapunov exponent k, K2 and the

RT distribution characterize time series from a dynamic per-

spective, whereas recurrence network analysis discloses the

properties of complex systems from a geometric viewpoint.

Certainly, the topological features of RNs are closely related

to dynamical characteristics of the underlying system.9,32

III. RESULTS

A. Example trajectories: Quasi-periodic, sticky, and
filling chaotic orbits

We follow the approach of Kandrup et al.19 and catego-

rize the trajectories of the standard map (Eq. (1)) into

023120-3 Zou et al. Chaos 26, 023120 (2016)
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quasi-periodic, sticky, and filling (strongly) chaotic orbits.

Note that stickiness is a generic property of Hamiltonian

chaos12 when t!1. However, the concept of a sticky orbit

only refers to the particular time-scale during which it is

stuck (i.e., an intermittent laminar phase of the chaotic

orbit’s evolution). In this section, we use RN and RT charac-

teristics to investigate whether or not it is possible to distin-

guish between quasi-periodic orbits and the sticky (laminar)

phases of chaotic orbits from relatively short trajectory seg-

ments. Regarding other measures of RQA, we refer to our

previous work.22

To illustrate our approach, we first consider three typical

segments of orbits of the standard map,20 one of which

shows the stickiness property clearly. In Fig. 1(a), numerical

estimates of k are shown for these three example segments.

Here, the initially sticky chaotic trajectory segment escapes

from the vicinity of the regular domain after approximately

1:65� 105 iterations. We call this the escape time Tesc,

which is about two orders of magnitude larger than the com-

mon “observation” period in many time series analysis appli-

cations (103–104 time steps). For better comparison, we also

choose a quasi-periodic orbit together with a filling part of a

chaotic one. We note that with the number of iterations being

much smaller than Tesc, it is not possible to distinguish the

quasi-periodic orbit from the sticky part of the chaotic trajec-

tory based on numerical estimates of k. Furthermore, the en-

tropy K2 also reveals rather little difference between the

sticky segment and the quasi-periodic orbit if the number of

iterations does not reach Tesc (cf. the red and green lines in

Fig. 1(b)). These results demonstrate that it is necessary to

look at other properties that allow for a corresponding dis-

crimination already from time series that are considerably

shorter than Tesc.

Figure 2 shows the behavior of the three RN-based

measures T ; C, and L, together with the mean recurrence

times hRTi for the three considered trajectory segments,

respectively. In all computations, we have used RR¼ 0.02,

maximum norm and sliding windows with N¼ 1000 subse-

quent state vectors taken from the respective orbits. We note

that a careful statistical analysis of the probability distribu-

tion functions of all four considered measures for different

types of dynamics would be required for evaluating whether

or not statistically significant deviations exist among differ-

ent types of trajectories. However, such a detailed analysis is

beyond the scope of the present work. To this end, we

emphasize that by visual inspection, one can clearly recog-

nize that all four measures reveal distinctive differences

between the considered quasi-periodic and filling chaotic

orbit segments. In contrast, the sticky example orbit exhibits

some distinct and quite complex behavior during different

time intervals. In the latter case, the values of all considered

measures quickly converge towards those of the filling cha-

otic orbit after the termination of the sticky phase, i.e., after

the trajectory has escaped from the vicinity of the regular do-

main in phase space. However, a more detailed inspection

reveals that based upon the RN characteristics we can distin-

guish three different stages: T < Tdec; Tdec < T < Tesc, and

T > Tesc. We will discuss the meaning of Tdec (�4� 103)

below in some detail. The first two stages both correspond to

the sticky phase of the orbit and can only be distinguished

from each other by the observed values of L, whereas the

third one corresponds to the post-escape phase. The latter

part of the trajectory comprises a phase of bursting behavior

characterized by huge variations of all considered character-

istics, which is followed by a more homogeneously filling

chaotic phase interrupted by just a few short bursting inter-

vals possibly indicating further short periods of intermittent

dynamics.

In the post-escape phase (T > Tesc), the chaotic orbit has

left the vicinity of the regular domain (i.e., its intermittent

laminar phase) and fills the chaotic domain of the phase

space in essentially the same way as the initially filling cha-

otic trajectory segment. Strong fluctuations of the considered

recurrence characteristics in the first part of this phase indi-

cate the presence of chaotic bursts where the geometric

structure of the orbit observed for short periods of time does

TABLE I. All measures based on the RM used in this study. In addition, we

consider numerical estimates of the largest Lyapunov exponent k obtained

from considerably longer trajectory segments (see text) as benchmarks.

Aspect Measures

Dynamic K2, hRTi
Geometric T , C, L

FIG. 1. (a) Largest Lyapunov exponent k for three selected orbits (j¼ 5 in

Eq. (1)) in dependence on the considered number of iterations. The different

lines represent quasi-periodic (green), sticky (red), and filling chaotic (black)

orbits. (b) R�enyi entropy K2 computed for non-overlapping windows sliding

along the trajectories (window length N¼ 1000).

FIG. 2. Recurrence characteristics for the quasi-periodic (green), sticky

(red), and filling chaotic (black) orbits from Fig. 1 computed for sliding win-

dows (N¼ 1000) over the different time series: (a) RN transitivity T ; (b)

global clustering coefficient C; (c) average path length L; (d) logarithm of

the mean recurrence time hRTi.
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 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  193.174.18.5 On: Tue, 29 Mar

2016 12:16:53



not yet correspond to that of the homogeneously filling cha-

otic dynamics, but exhibits a strong variability. In turn, in

the homogeneously filling chaotic regime, previous results

for dissipative maps suggest that the three RN characteristics

T ; C, and L should consistently show much larger values for

the regular (quasi-periodic) than for the chaotic orbits (with

the exception of intermittent bursts possibly representing

short periods of stickiness), which is confirmed by our nu-

merical results.

We emphasize that intermittent bursts with strongly

fluctuating RN and RT characteristics as observed in Fig. 2

are characteristic for chaotic trajectory segments and cannot

be observed in the case of quasi-periodic dynamics. Hence,

the presence of abrupt changes in the recurrence characteris-

tics could serve as a criterion for identifying chaos. Notably,

the latter viewpoint is not helpful when experiencing a sticky

phase—or another type of intermittent behavior—during the

entire period of available observations. However, the proba-

bility to encounter such a situation when choosing the initial

conditions at random decreases systematically as the length

of the studied trajectory segment increases.

Considering the laminar phase (T < Tesc), we find that

all four characteristics show different values than for the reg-

ular (quasi-periodic) orbit. Notably, T ; C, and hRTi are sub-

stantially larger during the sticky phase of the chaotic

trajectory in comparison with the regular orbit, while the cor-

responding difference is most clearly visible in the two RN

characteristics (Fig. 2(d)). At first, this result is surprising,

since T and C have an interpretation as the global and spa-

tially averaged local (geometric) dimension of the trajectory,

respectively.32 Hence, one could expect that the values of

both measures are smaller for a chaotic orbit (even in a

sticky phase) than for a quasi-periodic one. In turn, based

upon numerical studies, Tsiganis et al.36 argued that “the

dimension of the phase space subset on which a sticky seg-

ment is embedded does not differ from the dimension of the

set on which a regular orbit lies.” According to these results,

at least the correlation dimension studied in the former work

allows discriminating between sticky and filling chaotic

phases, but not between sticky chaotic segments and a quasi-

periodic orbit.

In order to understand why we can actually observe a

marked difference between sticky segments and neighboring

quasi-periodic orbits, Fig. 3 highlights the geometry of the

set of state vectors forming the trajectory segment during the

sticky phase. We observe that as the orbits within the nearby

quasi-periodic domain, in its sticky phase the chaotic orbit

consists of two spatially separated parts, each of which dis-

plays two sharp kinks. For the dissipative chaotic H�enon

map, it was found that such structures can spuriously induce

a lower dimensionality of the system (for finite values of e)
due to the existence of additional closed triangles in the RN

in the parts of the phase space where these kinks are located

and, hence, result in a positive bias of both T and C.9,32

Regarding the average path length L, Fig. 2 shows that

the RN is initially (T < Tdec) characterized by higher values

for the chaotic orbit in its laminar phase in comparison

with the quasi-periodic one, whereas L decays fast around

T ¼ Tdec and reaches values even below those found for the

initially filling chaotic orbit for T > Tdec. The reason for this

marked drop can also be identified from Fig. 3. Initially,

the orbit appears more or less like a (discretely sampled)

continuous curve (i.e., spatially neighboring state vectors

are always separated by distances less than e). In turn, at

T > Tdec distinct subsets of state vectors spanning the orbit

segment get separated by increasingly large phase space

regions (larger than e) without state vectors. Hence, we refer

to Tdec as the RN decomposition time, which depends on the

chosen value of e. Consequently, the initial RN consists of

mainly two mutually disconnected network components

corresponding to two spatially separated parts of the regular

domain in phase space (Fig. 3(a)), but then decomposes

further into a larger number of mutually disconnected

network components (which are mutually separated by more

than a distance e in phase space) at T > Tdec (cf. the inset

of Fig. 3(b)). Since the average path length is commonly

computed over all pairs of mutually reachable nodes, it nec-

essarily decreases if there is a transition towards more com-

ponents of smaller size.

The latter explanation is confirmed by a sharp decrease

in the size of the RN’s giant component shown in Fig. 4(b).

We emphasize that the number of RN components Nc would

provide another suitable measure for tracing this transition. In

turn, in the given situation, the RN percolation threshold ec is

less suited for this purpose, since the regular domain close to

which the sticky orbit segment is located already consists of

two spatially separated parts (as seen from the size of the

largest RN component for the nearby quasi-periodic orbit

FIG. 3. Phase portrait of the chaotic orbit in its sticky phase during two dif-

ferent periods of iterations: (a) T ¼ ½1; 1000�, (b) T ¼ ½6001; 7000�. Insets

show a zoom of one part of the orbit, highlighting the different arrangements

of the associated sets of state vectors in phase space (different distribution of

gaps between neighboring state vectors).

FIG. 4. (a) Recurrence threshold e and (b) size of the RN’s largest compo-

nent G(n) for sliding windows of N¼ 1000 points along the three previously

considered trajectory segments. Note that due to the presence of two spa-

tially separated parts of the orbits, the quasi-periodic orbit (green) and the

sticky phase of the chaotic orbit (red) have GðnÞ � 0:5, whereas the filling

chaotic one (black) commonly exhibits a single component (exceptions

likely correspond to short periods of stickiness or effects due to the finite

sample size), i.e., G(n)¼ 1.
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exhibiting GðnÞ � 0:5). In contrast, the RN properties L and

G(n) unveil the mechanism how the laminar phase of the

chaotic orbit is terminated: the state vectors along the chaotic

trajectory get more and more concentrated in phase space,

leading to the successive decomposition of the corresponding

RN structure into smaller, mutually disconnected subnet-

works when being viewed at finite spatial resolution e for

finite time windows far before the actual escape at T ¼ Tesc.

In this spirit, the decomposition of the RN provides an early

indication of the loss of the stickiness property of the

observed chaotic orbit.

While the observations described above correspond to

purely empirical findings, an in-depth analysis of the inter-

mittent behavior of chaotic orbits of the standard map by

complementary techniques like first-return maps would

allow relating the reorganization of chaotic orbit segments

across the escape from the sticky phase to the associated

transport properties. Obviously, along with the loss of sticki-

ness the vicinity of the invariant tori are visited more and

more heterogeneously. The detailed examination of the dy-

namical roots of this behavior (in the context of existing

results on intermittency in dynamical systems) will provide a

potentially interesting topic for further studies. The same

applies to the processes accompanying the trapping of a cha-

otic trajectory near periodic islands.

Within the framework of the present work, it would be a

practically relevant question whether the observations

described above are also characteristic for sticky orbits in

other Hamiltonian systems. However, a detailed study of this

aspect is beyond the scope of the present work. To this end,

we emphasize that systematically studying Tdec as a function

of e could provide a tool for further quantitatively character-

izing this transition. However, it needs to be kept in mind

that the RN computed for running windows in time (i.e., con-

sisting of a fixed number of nodes) needs to have a minimum

number of edges (minimum feasible RR35) in order to allow

for a proper evaluation, which sets a practical lower bound

to e.
Regarding the numerical results described above, it only

remains to be explained why the average path length L ini-

tially shows larger values during the sticky phase of the cha-

otic trajectory segment than for the quasi-periodic orbit.

Given that the recurrence threshold e is almost the same for

both orbits during the full period of stickiness (cf. Fig. 4(a)),

we relate this to the fact that (unlike for dissipative maps pre-

viously studied elsewhere9,32) both the regular (quasi-peri-

odic) orbit and the sticky phase of the chaotic one appear (up

to the spatial resolution e) to correspond to subsets of state

vectors that exhibit no gaps larger than e in phase space (i.e.,

there exist relatively long paths in the RN connecting state

vectors with a mutual distance of less than e). In such a case,

the behavior of L is mainly determined by the lengths of

these paths, which can be analytically computed if the proba-

bility distribution function of the state vectors is known.35

For the sticky phase of the chaotic orbit, the corresponding

state vectors form an outer envelope of the quasi-periodic

domain, so that the resulting larger spatial dimensions imply

somewhat larger L in the RN.

Summarizing the results obtained so far, all four charac-

teristics can potentially distinguish between quasi-periodic

and sticky chaotic motion. In particular, for T and C (but to

a smaller extend also hRTi), the observed values are consist-

ent for the full period of stickiness and thus allow identifying

sticky orbit segments even from relatively short time series

(i.e., when the number of iterations is much lower than Tesc,

e.g., 103 � 104 iterations), because the geometric shapes of

both types of orbits differ markedly. However, the aforemen-

tioned measures over-compensate the relative tendency one

would actually expect for chaotic trajectories when com-

pared to quasi-periodic ones. The latter observation is due to

the stronger “kinkiness” of the sticky orbits. We will re-

examine this feature below in order to address the question

whether it can be exploited for automatically discriminating

between quasi-periodic and sticky chaotic trajectory

segments.

B. Full phase space

Based on the results for the three example trajectories

described in Section III A, we now turn to a characterization

of the full phase space regarding different types of dynamics.

For this purpose, we start with 500 initial conditions distrib-

uted randomly within the domain of definition of the stand-

ard map, ðx; yÞ 2 ½0; 1� � ½0; 1�. Here, we use the canonical

parameter value of j ¼ 1:4 in Eq. (1). All trajectories are

computed for 5000 time steps. Note that for conservative dy-

namics we do not have transients in the sense of dissipative

dynamics where an attractor needs to be approached first.

This is an advantage in comparison to numerical studies of

dissipative systems. Hence, the state vectors at all iterations

can be further taken into account.

For the ease of comparison, Fig. 5(a) displays the phase

space of the standard map, where a sample of state vectors of

the system is colored according to the largest Lyapunov expo-

nent k of the orbit traversing each corresponding point in

phase space. As expected, we observe a significant difference

between the chaotic domain with positive k > 0 and the regu-

lar domain with k � 0. Note that for numerically approximat-

ing k (but not the characteristics estimated from the RM), we

have used much longer trajectories with N ¼ 2� 105 points,

since the N¼ 5000 iterations considered in the following for

computing the recurrence-based characteristics are often not

sufficient for obtaining stable estimates of k.

The resulting pattern of K2 estimated from the RM is

shown in Fig. 5(b). Regarding our “experimental” setting,

we emphasize that 5000 iterations often do not guarantee

that all sticky orbits can leave the vicinity of the quasi-

periodic areas in phase space and, hence, that a single cha-

otic trajectory segment can fully cover the chaotic domain.

Therefore, the considered trajectory length of N¼ 5000 state

vectors seems to be insufficient to reliably estimate K2, since

the scaling region used for estimation can eventually get

blurred by short diagonal lines. This relatively short time se-

ries length explains why the numerical results of Fig. 5(b) do

not show convincingly the theoretical relationship that K2 is

a lower bound of the sum of positive Lyapunov exponents of

the system.17 However, our ensemble of 500 random initial
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conditions is found to be sufficient to provide a rough map of

the phase space (distinguishing qualitatively different types

of dynamics and highlighting domains with temporary sticki-

ness of chaotic orbits) as shown below. Taken together,

quasi-periodic orbits and chaotic trajectories in their sticky

phases cannot be reliably distinguished by K2 in the consid-

ered analysis setting.

As discussed in detail in Section II, there are two main

strategies for selecting the threshold e. While the estimation of

K2 (Fig. 5(b)) from the RM does not distinguish between both

approaches (since it uses a scaling relationship emerging as e
is varied), the results for the other four characteristics depend

on whether e or RR is fixed. Figure 6 illustrates the mutual de-

pendence between e and RR, thereby extending upon earlier

results for a single orbit previously reported for dissipative

chaotic systems.37 Note that for Hamiltonian systems,

domains covered by periodic, quasi-periodic, and chaotic

orbits can have intrinsically different sizes, hence, distances

along such orbits are commonly not comparable. Hence, using

the same e can lead to very different RR (Fig. 6(b)).

When aiming for a quantitative comparability of RN

characteristics (which can depend on RR), we suggest to

adaptively choose e such that the RR has the same fixed

value (Fig. 6(b)). In turn, since regular and (even sticky) cha-

otic orbits can have considerably different spatial dimen-

sions, it is of potential interest to also consider a setting with

e being globally fixed (see Fig. 6(a) for the resulting behavior

of RR). The corresponding results for the three RN measures

as well as hRTi for both settings are shown in Figs. 7 and 8,

respectively.

The overall structure of the phase space with its inter-

mingled regular and chaotic orbits is captured by both

dynamic (K2 and RT) and geometric measures (e.g., T and

other RN characteristics), as shown in Figs. 7 and 8.

Specifically, quasi-periodic trajectories are characterized by

larger values of network transitivity T , while filling chaotic

ones have smaller T . The same applies to C. Regarding both

properties, the obtained picture is consistent for the two set-

tings with fixed RR and fixed e, respectively. For hRTi, the

pattern is only conclusive for fixed e, where the mean recur-

rence times are considerably larger in the filling chaotic case

than for regular orbits (as it is the case for the RN average

path length L), which is expected since the chaotic domain is

larger than the regular one. Specifically, while a chaotic orbit

can fill the complete domain (as t!1), regular ones are

distinct and mutually nested, which results in different values

of hRTi and L for the latter which (for fixed e) depend

clearly on the size of the orbit. In turn, when fixing RR the

effect of different spatial distances on the estimated recur-

rence times and RN average path lengths is essentially

removed (Figs. 7(c) and 7(d)).

Turning back to the original question of whether or not

it is possible to distinguish chaotic trajectories in their sticky

phase from quasi-periodic orbits, our results indicate that in

agreement with the findings for the three example trajecto-

ries in Section III A, the RN transitivity T obtained with a

fixed RR is a promising candidate measure. Notably, the

sticky chaotic orbit segments are organized in phase space

like envelopes of the islands-around-islands (i.e., a period-n
orbit surrounded by islands of high periods). As Fig. 9 indi-

cates, these envelopes are in fact characterized by elevated

values of T clearly above those found for the orbits within

the regular domains (T ¼ 0:75—as expected for one-

dimensional curves32 —in the middle of these domains and

T � 0:8 inside the quasi-periodic island chains), while many

initial conditions close to the quasi-periodic orbits (but not

belonging to them) lead to finite-time trajectory segments

with T � 0:85…0:9 and even above due to the kinky

FIG. 5. Phase space of the standard

map (Eq. (1)) characterized by (a) the

largest Lyapunov exponent k and (b)

K2 estimated from the RM.

FIG. 6. Same phase space as in Fig. 5,

but highlighting the two different ways

to choose the recurrence threshold e.
(a) RR for a fixed threshold e ¼ 0:03,

(b) e for a fixed RR¼ 0.02.
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geometry shown in Fig. 3, which is consistent with the previ-

ous findings for dissipative maps.9,32

Following the ideas presented in our previous work on

dissipative systems,31 one could in principle assess the qual-

ity of a classification obtained by the approach presented

above in a more rigorous statistical framework with the help

of the largest Lyapunov exponent k. However, such an

assessment of the discriminatory power of different measures

becomes both numerically and conceptually more challeng-

ing than for the problem of distinguishing periodic and cha-

otic orbits in the parameter space of dissipative nonlinear

oscillators as previously studied31 for different reasons: (i)

there are periodic, quasi-periodic, and chaotic trajectories

(i.e., three qualitatively different types of orbits)

intermingled in phase space; (ii) there is no unique residence

time scale for chaotic orbits to stay in an intermittent laminar

phase corresponding to stickiness; and (iii) technically, the

assessment is more appropriate for investigating the parame-

ter space of complex systems31 than for exploring the phase

space with coexisting domains of qualitatively different dy-

namics as done as in Figs. 7 and 8. The statistical analysis

would hence yield results that are specific to the particular

choices of the length of time series and initial conditions.

IV. CONCLUSIONS

We have presented a numerical case study demonstrating

that recurrence-based methods in general, and recurrence

FIG. 7. Same phase space as in Fig. 5

but characterized by recurrence statis-

tics for the standard map using fixed

RR¼ 0.02. (a) T , (b) C, (c) L, and (d)

hRTi.

FIG. 8. Same phase space as in Fig. 7

for a fixed e ¼ 0:03.
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networks, in particular, can be useful for disentangling differ-

ent dynamical regimes not only in dissipative, but also in con-

servative dynamical systems. Specifically, we have shown

that the geometric properties of regular (i.e., periodic and

quasi-periodic) orbits of the standard map as captured by re-

currence networks clearly differ from such of (filling) seg-

ments of chaotic orbits that do not exhibit intermittent periods

of stickiness close to the domain of regular solutions. While in

the latter case, many existing approaches can fail to unambig-

uously discriminate between quasi-periodic and sticky chaotic

dynamics, recurrence network characteristics provide indica-

tors for the presence of chaos even in such rather complex sit-

uations. The transition phase between laminar (sticky) and

homogeneously filling chaotic dynamics has not been explic-

itly studied, but presents an interesting subject to be further

investigated. In general, one has to note that sticky and filling

chaotic dynamics can correspond to different phases of the

same chaotic orbit (the durations of which can show a consid-

erably wide distribution). Thus, making a distinction between

both appearances is only reasonable for specified periods of

observation of the system under study.

It is important to emphasize that the proposed applica-

tion of recurrence network analysis to conservative systems

has been successful already for relatively short trajectory

segments (e.g., N¼ 1000 or 5000 points). Although this

study has considered only the paradigmatic and best-studied

example of a discrete-time two-dimensional Hamiltonian

system exhibiting co-existence between regular orbits and

chaos (the Chirikov standard map), it is expected that similar

results can be obtained for other Hamiltonian maps with a

chaotic regime, such as a four-dimensional version of the

standard map consisting of two coupled classical standard

maps,38 Zaslavsky’s stochastic web map,39 Meiss’ quadratic

map,40 or even continuous-time Hamiltonian system like the

H�enon-Heiles system.21,41 A continuation of this study tak-

ing such different systems into account will be the subject of

our future work.

The aim of the present study was to initially explore the

general potentials of recurrence network analysis for applica-

tions to conservative systems. We did neither undertake an

exhaustive quantitative comparison between different

recurrence-based techniques, nor between recurrence-based

approaches and classical chaos indicators based on the idea

of exponential transverse motion in phase space14,42 or estab-

lished tests for the presence of chaos like the 0–1 test.54

However, a corresponding in-depth investigation should be a

subject of future research as well, including a systematic

study of the effects of the available time series length on the

obtained estimates.

In order to further support the applicability of the pro-

posed approach, a detailed performance assessment of differ-

ent methods would be desirable. For such an assessment, two

criteria appear of special relevance:

On the one hand, the classification accuracy needs to be

addressed. Notably, a corresponding investigation would

require considerable numerical efforts, since the exact loca-

tion of the chaotic domains cannot be computed analytically

for the standard map, but needs to be evaluated by some

benchmark technique. For this purpose, the standard refer-

ence would again be the largest Lyapunov exponent, the

appropriate estimation of which, however, is considerably

challenged by the presence of stickiness at all possible time

scales (i.e., the closer an initial condition is to the boundary

of the regular domain, the longer the sticking time can be

expected to be). In fact, this problem affects essentially all

existing classification criteria for orbits in Hamiltonian sys-

tems exhibiting stickiness phenomena.

On the other hand, convergence time should be taken

into account as a second criterion, which is of particular rele-

vance in situations where only relatively short time series are

available for characterizing the nature of different orbits.

Regarding the latter aspect, we emphasize that recurrence

methods present a powerful methodological alternative to

indicators based on transverse expansion. From the computa-

tional perspective, recurrence plot-based methods are con-

ceptually simple and have reasonable computational

demands, making them excellent candidates for applications

to short experimental time series.3
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APPENDIX: METHODOLOGICAL DETAILS

In this Appendix, we provide algorithmic details on the

set of complementary recurrence analysis approaches used in

this paper.

1. Dynamical invariant K2

We recall the techniques presented in Thiel et al.5,24 to

estimate K2 from the RM (Eq. (2)) and present some remarks

on the corresponding computations. K2 can be estimated

FIG. 9. Zoom into Fig. 7(a) displaying the values of T at the interface

between regular and chaotic domains. Black arrows indicate chaotic areas

with increased transitivity values.
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from the cumulative distribution of diagonal lines Pc
eðlÞ in

the RP.24 Specifically, the probability of finding a diagonal

line of at least length l in the RP of a chaotic map is given by

Pc
eðlÞ � eD2 expð�K2ðeÞlÞ: (A1)

Therefore, if we represent Pc
eðlÞ in a logarithmic scale

versus l, we should obtain a straight line with slope �K2ðeÞ
for large l. This slope is independent of e for a deterministic

chaotic system, while linearly dependent on e for random

processes. Thus, K2 can be estimated from RPs provided the

length of time series covers the underlying system in the

(sampled) phase space sufficiently well. This method has

been successfully applied to characterize fluid dynamics in

different regimes,5 to study the stability of extrasolar plane-

tary systems,43 and to divide the parameter space of a

mechanical oscillator system into different regimes.44

One important advantage of the RP-based estimator of

K2 (Eq. (A1)) is that it is independent of the choice of the pa-

rameters for a possibly necessary embedding, which can be

important when studying real-world observational time

series.

2. Recurrence time statistics from RM

The detailed steps to estimate the RT distribution pðsÞ
from the RM are as follows:

RTs can be identified as the lengths of non-interrupted

vertical (or horizontal, since the RM is symmetric) “white

lines” that do not contain any recurrence (i.e., no pair of

mutually close state vectors). More precisely, such a white

line of length s starts at the position (i, j) in the RP if24

Ri;jþm ¼
1 if m ¼ �1;
0 for m 2 f0;…; s� 1g;
1 if m ¼ s:

8<
: (A2)

This means that for all times k ¼ j� 1;…; jþ s, the

observed state vectors vk are compared with vi. The structure

given in Eq. (A2) can be interpreted as follows: At time

k ¼ j� 1, the trajectory falls into an e-neighborhood of vi.

Then, for k ¼ j;…; jþ s� 1, it moves further away from vi

than a distance e, until it returns to the e-neighborhood of vi

again at k ¼ jþ s. Hence, given a uniform sampling of the

trajectory in the time domain, the length s of the resulting

white line in the corresponding RP is proportional to the

time that the trajectory needs to return e-close to vi. Going

beyond the concept of first-return times, the ensemble of all

recurrences to the e-neighborhood of vi induces a RT distri-

bution for this specific point. Combining this information for

all available points vi in a given time series (i.e., considering

the lengths of all white lines in the RP), one obtains the RT

distribution pðsÞ associated with the observed (sampled) tra-

jectory segment in phase space. Hence, the length distribu-

tion p(l) of white vertical lines l in the RM not containing

any recurrent pair of observed state vectors provides an em-

pirical estimate of the distribution of RTs on the considered

orbit.

3. Recurrence network analysis

Recently, the idea of transforming a time series into

complex network representations has emerged in the scien-

tific literature, providing new alternatives for studying basic

properties of time series from a complex network perspec-

tive.8–10,45–47 Among other corresponding approaches, the

RM (Eq. (2)) can be re-interpreted as the adjacency matrix

of the so-called e-RN.

In order to construct the RN, we re-consider the recur-

rence matrix Ri;j, the main diagonal of which is removed for

convenience, as the adjacency matrix Ai;j of an undirected

complex network associated with the recorded trajectory,

i.e.,

Ai;j ¼ Ri;jðeÞ � di;j; (A3)

where di;j is the Kronecker delta. The nodes of this network

are given by the individual sampled state vectors on the tra-

jectory, whereas the connectivity is established according to

their mutual closeness in phase space. This definition pro-

vides a generic way for analyzing phase space properties of

complex systems in terms of RN topology.9,32 However,

since this topology is invariant under permutations of the

order of nodes, the statistical properties of RNs do not spe-

cifically capture the system’s dynamics, but its geometric
structure based on an appropriate sampling. We emphasize

that a single finite-time trajectory does not necessarily repre-

sent the typical long-term behavior of the underlying system.

Hence, the resulting network properties can depend—among

others—on the length N of the considered time series (i.e.,

the network size), the probability distribution of the data,

embedding,37 sampling,10,48 etc.

Although they primarily describe geometric aspects, the

topological features of RNs are closely related to dynamical

characteristics of the underlying system.9,32 In dissipative

chaotic model systems (e.g., R€ossler and Lorenz systems),

both local and global network properties have already been

studied in great detail.32

In this paper, we consider the following three characteris-

tics49,50 as potential candidates for discriminatory statistics:

(1) The average path length L, which quantifies the average

geodesic (graph) distance li;j between all pairs of nodes

ði; jÞ

L ¼ hli;ji ¼
2

N N � 1ð Þ
X
i<j

li;j; (A4)

where li;j is the minimum number of edges separating

two nodes i and j;
(2) The global clustering coefficient C,51 which gives the

arithmetic mean of the local clustering coefficients Ci

(i.e., the fraction of nodes connected with a node i that

are pairwise connected themselves) taken over all i

C ¼ 1

N

XN

i¼1

Ci; (A5)

with
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Ci ¼
P

j;k;i 6¼j 6¼kAi;jAi;kAj;kP
j;k;i6¼j6¼kAi;jAi;k

; (A6)

(3) Network transitivity T ,52,53 which is closely related to C
(but gives less weight to poorly connected nodes32) and

globally characterizes the linkage relationships among

triples of nodes in a complex network (i.e., the probabil-

ity of a third edge within a set of three nodes given that

the two other edges are already known to exist)

T ¼ 3 ND

N3

¼
P

i;j;k;i 6¼j 6¼kAi;jAi;kAj;kP
i;j;k;i 6¼j 6¼kAi;jAi;k

; (A7)

where ND is the number of triangles in the network and

N3 is the number of connected triples. Note that T is

sometimes referred to as the (Barrat-Weigt) global clus-

tering coefficient, often also denoted as C, e.g., in Ref.

31. In order to avoid confusion, in this work we prefer to

discuss both measures separately.

We emphasize that further network measures (e.g., local

betweenness centrality bv and global assortativity coefficient

R) have also been shown to discriminate between different

types of dynamics in dissipative systems,8,9,31 but are not

considered in this work for brevity.
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